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A radiation-magnetohydrodynamic simulation for the black hole-torus system is per-
formed in the framework of full general relativity for the first time. A truncated moment
formalism is employed for a general relativistic neutrino radiation transport. Several systems
in which the black hole mass is MBH = 3 or 6M⊙, the black hole spin is zero, and the torus
mass is ≈ 0.14–0.38M⊙ are evolved as models of the remnant formed after the merger of
binary neutron stars or black hole-neutron star binaries. The equation of state and micro-
physics for the high-density and high-temperature matter are phenomenologically taken into
account in a semi-quantitative manner. It is found that the temperature in the inner region
of the torus reaches >∼ 10 MeV which enhances a high luminosity of neutrinos ∼ 1051 ergs/s
for MBH = 6M⊙ and ∼ 1052 ergs/s for MBH = 3M⊙. It is shown that neutrinos are likely to
be emitted primarily toward the outward direction in the vicinity of the rotational axis and
their energy density may be high enough to launch a low-energy short gamma-ray burst via
the neutrino-antineutrino pair-annihilation process with the total energy deposition ∼ 1047–
1049 ergs. It is also shown in our model that for MBH = 3M⊙, the neutrino luminosity is
larger than the electromagnetic luminosity while for MBH = 6M⊙, the neutrino luminosity
is comparable to or slightly smaller than the electromagnetic luminosity.

Subject Index: 420, 425

§1. Introduction

The latest numerical simulations show that the merger of black hole-neutron star
binaries and binary neutron stars often produces a system composed of a black hole
surrounded by a massive torus of mass >∼ 0.1M⊙.1)–6) Such systems are promising
candidates for the central engine of short-hard gamma-ray bursts (SGRB)7) which
emit a huge amount of total radiation energy ∼ 1048–1050 ergs in a short time scale
<∼ 2 s.8) The proposed mechanism for emitting the huge radiation energy is the
pair annihilation of neutrinos and antineutrinos which are emitted from the hot and
massive torus surrounding the central black hole (e.g., Ref. 9)) or electromagnetic
mechanisms such as Blandford-Znajek mechanism, by which rotational energy of a
black hole can be efficiently extracted,10),11) and/or Blandford-Payne mechanism (or
similar mechanisms) by which rotational energy of the torus can be extracted by the
magneto-centrifugal effect.12),13)

To clarify the hypotheses that the black hole-torus system could be the central
engine of SGRB, a general-relativistic magnetohydrodynamic (GRMHD) simulation
including neutrino radiation effects is probably the unique approach. If we focus on
the neutrino-pair-annihilation scenario for generating the huge gamma-ray luminos-
ity, the effect of the neutrino radiation transport has to be taken into account. In
a previous paper,14) we performed a GRMHD simulation (in a fixed Kerr spacetime



536 M. Shibata and Y. Sekiguchi

background) including microphysics effects as well as neutrino cooling, extending
the earlier Newtonian and non-magnetohydrodynamics works (e.g., Refs. 9) and
15)). However, to date, no simulation has been done in the framework of general-
relativistic, radiation-magnetohydrodynamics (GRRMHD).

In this paper, we report results of our first GRRMHD simulation for the evolution
of black hole-torus systems as a step toward a more physical simulation incorporating
with the detailed microphysics. The simulation is performed in full general relativity
and in the framework of ideal magnetohydrodynamics (MHD): We solve Einstein’s
equation, MHD equation, induction equation, and a radiation transport equation.
For evolving the radiation field of neutrinos, we employ a truncated moment formal-
ism as suggested in Refs. 16)–18). For simplicity, in this work, we do not consider
the distribution in the frequency space (spectrum) nor the flavor of neutrinos. We
employ a phenomenological equation of state (EOS) for the high-density (with max-
imum density ρmax = 0.5–3.0 × 1012 g/cm3) torus matter and treat cross sections
between matter and neutrinos in an approximate manner. We believe that even
with these approximate treatments, this work qualitatively and semi-quantitatively

captures a transport effect of neutrinos and coupling effects among general relativity,
MHD, and neutrino radiation transport for the first time.

