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Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also

plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this

review, ionizing radiation (IR) leads to activation of several transcription factors modulating

the expression of numerous mediators in tumor cells and cells of the microenvironment pro-

moting cancer development. Novel therapeutic approaches thus aim to interfere with the

activity or expression of these factors, either in single-agent or combinatorial treatment or

as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-

1 play a crucial role in radiation-induced inflammatory responses embedded in a complex

inflammatory network. A great variety of classical or novel drugs including nutraceuticals

such as plant phytochemicals have the capacity to interfere with the inflammatory network

in cancer and are considered as putative radiosensitizers.Thus, targeting the inflammatory

signaling pathways induced by IR offers the opportunity to improve the clinical outcome of

radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects.

Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach

targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors

might be effective in sensitizing certain tumors to IR.
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INTRODUCTION

Chronic inflammation has emerged as one of the hallmarks

of cancer impacting any stage of tumorigenesis (Colotta et al.,

2009; Grivennikov and Karin, 2010). The persistent expression of

inflammatory mediators exert pleiotropic effects on the malig-

nant process. On the one hand, they affect carcinogenesis and

malignant transformation, tumor growth, invasion, and metasta-

sis, on the other hand they activate immune effector mechanisms

limiting tumor growth. The link between cancer and inflamma-

tion can be viewed as consisting of two pathways: an intrinsic

and an extrinsic pathway (Mantovani et al., 2008). At the level of

the tumor cell, both pathways converge and induce the activation

of several transcription factors culminating in the formation of

numerous pro-inflammatory molecules that recruit and activate

various leukocyte populations into the tumor microenvironment

(for a review, see Multhoff et al., 2012). The tumor cell-derived

pro-inflammatory molecules now activate the same transcription

factors within the cells of the microenvironment and the tumor

cells themselves resulting in a more pronounced generation of

inflammatory mediators driving a tumor-promoting amplifica-

tion loop. This amplification mechanism further enhances the

impact of inflammatory stimuli within the tumor environment

and triggers the manifestation of a cancer-related inflammatory

milieu contributing to tumor growth and invasiveness.

NF-κB provides a mechanistic link between inflammation, car-

cinogenesis, and tumor radioresistance (Magne et al., 2006; Ben-

Neriah and Karin, 2011). NF-κB is regarded as the key orchestrator

controlling the ability of both, preneoplastic and malignant cells,

to resist apoptosis-based tumor surveillance mechanisms activated

by DNA damage and chromosomal rearrangement or anti-cancer

drugs and radiation, respectively. NF-κB might also regulate tumor

angiogenesis and invasiveness (Karin, 2006), and may contribute

to the characteristic radio-/chemoresistance of tumor cells (Fahy

et al., 2004; Singh and Khar, 2006; Antoon et al., 2011; Chaturvedi

et al., 2011). In conjunction with STAT-3 and HIF-1, NF-κB serves

as a modulator of the expression of several factors promoting

cancer development. Novel therapeutic approaches thus aim to

interfere with the activity or expression of these factors, either

in single-agent or combinatorial treatment or as supplements of

the existing therapeutic concepts. Noteworthy, targeting the pro-

inflammatory signaling pathways for tumor radiosensitization

represents a promising novel therapeutical approach in cancer.

A great variety of classical or novel drugs including nutraceuticals

have the capacity to interfere with the inflammatory network in

cancer and are progressively tested for tumor radiosensitization.

Accumulating evidence over the last few years indicate that most

chemotherapeutic agents and radiation therapy activate NF-κB

(Wang et al., 1996; Sandur et al., 2009; Li and Sethi, 2010). Thus,

NF-κB blockage has been recognized as a promising tool in increas-

ing radiosensitivity of tumors. Apart from NF-κB, STAT-3, HIF-1,

and PGHS-2 are further inflammatory factors crucially involved

in radioresistance of tumors. Thus, interrupting the inflammatory

network in cancer by targeting these molecules may be a promis-

ing radiosensitization approach in cancer therapy. Table 1 provides

an overview on natural and (semi-)synthetic compounds that are

considered as putative radiosensitizers.
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Table 1 | Natural and (semi-)synthetic compounds as putative radiosensitizers und their targets.

Compound Source/systematic name Target

Anacardic acid Anacardium occidentale (cashew nuts) IKK, NF-κB

Berberine Berberis aristata (Indian barberry, tree turmeric) NF-κB

Butein Rhus verniciflua (Chinese lacquer tree) NF-κB

Caffeic acid phenethyl ester Honeybee propoplis GSH, NF-κB

Celecoxib 4-[5-(4-methylphenyl)-3-(trifluoromethyl) pyrazol-1-yl]benzenesulfonamide PGHS-2, NF-κB

Cepharanthine Stephania cepharantha Hayata NF-κB, STAT-3

Crotepoxide Kaempferia pulchra (peacock ginger) TAK-1

Curcumin Curcuma longa (turmeric) Akt, IKK, NF-κB

Daidzein, genistein Glycine max (soy bean) STAT-3, HIF-1α

Deguelin Derris trifoliata (threeleaf derris) Hsp90, HIF-1α

EGCG Camellia sinensis (green tea) NF-κB

Emodin Rheum rhabarbarum (Rhubarb), Aloe vera HIF-1

Erufosine Alkylphosphocholine (synthetic phospholipid analog) Akt

Ethaselen 1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)] ethane; BBSKE Thioredoxin reductase, NF-κB

Flavopiridol Semi-synthetic flavonoid based on an extract from the Indian plant, Dysoxylum

binectariferum

CDKs, cyclin D1, Rb, Bcl-2

Geldanamycin Naturally occurring ansamycin antibiotic from Streptomyces hygroscopicus Hsp90

KNK437 Benzylidene lactam compound Hsp27, Hsp70

Nitidine chloride Zanthoxylum nitidum (Tez-mui, Tejamool in Assamese; locally called

“liangmianzhen”)

STAT-3

Oleandrin Nerium oleander (nerium) Caspase-3

Parthenolide Tanacetum parthenium (feverfew) NF-κB, p53

Piceatannol Hydroxylated resveratrol analog found in various plants, e.g., Vitis spec. NF-κB

Picroliv Picrorhiza kurroa (katuka) NF-κB

Piperine Piper nigrum (black pepper) CYP450 enzymes

Plumbagin Plumbago rosea (Scarlet leadwort) NF-κB

Resveratrol Vitis spec. (grape, red wine) STAT-3, NF-κB

Silymarin Silybum marianum (milk thistle) NF-κB

Xanthohumol Humulus lupulus (common hop) NF-κB

GENETIC INSTABILITY

Recent observations allow a deeper insight into the molecular

and cellular mechanisms linking inflammation and tumorigen-

esis. Emerging data suggest that genetic destabilization of tumor

cells is regarded as a further hallmark of most human cancers

contributing to tumor initiation and progression (Colotta et al.,

2009). Apart from the production of cytokines, chemokines, pro-

teases and prostanoids, inflammatory cells are able to produce

reactive oxygen species (ROS) and reactive nitrogen species (RNS).

Leukocytes are the main source of RNS and ROS acting as chem-

ical effectors in inflammation-driven carcinogenesis (Kundu and

Surh, 2008). All of these mediators act together in perpetuating

and amplifying the inflammatory cascade. As outlined in Figure 1,

they suppress DNA repair mechanisms leading to an increase

in genetic instability termed microsatellite instability (MSI) as a

result of mutations or epigenetic alterations of members of the

mismatch repair (MMR) family (Hakem, 2008). The MMR sys-

tem is strongly affected by inflammatory conditions. It has been

shown previously that the transcription factor HIF-1 is induced in

tumor cells not only by different cytokines and prostaglandins

(Jung et al., 2003) but also by ROS and RNS (Sandau et al.,

2000). HIF-1 is a heterodimeric transcription factor consisting

of a constitutively expressed β-subunit and an oxygen-regulated

α-subunit (Kaelin Jr. and Ratcliffe, 2008). It was proved that HIF-

1 plays a pivotal role in hypoxia-induced tumor radioresistance

(Moeller and Dewhirst, 2006; Harada, 2011). In this context, our

own investigations revealed no correlation between basal HIF-1α

levels and the survival fraction in irradiated tumor cell lines imply-

ing that basal HIF-1α levels in human tumor cell lines obviously do

not predict their radiosensitivity under normoxia (Schilling et al.,

2012a). Moreover, HIF-1α has been found as being responsible for

genetic instability to down-regulated MMR proteins by inhibiting

the MMR proteins MSH-2 and MSH-6, thereby decreasing lev-

els of the MSH-2/MSH-6 complex, MutSα, which recognizes base

mismatches. HIF-1α displaces the transcriptional activator c-Myc

from Sp1 binding to repress MutSα expression in a p53-dependent

manner (Koshiji et al., 2005). Chang et al. (2002) observed that

hydrogen peroxide inactivates members of the MMR family at

the protein level. From this observation the authors speculate

that inactivation of the MMR function in response to oxidative

stress may be responsible for the low-frequency MSI (MSI-L)

seen in non-neoplastic and cancer tissues associated with chronic

inflammation.