This paper is organized as follows. In §2, the formulation for our present GR-
RMHD simulation is summarized. In §3, the initial condition for the black hole-torus
system is given. In §4, EOS for the matter in the torus, and coupling terms between
the matter and radiation are specified. We also describe our numerical method for
the evolution of the system. After a brief summary of quantities for diagnostics in
§5, numerical results are shown in §6, focusing in particular on the luminosities of
neutrinos and electromagnetic radiations. Section 7 is devoted to a summary. In
Appendixes A and B, we present numerical results for test simulations to show that
our radiation hydrodynamic code is reliable. Throughout this paper, the geometrical
units of c = 1 = G are employed unless otherwise stated, where c is the speed of
light and G the gravitational constant. Greek (α, β, γ · · · ) and Latin (i, j, k · · · )
subscripts denote the spacetime and space components, respectively. The radiation
quantities will be denoted by the Calligraphy.

§2. Formulation and basic equations

2.1. Framework

We solve Einstein’s equation, continuity equation for baryons, MHD equation,
induction equation, and a radiation transport equation all together assuming the
axial symmetry and the equatorial plane symmetry for the system for the system.
The basic equations are

Gµν = 8π(TMHD
µν + T rad

µν ), (2.1)

∇µ(ρuµ) = 0, (2.2)

∇µTMHD
µν = −Srad

ν , (2.3)

∇µF ∗µν = 0, (2.4)
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∇µT rad
µν = Srad

ν , (2.5)

where Gµν is Einstein’s tensor, ρ is the rest-mass density of baryon, uµ is the four
velocity, ∇µ is the covariant derivative with respect to the spacetime metric gµν ,
TMHD

µν and T rad
µν are the stress-energy tensors of MHD and radiation (neutrinos)

parts, Srad
ν is the source term of the radiation field, and F ∗µν is the dual of the

electromagnetic tensor, respectively. In this paper, we assume that the ideal MHD
condition holds and write F ∗µν as

F ∗µν = bµuν − bνuµ, (2.6)

where bµ denotes the magnetic field vector defined in the fluid rest frame, i.e., bµuµ =
0.

The stress-energy tensors are written as

TMHD
µν = (ρh + b2)uµuν +

(

P +
b2

2

)

gµν − bµbν , (2.7)

T rad
µν = J uµuν + Hµuµ + Hνuµ + Lµν , (2.8)

where h is the specific enthalpy defined by 1+ε+P/ρ with ε and P being the specific
internal energy and pressure, and b2 = bµbµ. J , Hµ, and Lµν are the energy density,
momentum density, and stress tensor of the radiation field,∗) which are defined from
the distribution function f by18)

J = h4
pl

∫

dωω3

∫

f(ω, Ω, xµ)dΩ, (2.9)

Hα = h4
pl

∫

dωω3

∫

ℓαf(ω, Ω, xµ)dΩ, (2.10)

Lαβ = h4
pl

∫

dωω3

∫

ℓαℓβf(ω, Ω, xµ)dΩ, (2.11)

where hpl is the Planck constant, ω is the frequency of the radiation,
∫

dΩ denotes
the integration over the solid angle on unit sphere, and ℓα is a spacelike unit normal
vector orthonormal to uα; ℓµℓµ = 1 and ℓµuµ = 0. Note that we do not consider the
evolution of the spectrum for the radiation field for simplicity in this work. We also
define the stress-energy tensor for the electromagnetic field by

TEM
µν = b2uµuν +

b2

2
gµν − bµbν . (2.12)

2.2. Einstein’s equation

Einstein’s evolution equations are solved using the original version of Baumgarte-
Shapiro-Shibata-Nakamura formulation20) together with the so-called moving-
puncture variable.21) Specifically, we evolve a conformal factor W ≡ γ−1/6, the
conformal three-metric γ̃ij ≡ γ−1/3γij , the trace of the extrinsic curvature K, the

∗) Our choice of physical symbols of the radiation field is different from those in a standard

textbook such as Ref. 19).
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conformal trace-free part of the extrinsic curvature Ãij ≡ γ−1/3(Kij − Kγij/3), and
an auxiliary variable Fi ≡ γ̃ij,j . Here, γij and Kij are the spatial metric and the
extrinsic curvature, respectively. For the evolution of the geometrical variables, we
implicitly assume to use the Cartesian coordinates; the cartoon method is used for
solving Einstein’s equation.22)

The spatial derivatives in the evolution equations are evaluated by a fourth-
order centered finite difference except for the advection terms which is evaluated
by a fourth-order up-wind finite difference. A fourth-order Runge-Kutta method
is employed for the time integration. We employ a moving-puncture gauge for the
lapse function α and shift vector βk (e.g., Ref. 23)) in the form

∂tα = −2αK, (2.13)

∂tβ
i =

3

4
γ̃ij(Fj + ∆t∂tFj), (2.14)

where ∆t is the time step. We omit the advection terms in Eqs. (2.13) and (2.14)
because black holes are located at the origin in the present setting and thus the
advection terms do not play an important role.

2.3. MHD equations

MHD equations are solved in the same numerical scheme as shown in Ref. 25)
to which the reader may refer. Specifically, we choose the following variables to be
evolved,

S0 = W−3TMHD
µν nµnν , (2.15)

Si = −W−3TMHD
µν nµγν

i, (2.16)

where nα is the unit normal to spacelike hypersurfaces for which the components are

nα =
( 1

α
,−βk

α

)

. (2.17)

The Euler and energy equations are written in the forms

∂tSi +
1√
η
∂j(

√
ηSikγ

jk) = −S0∂iα + Sj∂iβ
j − 1

2
αSjk∂iγ

jk − αW−3Srad
i , (2.18)

∂tS0 +
1√
η
∂j(

√
ηαSj) = αKijSij − Si∂iα + αW−3Srad

α nα, (2.19)

where Sij = W−3TMHD
αβ γα

iγ
β
j , Si = γijSj , and η is the determinant of the flat metric

in the curvilinear coordinates.
The induction equation is solved defining a magnetic-field variable

Bµ = W−3(wbµ − αbtuµ), (2.20)

where w = αut and Bµnµ = 0. We only need to solve the spatial component Bi by

∂tB
i =

1√
η
∂j [

√
η(Bjvi − Bjvi)], (2.21)
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where vi = ui/ut is the three velocity.
The transport terms are specifically evaluated using a Kurganov-Tadmor scheme28)

with a piecewise parabolic reconstruction for the quantities of cell interfaces. The
fourth-order Runge-Kutta method is employed for the time integration. For solving
the induction equation, a constrained-transport scheme with second-order interpo-
lation in space is employed.26)

2.4. Radiation

In the numerical simulation, instead of using Eq. (2.8), we rewrite T rad
αβ as18)

T rad
αβ = E0nαnβ + (F0)αnβ + (F0)βnα + (P0)αβ, (2.22)

and solve the equations for E0 and (F0)k. Here, (P0)
αβnα = 0 = (F0)

αnα. J and
Hα are determined by

J = E0w
2 − 2(F0)

kwuk + (P0)
ijuiuj , (2.23)

Hα = (E0w − (F0)
kuk)h

α
βnβ + whα

β(F0)
β − hα

iuj(P0)
ij , (2.24)

where hαβ = gαβ + uαuβ. We here note hα
βnβ = nα − wuα and nαhαβγβk =

−wuk. The introduction of E0 and (F0)i allows us to write the basic equations in a
conservative form as

∂tE +
1√
η
∂j[

√
η(αF j − βjE)]

= α[P ijKij −F j∂j lnα − W−3Srad
α nα], (2.25)

∂tFi +
1√
η
∂j [

√
η(αP j

i − βjFi)]

=
[

− E∂iα + Fk∂iβ
k − α

2
Pjk∂iγ

jk + αW−3Srad
i

]

, (2.26)

where E = W−3E0, Fi = W−3(F0)i, and Pij = W−3(P0)ij . Hence, the equations
can be integrated in the same numerical scheme (high-resolution shock capturing
scheme) as the MHD equations.

In the truncated moment formalism employed here, we have to impose a closure
relation for determining Pij . We follow Ref. 18) on the prescription for this (we
employ the simplest version of Ref. 18)). For the optically thin limit, we set

(P ij)thin = E F iF j

γklFkF l
, (2.27)

and for the optically thick limit,

Lαβ =
1

3
hαβJ . (2.28)

Equation (2.28) is rewritten in terms of Pij , E , and Fi as

(P ij)thick =
E

2w2 + 1

[

(2w2 − 1)γij − 4V iV j
]

+
1

w
(F iV j + F jV i)

+
2Fkuk

(2w2 + 1)w
(−w2γij + V iV j), (2.29)
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where V k = γklul.
For the optically grey region, we assume

P ij =
3χ − 1

2
(P ij)thin +

3(1 − χ)

2
(P ij)thick, (2.30)

where χ is the so-called variable Eddington factor, which is χ = 1/3 in the optically
thick limit and χ = 1 in the optically thin limit. Following Ref. 24), we write χ as a
function of F̂ , for which we choose18)

F̂ :=

(

hαβHαHβ

J 2

)1/2

. (2.31)

Following Livermore,24) we employ the following function for χ(F̂) as

χ =
3 + 4F̂2

5 + 2
√

4 − 3F̂2
. (2.32)

With the choice of (2.31), F̂ obeys an algebraic equation for a given set of E and
Fj . This can be written in the form

F̂2 =
hαγT rad

αβ uβT rad
γλ uλ

T rad
αβ uαuβ

, (2.33)

where for T rad
αβ , Eq. (2.22) is used with Eq. (2.30). In the numerical simulation, we

solve this algebraic equation numerically.