Chromosomal instability can also be the result of the deleteri-

ous action of inflammatory mediators culminating in abnormal

chromosomal segregation and aneuploidy. The deleterious actions
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FIGURE 1 | Inflammation-induced molecular pathways causing

genetic instability in cancer cells. Genetic destabilization of tumor

cells is regarded as a further hallmark of most human cancers

contributing to tumor initiation and progression. Apart from the

production of cytokines, chemokines, proteases, and prostanoids,

inflammatory cells are able to produce reactive oxygen (ROS) and

nitrogen species (RNS). All of these mediators act together in

perpetuating and amplifying the inflammatory cascade. On the one

hand, they suppress DNA repair mechanisms leading to microsatellite

instability. On the other hand, they can cause chromosomal instability

culminating in abnormal chromosomal segregation and aneuploidy.

These inflammatory mediators induce DNA double-strand breaks, affect

function of mitotic checkpoint molecules and dysregulate homologous

recombination of DNA double-strand break repair leading to random

genetic diversification of tumor cells. Cancer cells harboring the optimal

combination of activated oncoproteins and inactivated oncosuppressor

proteins will develop the malignant phenotype (figure adapted from

Colotta et al., 2009; for details see text).

of inflammatory mediators include direct or indirect induction of

DNA double-strand breaks (Karanjawala et al., 2002; Mills et al.,

2003), defective mitotic checkpoints (Rajagopalan et al., 2003;

Menssen et al., 2007), and dysregulated homologous recombina-

tion of DNA double-strand break repair (Saintigny et al., 2001;

Hakem, 2008; Plo et al., 2008). Further critical molecules that affect

genetic stability comprise activation-induced cytidine deaminase

(AID; Endo et al., 2008), c-Myc (Vafa et al., 2002), phospho-

retinoblastoma protein pRb (Pickering and Kowalik, 2006), and

p53 (Tomasini et al., 2008). By causing microsatellite as well as

chromosomal instability these molecules induce random genetic

diversification of tumor cells. As already discussed by Colotta

et al. (2009), cancer clones harboring the optimal combination

of activated oncoproteins and inactivated oncosuppressors will

develop the malignant phenotype (Figure 1).

CELL–CELL INTERACTIONS

In the tumor microenvironment, an intensive interaction between

tumor cells and infiltrating immune cells occurs. The latter com-

prise macrophages, dendritic cells (DC), T cells as well as NK cells

with macrophages and T cells as being the most frequent ones (Lus-

ter et al., 2005). Inflammatory mediators secreted by tumor and

immune cells have been found to play a dual role in tumor devel-

opment. On the one hand, they promote tumor development and

survival of tumor cells, on the other hand they exert surveillance

mechanisms against tumor cells (Ben Baruch, 2006; Kim et al.,
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2006b). In case of a predominance in anti-tumor immunity, tumor

cells are eradicated whereas a predominance in surveillance mech-

anisms provides cancer cells with an immunosuppressive network

extending the immune evasion and promoting tumor progression

and metastasis (Hadden, 2003). Among the inflammatory medi-

ators secreted by tumor and immune cells TNF, IL-6, and IL-17

act as crucial players in developing chronic inflammation result-

ing in immune escape and acceleration of tumor progression and

metastasis. Upon activation, myeloid cells produce pro- and anti-

inflammatory mediators not only affecting growth, survival, and

invasiveness of tumor cells but also controlling functional activi-

ties of Th1, NK, Treg, and Th17 cells (Lin and Karin, 2007). TRAIL,

a member of the TNF superfamily and the product of activated T

and NK cells, directly induces apoptosis in numerous cancer cells

(LeBlanc and Ashkenazi, 2003) thus playing a crucial role in tumor

surveillance mechanisms. Regulatory T cells (Treg) function as

key components for regulating anti-tumor immunity (Yamaguchi

and Sakaguchi, 2006). Treg specifically suppress the cytotoxicity of

expanded CD8+ cytotoxic T cells (Chen et al., 2005) and induce

release of IL-17 from Th17 cells acting as key players in chronic

inflammation (Mangan et al., 2006). IL-17-mediated effects on

the inflammatory response involve recruitment of immune cells

(Park et al., 2005), induction of pro-inflammatory factors (IL-1,

IL-6, TNF) as well as promotion of angiogenesis and tumor growth

(Numasaki et al., 2003). Development of Th17 cells is stimulated

by IL-6, IL-23, TGF-β, and TNF released from activated myeloid

cells. Anti-inflammatory IL-10 inhibits tumor progression and

development by blocking synthesis of IL-6, IL-12, and TNF via

NF-κB inhibition (Moore et al., 2001). Furthermore, the anti-

tumor activity of Treg is mediated by IL-10 released from Treg

themselves (Erdman et al., 2003). IL-23 belonging to the IL-12

family of cytokines enhances the production of IFN-γ and IL-12

by activated T cells, induces IL-17 release from Th17 cells and

promotes inflammation at its final stage (Cho et al., 2006). More-

over, IL-23 has been found to up-regulate expression of MMP-9,

to increase angiogenesis and to decrease CD8+ T cell recruitment

to tumors possibly providing the basis for the development of

a tumor-promoting environment (Langowski et al., 2006). IL-12,

also released from antigen-presenting cells (APC) after stimulation

with IL-23, is a further member of the IL-12 family of cytokines

and harbors anti-tumor activities in particular via stimulation

of Th1- and CTL-mediated immune responses (Trinchieri, 2003;

Langowski et al., 2006). Table 2 summarizes the cellular and mol-

ecular outcomes based on interactions between various cell types

in the tumor microenvironment.

SEX STEROIDS

An increasing number of data currently reveal the close relation-

ship between the two classical pathways in tumor progression:

inflammation and gonadal hormones. Since the discovery of the

hormone dependency of mammary carcinoma in the 1890s, it

has become clear that gonadal steroids play a crucial role in the

pathogenesis of breast and prostate cancer. The Scottish surgeon

George Thomas Beatson was about the first who showed that

oophorectomy in a premenopausal woman with breast cancer led

to a complete remission (Beatson, 1896a,b) highlighting the role of

sex steroids in tumor pathogenesis. However, more recent inves-

tigations revealed an astonishing effect of gonadal hormones on

tumorigenesis. Female somatic cells including tumor cells express

receptors for sex steroid hormones such as estrogen and proges-

terone affecting growth of hormone-dependent breast cancer cells

(Henderson and Canellos, 1980a,b). Women are well known as

being less susceptible to tumors at organ sites not representing

classical targets for gonadal hormones including the liver. Thus,

hepatocellular carcinoma (HCC), the most common liver cancer,

occurs mainly in men. The same gender disparity is seen in mice

Table 2 | Effects of cell–cell interactions in the tumor microenvironment.

Effector Molecular/cellular outcome Physiology/pathophysiology

IL-6, IL-10, TNF Enhancement of tumor cell growth Chronic inflammation

IL-10 Anti-inflammatory, blockage of IL-6, IL-12, TNF synthesis via NF-κB inhibition Tumor suppression

IL-12 Activation of CD8+ CTL and NK cells, expression of cytotoxic mediators (IFN, TRAIL, TGF-β) Anti-tumor effect

IL-17 Induction of pro-inflammatory mediators (IL-1, IL-6, TNF) Chronic inflammation, tumor

progression

IL-23 Induction of IL-12/IFN-γ release from activated T cells, TNF/IL-12 from APC, IL-17 from Th17

cells, MMP-9 up-regulation, decrease of CD8+ CTL recruitment, increase in angiogenesis

Chronic inflammation, tumor

progression

TGF-β Enhancement of tumor cell invasiveness and angiogenesis, inhibition of NK cells, CTL,

macrophages

Tumor progression

Anti-inflammatory effects on T cells, tumor suppressor/cytotoxic activity Anti-tumor effect

TRAIL Induction of apoptosis Tumor suppression

Treg cells IL-10 release from Treg, suppression of CD8+ CTL Anti-tumor effect

Induction of IL-17 release from Th17 Chronic inflammation

TNF Promotion of angiogenesis and metastasis, impairment of immune surveillance via T cell

and macrophage blockage

Tumor progression, chronic

inflammation

Destruction of tumor vasculature and induction of necrosis Anti-tumor effect

IL-23, TGF-β, IL-6, TNF Th17 cell development Chronic inflammation

IL-6, TNF, TGF-β Impact on stromal cells and metastasis Tumor progression

IL-17, TNF Impact on endothelial cells, increase in angiogenesis Tumor growth
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given a chemical carcinogen, diethylnitrosamine (DEN) resulting

in liver parenchymal damage followed by activation of Kupffer

cells (KC; Naugler et al., 2007). As demonstrated in this study,

DEN induces NF-κB-dependent production of pro-inflammatory

and growth-promoting IL-6 in KC via IL-1 and TLR signaling cas-

cades, respectively, finally leading to tumor development. Estrogen

inhibits activation of NF-κB and blocks secretion of IL-6 from KC

thus protecting against liver cancer in females.

Prostate cancer is an androgen-dependent cancer whose sus-

ceptibility to gonadal hormones is regulated by selective androgen-

receptor modulators (SARM) attenuating the proliferative proper-

ties of androgens on tumor cells. Pro-inflammatory IL-1 derived

from tumor cells or cells of the microenvironment reverses the

properties of SARM from being inhibitory to activatory (Zhu et al.,

2006). This de-repression effect requires TGF-β-activated kinase 1

(TAK-1)-binding protein (TAB) 2 (=TAB-2; Takaesu et al., 2000).

At the molecular level, IL-1 signaling induces phosphorylation of

TAB-2. TAB-2 acts as a sensor for inflammatory signals by serving

as a molecular beacon for recruitment of MEKK1, which in turn

mediates dismissal of the nuclear receptor co-repressor (N-CoR)

holoco-repressor complex from the androgen-receptor and per-

mits de-repression of androgen and estrogen receptor target genes.

According to Zhu et al. (2006), this strategy might have come into

notice in order to trigger reversal of gonadal hormone-dependent

repression of a limited cohort of target genes in response to

inflammatory signals linking inflammatory, and nuclear receptor

ligand responses to essential reproductive functions. Treatment of

prostate cancer by androgen deprivation either by suppression of

testicular androgen production or by the use of pharmacological

SARM such as flutamide or bicalutamide remains the standard sys-

temic therapy. It has been shown previously that bicalutamide does

not function as an androgen-receptor (AR) antagonist by prevent-

ing AR binding to DNA but instead stimulates the assembly of a

transcriptionally inactive receptor on DNA (Masiello et al., 2002).

Recent reports demonstrate that AR can also bind to co-repressor

proteins, including N-CoR, and that this binding is enhanced in

the presence of bicalutamide indicating that co-repressor binding

could further contribute to the in vivo antagonist activity of bica-

lutamide (Cheng et al., 2002; Shang et al., 2002; Yoon and Wong,

2006). Interestingly, the group of Hollenberg clearly demonstrated

that the AR/N-CoR interaction is not enhanced by AR antagonists

used currently for the treatment of prostate cancer, but can be

markedly enhanced by mifepristone (RU486) in vitro (Hodgson

et al., 2005). RU486 can thus be considered as a novel AR antago-

nist that will likely have novel activities in vivo. However, clinical

trials of RU486 or related drugs are needed to determine whether

these may be more efficacious than currently available AR antag-

onists in the treatment of prostate cancer, particularly advanced

androgen-independent prostate cancer. A recent phase II study was

conducted to assess the efficacy of mifepristone as an AR antago-

nist in patients with castration-resistant prostate cancer (CRPC).

In this study, RU486 showed only limited activity in patients with

CRPC, but stimulated a marked increase in adrenal androgens

(Taplin et al., 2008). From these findings the authors hypothesized

that inhibition of glucocorticoid receptors by mifepristone might

lead to an increase in adrenocorticotropic hormone followed by

an increase in adrenal androgens, and that their conversion by

tumor cells to testosterone and DHT might have limited the effi-

cacy of mifepristone. As stated by Taplin et al. (2008), a therapeutic

approach that combines mifepristone with a second drug harbor-

ing a complementary mechanism might be effective in blocking

the compensatory rise in adrenal androgens seen in patients with

CRPC. These data clearly demonstrate the impact of inflammation

and gonadal hormones in tumor progression thus consolidating

the fundamental work of Rudolf Virchow and George Thomas

Beatson in the field of tumor-associated inflammation.

INFLAMMATION AND RADIATION

Several lines of evidence indicate that inflammation plays a pivotal

role in modulating radiation responsiveness of tumors. Radi-

ation treatment is obviously a two-edged sword. On the one

hand, sublethal doses of ionizing radiation (IR) induces a nuclear

DNA damage response. On the other hand, they trigger a cellular

damage response in tumors by inducing pro-inflammatory path-

ways predominantly mediated via activation of NF-κB, the central

linker between inflammation, carcinogenesis, and radioresistance.

Apart from NF-κB activation, radiation activates/up-regulates the

expression of immediate early genes encoding for, e.g., c-Fos, c-

Myc, c-Jun (Hong et al., 1997) as well as TNF (Zhou et al., 2001),

GM-CSF (Akashi et al., 1992), PGHS-2 (Steinauer et al., 2000),

and ICAM-1 (Son et al., 2006). Radiation also induces activation

of receptor tyrosine kinase pathways (Fedrigo et al., 2011) and

mitochondria-associated responses (Aykin-Burns et al., 2011). As

demonstrated by Valerie et al. (2007), radiation-induced activation

of plasma membrane receptors occurs via generation of ioniz-

ing events in the liquid phase of the cytosol that are amplified,

possibly via mitochondria, generating large amounts of ROS and

RNS that inhibit protein tyrosine phosphatase (PTPase) activi-

ties. Moreover, radiation activates acidic sphingomyelinase and

increases the production of ceramide. Inhibition of PTPases leads

to activation of non-receptor and receptor tyrosine kinases (RTK)

including epidermal growth factor receptor (EGFR) and the acti-

vation of down-stream signal transduction pathways (Goldkorn

et al., 1997; Szumiel, 2008). Radiation-induced ceramide was

found to promote membrane-associated receptor activation by

facilitating the clustering of receptors within lipid rafts (Maziere

et al., 2001; Galabova-Kovacs et al., 2006). As a consequence, acti-

vated RTK induce down-stream pro-survival pathways (e.g., Akt)

that might act as promising targets in enhancing radiosensitivity

of tumors.

Furthermore, various inflammatory mediators are reported as

being up-regulated during radiation responses. In human glioblas-

toma cells, exposure to gamma-irradiation stimulated release of

IL-6 and IL-8 into culture supernatants (Pasi et al., 2010). Radia-

tion and chemotherapy led to a remarkable increase in the produc-

tion of these cytokines in human oral carcinoma cells (Tamatani

et al., 2004). IR induced a tremendous increase in IL-1, IL-6, and

GM-CSF production by human lung cancer cells (Zhang et al.,

1994). A similar effect was observed in patients with head and neck

cancer where increased IL-6 and IL-8 levels can be detected after

chemoradiotherapy (Meirovitz et al., 2010). Elevated IL-6 serum

levels are also reported in patients with locally advanced non-small

cell lung cancer undergoing concurrent chemoradiation therapy

(Wang et al., 2010).
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Some concern had been raised about the effect of IR on the

expression of the pleiotropic cytokine TNF. The majority of the

studies points to an activatory action of IR. For instance, Chendil

et al. (2004) reported on a radiation-induced up-regulated TNF

protein in prostate cancer cells PC-3 leading to an increase in

NF-κB activity followed by an induction of Bcl-2 protein. Fur-

thermore, IR persistently induced NF-κB DNA-binding activity

and NF-κB-dependent TNF transactivation and secretion (Veer-

araghavan et al., 2011a). In contrast, three-dimensional conformal

blocking radiation therapy did not alter serum levels of TNF

in patients with prostate cancer (Lopes and Callera, 2011). It is

interesting to note that in an immunocompetent animal model

of pancreatic cancer the combination of the radio inducible TNF-

expressing adenovector Ad.Egr-TNF with IR resulted in significant

anti-tumor effects mediated by the immune system (Meng et al.,

2010). As demonstrated in this study, Ad.Egr-TNF/IR therapy

contributed to local tumor control through TNF production in

the tumor microenvironment. TNF induced expression of the

known potent immune regulator IFN-β that, in turn, stimu-

lated the production of chemokines leading to the recruitment

of CD8+ T cells to the tumor. Several clinical and preclini-

cal studies with Ad.Egr-TNF/IR have suggested that this local

approach suppresses the growth of distant metastases (Moral and

Tomillero, 2008). However, a Phase III trial comparing Ad.Egr-

TNF (TNFerade™) along with standard of care therapy (defined

as infusion 5-FU and radiation therapy, followed by gemcitabine

or gemcitabine/erlotinib maintenance therapy) versus standard of

care therapy in the treatment of locally advanced, unresectable

pancreatic cancer failed. Since the interim analysis did not pro-

vide sufficient evidence of the clinical effectiveness of TNFerade,

the supplying company, GenVec, announced the discontinuation

of the trial in 2010. From these observations one can hypoth-

esize that up-regulated TNF probably enhances the impact of

tumorigenic stimuli within the tumor or the tumor microenvi-

ronment thereby forcing a critical amplification mechanism in

tumor-associated inflammation triggered by pro-inflammatory

mediators.