§3. Initial condition

In this work, we perform simulations for the system composed of a stellar-mass
black hole surrounded by a high-density torus. Such a system is a possible outcome
after the merger of binary neutron stars and black hole-neutron star binaries. The
latest simulations have indeed shown that a massive disk may be formed after the
merger (see, e.g., Ref. 6) for a review): For a total mass of the system 3–8M⊙, the disk
mass could be 0.1–0.5M⊙ with the maximum density 1011–1013 g/cm3 (for binary
parameters and EOS which are favorable for a disk formation). Generally speaking,
the disk formation is enhanced if (i) the black hole in the black hole-neutron star
binary is rapidly spinning6) or (ii) the EOS of neutron stars is stiff (the radius of
neutron stars is large) enough for the merger to result in a long-lived hypermassive
neutron star for the binary neutron stars.4),5)

In this work, we set the black hole mass to be MBH = 3M⊙ or 6M⊙, and baryon
rest-mass of the disk to be Mdisk ≈ 0.14–0.38M⊙. The system with MBH = 3M⊙ is a
model for the remnant of the binary neutron star merger and that with MBH = 6M⊙

is a model for black hole-neutron star binaries. The nondimensional black hole spin is
chosen to be a = 0 for simplicity: In a previous paper,14) we show that the prograde
spin enhances the neutrino luminosity, and hence, the results of the present paper
are likely to give a conservative estimate for the neutrino luminosity. The maximum
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Table I. Key quantities for the initial conditions employed in the numerical simulation. Black hole

mass (MBH), nondimensional spin parameter (a), location (in terms of the coordinate radius)

of the inner and outer edges on the equatorial plane, baryon rest mass and maximum density

of the torus, maximum magnetic field strength, and maximum ratio of the magnetic pressure

to the gas pressure. MBH and Mdisk are shown in units of M⊙. r1 and r2 are shown in units of

MBH(GMBH/c2).

Model MBH a (r1, r2) Mdisk ρmax[g/cm3] Bmax (G) (PB/Pgas)max

6a0m4 6 0.0 (6.00, 17.65) 0.242 5.12 × 1011 3.4 × 1014 1.6%

6a0m6 6 0.0 (6.00, 18.05) 0.381 7.45 × 1011 3.6 × 1014 1.5%

3a0m1 3 0.0 (4.00, 18.05) 0.145 2.28 × 1012 1.1 × 1015 2.3%

3a0m2 3 0.0 (4.00, 18.53) 0.209 3.08 × 1012 1.0 × 1015 1.6%

density ρmax is chosen in the range 2.3–3.1 × 1012 g/cm3 for MBH = 3M⊙ and 5.1–
7.5×1011 g/cm3 for MBH = 6M⊙. We note that for the same mass and radius of the
disk in units of MBH, the density is lower for the higher-mass black hole. For these
initial conditions, we prepare an equilibrium state which is constructed by a code
reported in Ref. 29) with the so-called j-constant law in which all the fluid elements
have the same specific angular momentum (the same value of huϕ). Table I lists key
quantities for the initial conditions.

At t = 0, we superimpose a poloidal magnetic field inside the torus which induces
an angular momentum transport during the evolution as in, e.g., Refs. 11) and 14).
Such an initial magnetic field configuration is chosen simply due to the technical
reason: In the nearly vacuum region, we cannot put magnetic fields for which the
magnetic pressure is much larger than the (atmosphere) gas pressure because our
MHD code is not allowed to evolve an extremely low-β plasma. Note that even if the
magnetic field profile is initially artificial, the resulting profile after several dynamical
timescale evolution depends only weakly on the initial condition, as described in
many papers in this field (e.g., Ref. 11)): The resulting magnetic fields are usually
composed of a random magnetic field inside the torus and of approximately dipole
magnetic fields outside the torus and black hole magnetosphere. These seem to be a
universal outcome after the onset of magnetohydrodynamical instabilities. Thus we
adopt a simple magnetic field profile initially.

The profile for the toroidal component of the vector potential of the magnetic
field is chosen as

Aϕ =

{

A0(P − P0) for P > P0,
0 for P ≤ P0,

(3.1)

and then the magnetic field is given by

Bi = W−3ǫijk∂jAk, (3.2)

where ǫijk is the completely antisymmetric tensor. P0 is a parameter chosen to be
0.04Pmax where Pmax is the maximum pressure. A0 is the constant that determines
the magnetic field strength. In this paper, we give a strong magnetic field initially
to make the angular momentum transport turn on immediately after the onset of
simulations. The given maximum magnetic field strength is Bmax ≈ 3–5 × 1014 G
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for MBH = 6M⊙ and ≈ 1× 1015 G for MBH = 3M⊙, with which the maximum ratio
of the magnetic pressure to the gas pressure is ∼ 1.5–2.3% (see Table I). A latest
GRMHD simulation for the binary neutron star merger indicates that such a strong
magnetic field will be achieved during the evolution of accretion torus surrounding
central black holes.3)

We employed the different field strength for a few models as a test and found that
the results depend very weakly on it as far as the field strength is sufficiently large.
For a weak initial field strength, by contrast, the angular momentum transport does
not proceed efficiently, and hence, the degree of the subsequent turbulent motion is
weak and the efficiency of the shock heating is also low. The likely reason is that
with the weak field strength, the fastest growing mode of the magnetorotational
instability (MRI) is not resolved. The strong magnetic field has to be set up to
enhance the efficient angular momentum transport and shock heating in the present
grid resolution.

§4. Equation of state and treatment of radiation

4.1. Equation of state

For a high-density matter with ρ ∼ 1010–1013 g/cm3, the dominant pressure
sources are degenerate electrons and thermal nucleons for the typical temperature
1010–1011 K. The pressure for them is written, respectively, by

Pdeg = 4.93 × 1030
(Yeρ12

0.5

)4/3
g/cm/s2, (4.1)

Pgas = 8.31 × 1029ρ12T10 g/cm/s2, (4.2)

where ρ12 = ρ/(1012 g/cm3), Ye is the fraction of electrons per nucleon, and T10 =
T/(1010 K). We here assume that the baryon is composed only of free nucleons. The
radiation pressure due to photons and electron-positron pairs is written as

Pγ =
(1

3
+

7

12

)

arT
4 = 7.04 × 1025T 4

10 g/cm/s2, (4.3)

where ar is the radiation density constant (7.56 × 10−15 ergs/cm3/K4). The effect
of the radiation pressure on dynamics is minor in the main body of the torus where
ρ12 >∼ 1, as far as T10 <∼ 10, although the radiation pressure plays a role for a high-
temperature and relatively low-density region that does not contribute much to the
neutrino luminosity. Hence, we ignore its contribution to the pressure.

Thus, for simplicity, we employ the following EOS:

P = Kρ4/3 + (Γth − 1)ρεth, (4.4)

where K is a polytropic constant which is 4.93 × 1014(Ye/0.5)4/3 (in the cgs unit)
for degenerate relativistic electrons,30) and Γth is the adiabatic constant for which
we choose 5/3, because free nucleons mainly contribute to the thermal part. εth is
the specific thermal energy determined by

εth = ε − εpoly, (4.5)
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where εpoly = 3Kρ1/3 is the specific internal energy associated with degenerate
electrons. In this paper, we give a fixed value for Ye as 0.3; we suppose a moderately
neutron-rich material.

The matter temperature may be determined from the relation

kBT =
2

3
muεth, (4.6)

where mu is the atomic mass unit (mu = 1.66057×10−24 g), and kB is the Boltzmann
constant. Specifically,∗)

T = 7.206 × 1010
( εth

0.01c2

)

K. (4.7)

In reality, the temperature does not increase linearly with εth, because the contri-
bution of the radiation (photons and electron-positron pairs) to the internal energy
in fact becomes significant for high temperature; see Eq. (4.3). Instead of solving
the 4th order nonlinear equation for T , we simply set a maximum value for the
temperature to be kBTmax = 30 MeV: A latest fully general relativistic simulation
shows that this is indeed a reasonable upper bound.5) If the value of T , determined
from Eq. (4.7), exceeds Tmax, we set T = Tmax. This procedure may give a higher
estimation of T for 10 <∼ T10 <∼ 30. However, the density of such high temperature
region is rather small as ρ <∼ 108−9 g/cm3 (see the top and middle panels of Fig. 1),
and hence, spurious effects of this simple procedure seem to be minor.