It should be kept in mind that radiation therapy represents

an efficient local anti-cancer approach leading to elimination of

both, tumor cells and cells of the tumor microenvironment such

as endothelial cells and tumor-induced suppressor T cells (North,

1984). IR also affects function of immune cells culminating in

homing of APC and effector T cells (Ganss et al., 2002). According

to the study of Ganss et al. (2002), the combination of irradiation

and adoptive tumor-specific T cell therapy ensures antigen-driven

tumor cell eradication with anti-angiogenic effects on tumor

endothelium. It has been shown previously that sublethal doses of

IR stimulates anti-tumor T cell responses and up-regulates MHC

class I/II expression in melanoma cells rendering the cells more

sensitive to T cell recognition (Abdel-Wahab et al., 1996), obvi-

ously through tumor-specific antigen presentation by DC (Ciernik

et al., 1999). Clinical phase I/II trials are ongoing and will shed

light on the efficiency of low-dose single phase fraction radio-

therapy on tumor-infiltrating T cells responses in patients with

liver metastasis derived from colorectal caner (Reissfelder et al.,

2011) and primarily operable pancreatic cancer (Timke et al.,

2011).

PGHS-2 INHIBITION

PGHS-2, the rate-limiting enzyme involved in converting arachi-

donic acid to prostanoids, has emerged as another crucial NF-κB-

dependent pro-inflammatory mediator in tumorigenesis. Aber-

rant up-regulation of PGHS-2 is frequently observed in vari-

ous pre-cancerous and malignant tissues. Because most of the

PGHS-2-induced effects are mediated by its product PGE2, down-

regulation of prostaglandins in tumor tissues by PGHS-2 inhibi-

tion blocks several neoplastic pathways restricting tumor growth.

Radiation is known to induce inflammation and NF-κB conse-

quently up-regulating/activating PGHS-2. In this context, PGHS-

2 inhibitors have been tested for their anti-tumor efficiency in

combination with radiation or chemotherapy. It was found that

these inhibitors exert promising anti-cancer effects in a variety

of human tumor cells and increase the sensitivity of tumor cells

toward chemotherapy and/or radiation therapy. For instance, the

PGHS-2 inhibitor NS398 enhanced the radiosensitivity of radiore-

sistant esophageal cancer cells CSC-like Eca109R50Gy most likely

by down-regulating the expression of β-catenin as well as inhibit-

ing activation of Akt and inducing apoptosis (Che et al., 2010,

2011). NS398 was also found to radiosensitize human melanoma

cells through G2/M arrest of the cell cycle, predominantly via

necrotic mechanisms (Johnson et al., 2008). A further PGHS-2

inhibitor, celecoxib, increased radiation-induced cell death, and

clonogenic kill of prostate cancer cells in vitro providing a rationale

for clinical evaluation of celecoxib in combination with irradia-

tion in prostate cancer patients (Handrick et al., 2009). Celecoxib

also enhanced radiosensitivity of bronchial and colon carcinoma

cells by inhibiting EGFR-mediated mechanisms of radioresis-

tance independent of PGHS-2 activity implying that PGHS-2

inhibition might ameliorate the therapeutic outcome of radia-

tion therapy even in patients with PGHS-2-independent tumor

radioresistance (Dittmann et al., 2008). In line with this obser-

vation, targeting PGHS-2 by different pharmacological inhibitors

led to radio enhancement of human glioma cells in the absence of

the PGHS-2 protein (Kuipers et al., 2007). Nimesulide is another

PGHS-2-selective inhibitor that has been found to increase the

efficacy of radiation therapy in non-small cell lung cancer cells

possibly via suppression of NF-κB-mediated, radiation-induced

cytoprotective genes (Grimes et al., 2006).

However, selective PGHS-2 inhibitors have come under

scrutiny because of reports suggesting an increased cardiovas-

cular risk associated with their use (Solomon et al., 2008). The

thitherto used high therapeutic concentrations of these drugs

may contribute to a pro-thrombotic state in patients with higher

risk for serious cardiovascular events. A novel approach to over-

come the limitations associated with the toxicity of PGHS-2

inhibitors might be the combination of pharmacological PGHS-

2 inhibitors at low doses with naturally occurring compounds

such as the catechin EGCG which is a promising chemopreventive

agent derived from green tea (Cerella et al., 2010; Härdtner et al.,

2012). Of note, nutraceuticals such as plant-derived polyphenols

have been studied intensively for their potential chemopreven-

tive properties and have been found as being pharmacologically

safe. These compounds comprise genistein, curcumin, resvera-

trol, silymarin, caffeic acid phenethyl ester, flavopiridol, emodin,

green tea polyphenols (e.g., EGCG), piperine, oleandrin, ursolic
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acid, and betulinic acid. These phytochemicals sensitize tumor

cells to chemotherapeutic agents and radiation therapy by inhibit-

ing pathways responsible for treatment resistance (Garg et al.,

2005; Nambiar et al., 2011). Among them, curcumin derived

from the rhizomes of Curcuma longa has been identified to

improve the anti-tumor effects of IR by blocking NF-κB path-

ways, down-regulating anti-apoptotic Bcl-XL and survivin as well

as increasing G2/M phase arrest in the cell cycle distribution

in Burkitt’s lymphoma cells (Qiao et al., 2012). Curcumin also

potentiates radiation therapy-induced cell death by targeting radi-

ation therapy-induced NF-κB activation in pancreatic cancer cells

(Veeraraghavan et al., 2011b).

STAT-3 AND HIF-1 INHIBITION

Apart from NF-κB and PGHS-2, STAT-3 is a further inflammatory

molecule crucially involved in radioresistance of tumors. Since

enhanced radioresistance of cancer cells is additionally related to

radiation-induced activation of the JAK/STAT pathway, inhibition

of STAT by, e.g., phytochemicals might sensitize tumors to radia-

tion therapy. It has been shown previously that STAT-3-mediated

radiosensitization obviously occurs via down-regulation of anti-

apoptotic survivin (Kim et al., 2006a). In this context, resveratrol,

a polyphenolic phytoalexin, selectively targets numerous cell sig-

naling pathways and decreases clonogenic survival primarily via

an apoptotic mechanism. In melanoma cells, resveratrol inhibits

STAT-3 and NF-κB-dependent transcription, culminating in sup-

pression of c-FLIP and Bcl-XL expression, while activating the

MAPK and the ATM-Chk2-p53 pathways (Johnson et al., 2008).

Resveratrol also up-regulates TRAIL promoter activity and induces

TRAIL surface expression in some melanoma cell lines, resulting

in a rapid apoptosis development (Johnson et al., 2008). As also

demonstrated in this study, sequential treatment of melanoma

cells, first with gamma-irradiation to up-regulate TRAIL recep-

tor surface expression, and then with resveratrol to suppress

anti-apoptotic proteins c-FLIP and Bcl-XL and induce TRAIL

surface expression, dramatically up-regulated apoptosis in some

melanoma cell lines. Nitidine chloride, a natural phytochemical

alkaloid derived from Zanthoxylum nitidum, was identified as a

potent STAT-3 signaling inhibitor suppressing angiogenesis and

growth of human gastric cancer (Chen et al., 2012a). From these

data one can hypothesize that phytochemicals in combination with

IR may play a significant role in enhancing the therapeutic efficacy

of cancer treatment.

As already mentioned, HIF-1, the key mediator in hypoxia sig-

naling pathways, is crucially involved in hypoxia-induced tumor

radioresistance. This obviously includes radiation-induced acti-

vation of HIF-1 (Moeller et al., 2004; Harada et al., 2009a,b),

HIF-1-dependent induction of VEGF and protection of endothe-

lial cells from radiation-induced cytotoxicity by VEGF (Gorski

et al., 1999) as well as delivery of oxygen and nutrients to tumor

cells by radioprotected tumor blood vessels (Zeng et al., 2008).

N-Myc down-stream-regulated gene 2 (NDRG2) was recently

identified in cervical cancer cells as a new HIF-1 target gene acting

down-stream of HIF-1 to promote radioresistance via suppression

of radiation-induced Bax expression (Liu et al., 2010). There-

fore, it would be reasonable to study the efficacy of HIF-1 and

NDRG2 blockage as radiosensitizer for tumor therapy. Strategies

to over-come radioresistance of hypoxic tumor cells comprise,

among others, hyperbaric oxygenation, gene therapy approaches,

fractionated radiotherapy, radiosensitization by mimicking the

effect of molecular oxygen using nitroimidazole derivates as well

as suppression of hypoxic tumor cell radioresistance by HIF-1

inhibitors (for a review, see Harada, 2011). As described pre-

viously, administration of the HIF-1 inhibitor YC-1 to hypoxic

cobalt-treated cells derived from squamous-cell carcinoma of the

larynx effectively inhibited HIF-1α expression, and enhanced the

sensitivity of cells to radiation, decreasing the surviving fraction

to that of normoxic cells (Moon et al., 2009). YC-1 was found to

reduce the number of tumor lesions after tumor cell inoculation

in nude mice (Shin et al., 2007). Compared to radiation therapy

alone, inhibition of radiation-induced HIF-1 activation by YC-1

led to a significant reduction in tumor cell growth (Harada et al.,

2009b).

Another HIF-1 inhibitor, acriflavine, was found to inhibit

tumor growth and angiogenesis in a xenograft tumor model for

human prostate cancer through blockage of HIF-1 dimerization

(Lee et al., 2009). Since the same agent blocked lung metastasis in

an orthotopic breast cancer model (Wong et al., 2012), it would

be of interest to test the efficacy of this HIF-1 inhibitor in increas-

ing radioresistance of certain tumors. Interestingly, inhibition of

Hsp90 function by 17-allylamino-17-demethoxygeldanamycin or

deguelin, a novel natural inhibitor of Hsp90, suppressed increases

in HIF-1α/Hsp90 interaction and HIF-1α expression in radiore-

sistant lung cancer cells (Kim et al., 2009). Hsp90 interacts with

HIF-1α in competition with receptor of activated protein C kinase

1 (RACK-1) and inhibits oxygen-independent degradation of HIF-

1α (Semenza, 2007). The study by Kim et al. (2009) also demon-

strated that the combined treatment of radiation with deguelin

significantly decreased the survival and angiogenic potential of

radioresistant lung cancer cells in vitro and inhibited tumor growth

and angiogenesis in vivo.

Even phytochemicals have the capacity to inhibit radiation-

induced HIF-1 activation. Pre-treatment of prostate cancer cells

with soy isoflavones inhibited Src/STAT-3/HIF-1α activation by

radiation and nuclear translocation of HIF-1α. These findings

correlated with decreased expression of APE1/Ref-1 and DNA-

binding activity of HIF-1α and NF-κB (Singh-Gupta et al.,

2009). Apurinic/apyrimidinic (AP) endonuclease 1/redox factor-1

(APE1/Ref-1) is a multifunctional protein involved in DNA repair

that also functions as a redox activator of cellular transcription fac-

tors. Emodin, a natural anthraquinone enriched in the traditional

Chinese herbal medicines and novel small HIF-1 inhibitor, was

found to improve efficacy of chemotherapeutic drugs by inhibit-

ing transactivation of HIF-1 without impairing mRNA expression

and stability of HIF-1α protein in prostate cancer cells (Huang

et al., 2008). Another approach to HIF-1 blockage might be the

use of cell-permeable HIF-1 antagonists (Shi et al., 2007). As

mentioned before, HIF-1 contributes to tumor radioresistance

by up-regulating survivin expression under hypoxic conditions.

Moreover, in hypoxic tumor cells the HIF-1 signaling pathway

is activated and could be further enhanced by radiation, thereby

providing survival signals to adjacent vascular endothelial cells

by up-regulation of VEGF and basic fibroblast growth factor

(bFGF) and resulting in tumor radioresistance through vascular
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radioprotection. Thus, HIF-1 antagonists might decrease tumor

angiogenesis and sensitize tumor cells to radiotherapy.

Targeting HIF-1 for radiosensitization can also be achieved

by inhibiting its up-stream mediators. In this respect, the

PI3K/Akt/mTOR pathway can be considered as the most rel-

evant target in sensitizing tumors to radiation therapy. Muta-

tions in this pathway can be found in various human can-

cers and have been found to up-regulate HIF-1α expression

(Zhong et al., 2000). The PI3K/Akt/mTOR pathway also affects

the NF-κB-mediated expression of PGHS-2 (Yang et al., 2009)

and radiation-induced MMP-9 expression (Cheng et al., 2006).

Several studies demonstrated that specific blockage of this path-

way by certain inhibitors such as erufosine (Rudner et al.,

2010), LY294002 (Nakamura et al., 2005; Kao et al., 2007),

RAD001 (Albert et al., 2006), and rapamycin (Majumder et al.,

2004) ensures efficient radiosensitization of distinct tumors

cells.

NF-κB INHIBITION

In recent years NF-κB inhibition by synthetic compounds as

well as nutraceuticals of different sources has been approved for

tumor radiosensitization. In particular the use of nutraceuticals

became a popular approach due to the broad anti-tumor and

anti-inflammatory properties in conjunction with low toxicity

risks of these compounds (Deorukhkar et al., 2007; Deorukhkar

and Krishnan, 2010). How these drugs block NF-κB activation

is becoming increasingly apparent. Among them, curcumin has

emerged as one of the best studied plant-derived polyphenols.

In a phase II clinical trial curcumin showed beneficial effects in

patients with advanced pancreatic cancer (Dhillon et al., 2008).

Curcumin down-regulated expression of NF-κB, PGHS-2, and

phosphorylated STAT-3 in peripheral blood mononuclear cells

from these patients. Furthermore, curcumin has been shown to

suppress TNF-mediated NF-κB activation by inhibiting inhibitor

of kappaB alpha (IκBα) in human myeloid ML-1a cells (Singh and

Aggarwal, 1995). Curcumin also confers radiosensitizing effects in

prostate cancer cells by inhibiting TNF-mediated NF-κB activa-

tion resulting in Bcl-2 protein down-regulation and concomitant

activation of cytochrome c and caspase-9 and -3 (Chendil et al.,

2004). More recently, curcumin was found to sensitize colorec-

tal cancer cells to radiotherapy by suppressing radiation-induced

NF-κB activation via inhibition of radiation-induced phosphory-

lation and degradation of IκBα, inhibition of inhibitor of kap-

paB kinase (IKK) activity, and inhibition of Akt phosphorylation

(Sandur et al., 2009) consequently leading to down-regulation

of several tumorigenic factors in colorectal cancer xenografts in

nude mice (Kunnumakkara et al., 2008). Apart from its IKK-

inhibitory capacity, curcumin also blocks p65 phosphorylation

and acetylation and represses the p300/CREB-binding protein

(CBP) HAT activity-dependent transcriptional activation from

chromatin (Balasubramanyam et al., 2004). Similarly, anacardic

acid (6-pentadecylsalicylic acid) derived from traditional medi-

cinal plants, such as cashew nuts, has been identified to inhibit

NF-κB activation, to suppress the activation of IκBα kinase that

led to abrogation of phosphorylation and degradation of IκBα and

to inhibit acetylation and nuclear translocation of p65 (Sung et al.,

2008). The same study demonstrated that down-regulation of the

p300 HAT gene by RNA interference abrogated the effect of anac-

ardic acid on NF-κB suppression. Further nutraceuticals including

the soy isoflavone genistein (Raffoul et al., 2006), the isoquinoline

alkaloid berberine from medicinal plants such as Berberis aris-

tata, Coptis chinensis, Coptis japonica, Coscinium fenestratum, and

Hydrastis canadensis (Pandey et al., 2008), piceatannol (3,3′,4,5′-

trans-trihydroxystilbene), a naturally occurring hydroxylated ana-

log of resveratrol found in various plants (Son et al., 2010), the

principal prenylated flavonoid xanthohumol from Humulus lupu-

lus (Harikumar et al., 2009), and the polyphenol butein (3,4,2′,4′-

tetrahydroxychalcone) from Rhus verniciflua Stokes (Pandey et al.,

2007) have been identified as blocking NF-κB by direct inter-

action with IKKβ on cysteine 179 residue. NF-κB inhibition by

direct interaction with one of its subunits occurs in the presence

of numerous phytochemicals including sesquiterpene lactones

(Garcia-Pineres et al., 2001). In radiation-resistant human CGL1

cells, parthenolide, a major active component of the herbal medi-

cine feverfew (Tanacetum parthenium), enhanced radiosensitivity

through NF-κB inhibition and apoptosis induction via p53 stabi-

lization, induction of pro-apoptotic Bax, and phosphorylation of

pro-apoptotic Bid (Mendonca et al., 2007). The radiosensitization

effect of parthenolide is enhanced in the presence of tumor sup-

pressor protein PTEN (phosphatase and tensin homolog deleted

on chromosome 10), in part, by suppressing the absolute amount

of activated p-Akt in human prostate cancer cells (Sun et al., 2007).

The group of Aggarwal recently found out that crotepoxide (a sub-

stituted cyclohexane diepoxide), isolated from Kaempferia pulchra

(peacock ginger), inhibited activation of TGF-β-activated kinase

(TAK)-1, which led to suppression of IκBα kinase, abrogation of

IκBα phosphorylation and degradation, nuclear translocation of

p65, and suppression of NF-κB-dependent reporter genes encod-

ing for anti-apoptotic (Bcl-2, Bcl-XL, IAP1/2, Mcl-1, survivin,

TRAF-1), pro-apoptotic (Bax, Bid), pro-inflammatory (PGHS-2),

proliferation- (cyclin D1, c-Myc), invasion- (ICAM-1, MMP-9),

and angiogenesis-promoting (VEGF) factors (Prasad et al., 2010).

Moreover, Tamatani et al. (2007) analyzed the effects of radiation

therapy in combination with cepharanthine on NF-κB activation

and expression of its down-stream effector molecules in human

oral squamous-cell carcinoma cells. Cepharanthine is a biscoclau-

rine alkaloid extracted from the roots of Stephania cepharantha

Hayata, and is widely used in Japan for the treatment of patients

with leucopenia, nasal allergy, and venomous snakebites. The

authors could show that treatment of cancer cells with cepharan-

thine combined with exposure to IR enhanced radiosensitivity via

NF-κB inhibition and concomitant down-regulation of IL-6, IL-8,

and anti-apoptotic proteins such as cellular inhibitor of apopto-

sis protein (cIAP)-1 and -2. Moreover, the pleiotropic effects of

cepharanthine also includes inhibition of STAT-3 in the human

osteosarcoma cell line SaOS2 (Chen et al., 2012b). These examples

highlight the crucial role of naturally occurring compounds in

targeting inflammatory signaling pathways for sensitizing tumors

to radiation therapy. Beside them, a variety of further compounds

have been identified to enhance radiosensitivity via inhibition of

NF-κB including celecoxib (Raju et al., 2005), pitavastatin (Tsuboi

et al., 2009), docosahexaenoic acid (Zand et al., 2008), and the

novel organoselenium thioredoxin reductase inhibitor ethaselen

(Wang et al., 2011).
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TUMOR CELL RE-POPULATION

It is commonly accepted that aggressive radio-/chemotherapy

often results in a negative selection toward highly aggressive tumor

clones. In recent days, the induction of radiation-induced apopto-

sis, the principal purpose of radiation therapy, has come under

scrutiny due to reports suggesting that dying tumor cells use

the apoptotic pathway to stimulate the re-population of tumors

subjected to radiation therapy. The process of re-population was

originally discovered in the second half of the twentieth century

and is commonly accepted as playing a crucial role in radio-/

chemotherapy (Hermens and Barendsen, 1969; Stephens et al.,

1978). Interestingly, the group of Li from Aurora (USA) demon-

strated that radiation-induced apoptosis comprises caspase-3

cleavage and concomitant activation of Ca2+-independent phos-

pholipase A2 (iPLA2) followed by PGE2 release promoting tumor

cell re-population in vitro and in vivo (Huang et al., 2011). The

relevance of this mechanism for the caspase-mediated tumor cell

re-population was confirmed by caspase-3 determination in differ-

ent cancer patients. Herein, elevated expression levels of activated

caspase-3 in tumor tissues correlated with poor clinical outcome

in patients with head and neck cancer as well as advanced stage

breast cancer. However, the contribution of macrophages and

the subsequently generated clearance-related anti-inflammatory

milieu to radiation-induced tumor cell re-population and poor

therapeutic outcome should be taken into consideration. As dis-

cussed by Tauber and co-workers, apoptotic manifestations such as

externalization of phosphatidylserine, bleb formation, and DNA

fragmentation are crucially involved in macrophage activation and

depend on caspase-3 activation (Jänicke et al., 1998; Coleman et al.,

2001; Sebbagh et al., 2001). The authors conclude that caspase-3-

positive apoptotic cells can recruit more macrophages and are

more efficiently internalized by the phagocytes (“silent clear-

ance”) culminating in a strong anti-inflammatory and growth-

promoting phagocyte response via release of clearance-associated

cytokines, e.g., PGE2 than their caspase-3-negative counterparts.

However, further preclinical and clinical studies using certain cas-

pase inhibitors are required to strengthen this hypothesis. In this

context, the novel caspase inhibitor GS-9450 was found to down-

regulate caspase-3 expression on peripheral T cells from chroni-

cally HCV-infected patients in a phase II clinical trial (Arends et al.,

2011). It would therefore be of interest to study a putative benefi-

cial effect of a combinatorial treatment with caspase inhibitors and

radiation therapy on the clinical outcome of patients with various

advanced cancer types.

PATTERN RECOGNITION RECEPTORS IN RADIOIMMUNITY

It is well known that chronic inflammation induced by non-

infectious agents can also contribute to carcinogenesis and act

as a driving force in tumorigenesis. Several factors such as

growth factors, oncoproteins, and toxins can affect the host via

an activation of pattern recognition receptors (PRR) interacting

with exogenous pathogen-associated molecular patterns (PAMP;

Kawai and Akira, 2011). Apart from PAMP, the same receptor

superfamily also recognizes endogenous “alarmins” both of them

comprising the group of danger-associated molecular patterns

(DAMP; Bianchi, 2007). Receptor ligation leads to activation of

inflammatory cells and initiation of host responses that tend to

eradicate invading microorganisms (Akira et al., 2006; Karin et al.,

2006). Not surprisingly, inadequate pathogen elimination, recur-

ring tissue injury, prolonged inflammatory signaling, and failure

of anti-inflammatory mechanisms can all culminate in chronic

inflammation promoting cancer development.

Signaling via PRR also makes an impact on radiation responses.

It has been shown previously that both, low (0.075 Gy) and high

(2 Gy) doses of IR causes sustained stimulation of IL-12 and IL-18

secretion by mouse macrophages (Shan et al., 2007) with concomi-

tant activation of NF-κB accompanied by elevated cytoplasmic

MyD88 levels and an up-regulated surface expression of CD14 and

TLR-4/MD-2 (Shan et al., 2007), the latter acting as LPS sensor.

From these findings the authors hypothesized that IR can stim-

ulate the secretion of IL-12 and IL-18 presumably via activation

of the Toll signaling pathway in macrophages. A detailed descrip-

tion of the TLR-4 signaling pathway is visualized schematically in

Figure 2.

Interestingly, RP105 (radioprotective 105 kDa), a TLR-related

molecule, was recently identified on human B cells and DC

(Fugier-Vivier et al., 1997) and characterized as being similar to

TLR-4 in that the extracellular leucine-rich repeats associate with

MD-1, an MD-2-like molecule (Miyake et al., 1995; Fugier-Vivier

et al., 1997). MD-2 directly binds to lipid A, the active center of

lipopolysaccharide (LPS), leading to dimerization of TLR-4/MD-

2 (Ohto et al., 2011). An antibody raised against surface-bound

RP105 was found to drive B cell proliferation and protection

from subsequent radiation- or dexamethasone-induced apoptosis

(Miyake et al., 1994). Studies by Divanovic et al. (2005) demon-

strated that: (a) RP105 is a specific inhibitor of TLR-4 signaling in

human embryonal kidney cells HEK293; (b) RP105/MD-1 inter-

acts directly with TLR-4/MD-2, thus abolishing the LPS-binding

capacity of the complex; (c) RP105 regulates TLR-4 signaling in

DC and macrophages; and (d) RP105 regulates in vivo responses

to LPS supporting the assumption that RP105 acts as a physio-

logical negative regulator of TLR-4 responses. This brief overview

makes it clear that, on the one hand, pro-inflammatory responses

to radiation and TLR signaling enhance the impact of tumori-

genic factors in the tumor and the tumor microenvironment and,

on the other hand, might represent pivotal target structures in

radiation therapy. As discussed by Schaue and McBride (2010),

radiation-induced DAMP signaling via TLR-2/-4 has emerged as

a critical component in affecting the outcome of anti-cancer ther-

apies. In this context, radiation was found to induce secretion of

the prototypical DAMP, the high-mobility-group box 1 (HMGB-

1)“alarmin”protein from dying tumor cells as a prerequisite for the

development of a tumor antigen-specific T cell immunity medi-

ated by an interaction of HMGB-1 with TLR-4 on DC (Apetoh

et al., 2007). The same study revealed that patients with breast

cancer who carry a TLR-4 loss-of-function allele relapsed more

quickly after radiotherapy and chemotherapy than those carrying

the normal TLR-4 allele implying a clinically relevant immunoad-

juvant pathway triggered by tumor cell death. An intriguing novel

finding comprises the reduction of metastatic ability and MMP-

9 expression in MGC-803 gastric cancer cells by silencing of the

HMGB-1 expression using an HMGB-1-specific RNAi lentiviral

vector (Song et al., 2012). As also shown in this study, HMGB-

1 silencing decreased cell proliferation and sensitized cells to
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FIGURE 2 |TLR-4 signaling in cancer. The TLR-4/MD-2 receptor complex

recognizes and binds exogenous PAMP (e.g., endotoxins such as LPS) as

well as endogenous alarmins (HMGB-1, hyaluronan, heat shock proteins).

Release of DAMP into the extracellular space is achieved by a number of

different mechanisms including (i) leakage from necrotic cells, (ii)

increased synthesis and post-translational modification in response to

inflammation, and (iii) degradation of inactive precursors into TLR-mimetic

degradation products in inflammatory environments (Mencin et al., 2009).

TLR-4 induces two distinct signaling pathways controlled by the

TIRAP/MyD88 and TRAM/TRIF pairs of adaptor proteins, which elicit the

production of pro-inflammatory cytokines and type I interferons,

respectively. The cytosolic adapter molecules mentioned above comprise

myeloid differentiation protein 88 (MyD88), Toll/IL-1R resistance

domain-containing adapter inducing IFN-β (TRIF), TIR domain-containing

adapter protein (TIRAP), and TRIF-related adaptor molecule (TRAM). TIRAP

is also termed Mal (MyD88 adaptor-like), TRIF is also known as Toll/IL-1R

homology domain-containing adaptor molecule 1 (TICAM-1), whereas

TRAM is alternatively entitled TIR-containing protein (TIRP) and TICAM-2,

respectively. TLR-4-mediated signal transduction occurs via

MyD88-dependent and MyD88-independent (i.e., TRAM/TRIF-dependent)

pathways. Both, MyD88-dependent and MyD88-independent pathways

induce expression of genes involved in pro-inflammatory and anti-microbial

responses (Akira and Takeda, 2004). In TLR-4 signaling, MyD88

up-regulates inflammatory cytokines via NF-κB activation. Moreover, the

MyD88-independent pathway does not only induce inflammatory gene

expression in an NF-κB-dependent manner but also up-regulates type I

interferon expression via the transcription factor IRF-3. NF-κB activation

and subsequent inflammatory cytokine production are mediated by

different mechanisms and kinetics in the MyD88-dependent and the

MyD88-independent pathway: NF-κB activation in the MyD88-dependent

pathway is an early event occurring with fast kinetics whereas NF-κB

activation via the MyD88-independent pathway represents a late event

occurring with slower kinetics. Unlike TLR-4 signaling in immune cells

which has been found to enhance anti-tumor immunity by, e.g., IL-12/IFN-γ

up-regulation and promotion of DC maturation and function, TLR-4

signaling in cancer cells increases their tumorigenic capacity under certain

circumstances (Oblak and Jerala, 2011). Noteworthy, HMGB-1 which is

released from irradiated tumor cells functions as an endogenous TLR-4

ligand leading to the development of a tumor antigen-specific T cell

immunity mediated by an interaction of HMGB-1 with TLR-4 on DC.

apoptosis implying HMGB-1 as being a potential target for the

therapeutic intervention of certain cancers such as gastric cancer.

TARGETING OF HEAT SHOCK PROTEINS IN RADIOTHERAPY

A promising approach in cancer therapy also might be target-

ing heat shock proteins (HSP), a class of proteins which are

induced under physiologic stress to promote cell survival in the

face of endogenous or exogenous injury. Compared to normal

cells, tumors frequently have elevated basal Hsp70 levels which

are further enhanced in response to a number of pathological and

environmental stresses such as nutrient deficiency, hypoxia, heavy

metals, irradiation, and/or chemotherapeutic agents. Also normal

cells show an increase in the synthesis of Hsp70 following stress in

order to mediate protection against lethal damage and to maintain

protein homeostasis. Screening of nearly 1,000 primary human

tumor biopsies and the corresponding normal tissues revealed

that human carcinomas, but none of the tested normal tissues, fre-

quently present Hsp70 on their cell surface (Multhoff et al., 1995;

Multhoff, 2007). A membrane Hsp70-positive tumor phenotype

has been found to be associated with a significantly decreased

overall survival in tumor patients. Therefore, the expression of

this molecule could serve as a negative prognostic marker (Pfister

et al., 2007).

Apart from their intracellular localization, Hightower and

Guidon Jr. (1989) reported on an ER/Golgi-independent release

of Hsp70 from viable cells with intact cell membranes already

in the late 1980s. Extracellular HSP are considered as molecules

with immunomodulatory functions (Pockley and Multhoff, 2008;

Pockley et al., 2008) either as cross-presenters of immunogenic

peptides (Srivastava, 1997; Asea et al., 2000) or in a peptide-free
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version as chaperokines (Asea et al., 2002) or stimulators of innate

immune responses (Multhoff et al., 1995). Despite these well-

documented immunological functions, the mechanisms of HSP

export are still controversially discussed since cytosolic HSP lack a

consensus signal for secretion. However, apart from Hsp70, other

molecules lacking a secretory signal such as IL-1α, IL-1β, and

HMBG-1 are also found outside of cells (Nickel and Seedorf, 2008;

Eder, 2009). Hsp70 also has been found to be located on the cell

surface although lacking a transmembrane domain (Multhoff and

Hightower, 1996). Membrane Hsp70 might help to maintain sta-

bility of tumor cells and thus might protect tumors from lethal

damage induced by environmental stress (Horvath et al., 2008;

Horvath and Vigh, 2010). The fundamental work of the group

of Antonio De Maio has demonstrated an interaction of mem-

bers of the HSP70 family with artificial membranes containing

phosphatidylserine (PS; Arispe and De Maio, 2000; Arispe et al.,

2002; Vega et al., 2008; De Maio, 2011). Our group reported on an

interaction of Hsp70 with the sphingolipid globotriaosylceramide

(Gb3) in the plasma membrane of non-stressed human gastroin-

testinal stromal tumors (Gehrmann et al., 2008). Gb3 is found in

cholesterol-rich microdomains, also termed as lipid rafts, which

serve as signal transduction platforms. Following irradiation or

hypoxia-induced stress Hsp70 was found to be associated pre-

dominantly with PS outside of lipid rafts in the plasma membrane

of tumor cells (Schilling et al., 2009). These data indicate that

environmental stress might result in a re-organization of the lipid

bilayer and might modulate the interaction of Hsp70 with lipid

components. Surprisingly, only tumors but not the correspond-

ing normal tissues were found as being membrane Hsp70-positive

using the IgG1 mouse monoclonal antibody cmHsp70.1. In con-

trast, other Hsp70-specific antibodies failed to bind to membrane

Hsp70 on viable tumor cells (Stangl et al., 2011). The discovery that

neither high/low salt concentrations nor changes in the pH were

able to release Hsp70 from the plasma membrane of tumor cells

(Gehrmann et al., 2008;Vega et al., 2008) confirmed our hypothesis

that in tumor cells Hsp70 is an integral membrane protein which

can associate with raft (Gb3) and non-raft (PS) lipid components.

We recently observed an increased surface expression of Hsp70

in colorectal tumor cells after IR alone or in combination with

hyperthermia (HT) while the amount of extracellular Hsp70 was

only increased when HT was given additionally (Schildkopf et al.,

2011). Moreover, a high up-regulation of the co-stimulation mol-

ecule CD80 and the chemokine receptor CCR7 on DC was mea-

sured after contact with supernatants of X-ray plus HT-treated

cells. This was dependent on extracellular Hsp70. Combined treat-

ments further led to significantly increased phagocytosis rates of

macrophages and DC and increased pro-inflammatory cytokine

(IL-8, IL-12) secretion. From these findings we conclude that X-

ray combined with HT induces Hsp70-dependent activation of

immune cells and might generate a tumor microenvironment

beneficial for cure.

HSP over-expression in tumor cells plays a pivotal role in

tumorigenesis by inhibiting apoptosis and senescence. Recent

studies indicate an involvement of HSP such as Hsp70/Hsp72 and

Hsp90 in the recognition of PAMP by binding to TLR-4 within

lipid rafts (Triantafilou and Triantafilou, 2004; Wheeler et al.,

2009). Since extracellular residing Hsp70 acts as a danger signal for

the immune system (Matzinger, 1998), this stress protein has been

added to the list of “alarmins” comprising the group of DAMP

together with PAMP, hyaluronan, and other HSP members. Con-

sequently, developing means of abrogating HSP expression may

provide a way to render cancer cells more susceptible to radia-

tion or chemotherapy. Various attempts are underway to target

these proteins, particularly small HSP, in developing potent radi-

ation and chemotherapy sensitizers (Guttmann and Koumenis,

2011). For instance, Hsp27 has been found as being implicated

in the resistance to chemotherapy in several types of cancers.

The group of Moriwaki analyzed the effects of a gemcitabine

treatment in pancreatic cancer cells (Nakashima et al., 2011).

Gemcitabine is an anti-tumor drug and currently considered to

be the standard of care for the treatment of advanced pancre-

atic cancer, but the clinical outcome is still not satisfactory. It was

shown that gemcitabine suppressed growth of pancreatic cancer

cells by inducing apoptosis. Gemcitabine also caused activation of

p38 mitogen-activated protein kinase (MAPK), MAPK-activated

protein kinase 2 (MAPKAPK-2) with concomitant serine phos-

phorylation of Hsp27 at position 15, 78, and 82 without affecting

total Hsp27 levels. From these results the authors conclude that

the phosphorylation status of Hsp27 obviously plays a pivotal role

in gemcitabine-induced growth suppression of pancreatic cancer.

Of Note, the HSP inhibitor KNK437, a benzylidene lactam com-

pound, was observed to dramatically reduce expression of Hsp27

in gemcitabine-resistant pancreatic cancer cells KLM1-R and to

enhance the in vitro anti-tumor cytotoxic effect of gemcitabine

on KLM1-R compared to single-agent gemcitabine (Taba et al.,

2011). KNK437 also sensitizes prostate cancer cells to the apop-

totic effect of hyperthermia by down-regulating heat-induced

Hsp70 mRNA expression (Sahin et al., 2011). Moreover, in patients

with locally advanced squamous-cell esophageal cancer neoadju-

vant radiochemotherapy (NRCT) led to a decreased expression

of Hsp16.2, Hsp90, and heme-binding protein 2 (SOUL), and an

increased Bax/Bcl-2 ratio was found in the responding tumors

(Farkas et al., 2011).

Also Hsp90 may represent a potentially attractive target for

specific molecular anti-cancer agents, because Hsp90 expression

is up-regulated in tumors as compared with normal tissues,

which implies that tumor cells might be preferentially affected by

Hsp90-targeted therapies (Ferrarini et al., 1992). In this context,

geldanamycin (GA), a naturally occurring ansamycin antibiotic,

along with its clinically used analogs such as 17-allylamino-17-

demethoxygeldanamycin (17-AAG), has been evaluated in pre-

clinical and clinical trials for its significant anti-tumor properties.

These agents disrupt Hsp90 association with client proteins by

occupying the nucleotide-binding site of Hsp90 (Grenert et al.,

1997; Prodromou et al., 1997; Stebbins et al., 1997), thereby pre-

venting binding of Hsp90 with ATP and profoundly affecting

the composition of Hsp90-containing multimolecular chaperone

complexes (Obermann et al., 1998; Maloney and Workman, 2002).

As demonstrated by the group of Gius, treatment of two human

cervical carcinoma cell lines (HeLa, SiHa) with geldanamycin and

17-AAG resulted in cytotoxicity and, when combined with IR,

enhanced the radiation response. In addition, mouse in vivo mod-

els using 17-AAG at clinically achievable concentrations yielded

results that paralleled the in vitro radiosensitization studies of both
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FIGURE 3 | Radiation-induced activation of inflammatory

pathways in tumor cells. Schematical simplified representation of the

complex intracellular mechanisms leading to radioresistance. Exposure

to ionizing radiation leads to activation of several transcription factors

modulating the expression of numerous factors promoting cancer

development. Novel therapeutic approaches thus aim to interfere with

the activity or expression of these factors, either in single-agent or

combinatorial treatment or as supplements of the existing therapeutic

concepts. Noteworthy, targeting the pro-inflammatory signaling

pathways for tumor radiosensitization represents a promising novel

therapeutical approach in cancer. A great variety of classical or novel

drugs including nutraceuticals have the capacity to interfere with the

inflammatory network in cancer and are considered as putative

radiosensitizers.

single and fractioned courses of irradiation (Bisht et al., 2003). We

recently analyzed the effects of the novel Hsp90 inhibitor NVP-

AUY922 compared to 17-AAG on the HIF-1α/HIF-2α expression

in combination with radiosensitivity in lung cancer cell lines under

normoxic and hypoxic conditions (Schilling et al., 2012b). NVP-

AUY922 is a synthetic, isoxazole/resorcinol-based second genera-

tion Hsp90 inhibitor exhibiting an enhanced metabolic stability

and a tighter binding to Hsp90 compared to 17-AAG (Brough

et al., 2008). As given in our study, both inhibitors reduced basal

and hypoxia-induced HIF-1α levels in EPLC-272H lung carci-

noma cells. However, despite a down-regulation of HIF-1α upon

Hsp90 inhibition, sensitivity toward irradiation remained unal-

tered in EPLC-272H cells under normoxic and hypoxic conditions.

In contrast, treatment of H1339 lung carcinoma cells with NVP-

AUY922 and 17-AAG resulted in a significant up-regulation of

their initially high HIF-1α levels and a concomitant increase in

radiosensitivity indicating the ability of an HIF-1α-independent

radiosensitization of normoxic and hypoxic H1339 lung can-

cer cells via Hsp90 inhibition. From these observations it can

be concluded that treatment strategies combining HSP targeting

and radiochemotherapy appear to be a high potential therapeutic

benefits for cancer patients.

CONCLUDING REMARKS

Although radiation therapy, alone or in combination with

chemotherapy, is the primary treatment for several tumors,

radioresistance dramatically attenuates radiocurability. Several

lines of evidence indicate that inflammation plays a pivotal role

in modulating radiation responsiveness of tumors. As discussed

in this review, exposure to IR leads to activation of several tran-

scription factors modulating the expression of numerous factors

promoting cancer development. Novel therapeutic approaches

thus aim to interfere with the activity or expression of these

factors, either in single-agent or combinatorial treatment or as

supplements of the existing therapeutic concepts. Among them,

NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced

inflammatory responses. A great variety of classical or novel drugs

including nutraceuticals have the capacity to interfere with the

inflammatory network in cancer and are considered to function

as putative radiosensitizers (Figure 3). Thus, targeting the inflam-

matory signaling pathways induced by IR offers the opportunity to

improve the clinical outcome of radiation therapy by enhancing

radiosensitivity and decreasing putative metabolic effects. Since

inflammation and sex steroids also impact tumorigenesis, a thera-

peutic approach targeting glucocorticoid receptors, and radiation-

induced production of tumorigenic factors might be effective in

sensitizing tumor cells to IR in certain cases.
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