4.2. Radiation source term

The source term for the radiation transport equation, Srad
α , is determined in

the following manner. For neutrinos in the medium with ρ ∼ 1011–1013 g/cm3, the
dominant process is the absorption by nucleons.31)–33) Taking into account this fact,
we write it as

Srad
α = κ[(J eq(T ) − J )uα −Hα], (4.8)

where we write for simplicity,

J eq =
7

8
arT

4, (4.9)

assuming that neutrinos are close to the β-equilibrium. This assumption is reason-
able in the main part of the torus. Note that T in Eq. (4.9) is the matter temperature.
We here assume that only electron neutrinos and anti-neutrinos are present. Because
we omit other sources for the neutrino emission such as pair production process and
also emission of muon and tau neutrinos, the total neutrino luminosity is likely to
be underestimated. However, the present treatment is acceptable for a qualitative
and semi-quantitative study, e.g., to derive an approximate order of magnitude of
the neutrino luminosity. κ is the opacity and we here define by ρσc/mu where σ is
the cross section of neutrinos with matter. For simplicity, we write it

σ = Cσσw

( kBT

mec2

)2
, (4.10)

∗) For clarifying the unit, we recover c and G in this section.
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where σw = 1.76 × 10−44 cm2 denotes the characteristic cross section of weak in-
teractions,30) mec

2 is the electron rest-mass energy, 511 KeV, and Cσ is a constant
which we choose 1; we choose Cσ = 0.5 and 2 for test simulations, but the results
(evolution of torus and neutrino luminosity) depend only weakly on this parameter.
The dependence on the neutrino energy is simply estimated by the local matter tem-
perature kBT , because we do not have the method for estimating it in the present
treatment. In the optically thick region, our prescription is acceptable. However, in
the grey and optically thin regions, a more sophisticated treatment is required.

For this choice of σ, a nondimensional quantity κGMBH/c3 is written as

κGMBH

c3
= 3.6Cσρ12

( kBT

10 MeV

)2(MBH

6M⊙

)

. (4.11)

Thus, a torus of thickness ∼ 10GMBH/c2 and of temperature kBT = 10 MeV sur-
rounding a black hole of mass 6M⊙ is optically thick for ρ >∼ 3 × 1010 g/cm3 with
Cσ = 1.

4.3. Partial implicit scheme

The timescale of the neutrino absorption and emission ≈ κ−1 is often shorter
than the dynamical timescale of the system ∼ GMBH/c3 ∼ 0.03 ms. This prohibits
the explicit time integration of the radiation transport equations. For a stable nu-
merical computation, we employ a partial implicit (explicit-implicit) scheme for the
time integration. Schematically, Eqs. (2.25) and (2.26) are written in a matrix form

∂tF = T + κ(S0 − AF ), (4.12)

where F denotes a vector composed of

F =

⎛

⎜

⎜

⎝

E
Fx

Fy

Fz

⎞

⎟

⎟

⎠

. (4.13)

T denotes the sum of the transport term ∂i(· · · )i and the source term associated
with the gravitational fields. S0 denotes the source term composed of the thermal
quantity arT

4, and A is a 4×4 matrix composed of the hydrodynamic and geometric
quantities. In each Runge-Kutta time integration, the term ∂tF is discretized as
(F n+1 − F

n)/∆t where n and n + 1 denote neighboring two time steps for the
fourth-order Runge-Kutta time integration (n = 0 − 3). In the partial implicit
scheme employed here, n-th quantities are assigned for T , S0, A, and κ, while we
assign (n + 1)-th quantities for F in the right-hand side. Namely, we write the
equation in the following form:

(1 + κn∆tAn)F n+1 = F
n + ∆t(T n + κn

S
n
0 ). (4.14)

This is a simple 4 × 4 matrix equation and solved in a straightforward manner.
After the radiation transport equations are integrated, we integrate the MHD

equations. The transport term and ordinary source term associated with the grav-
itational field of this equation are handled in the same manner as in our previous
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paper; to obtain the (n + 1)-th quantities, n-th quantities are assigned for these
terms. On the right-hand side of the MHD equations, the source terms composed of
the radiation fields are included additionally in the present case; −κ(S0 −AF ). We
handle this term as in the radiation transport equation, i.e., in the following time
stepping:

−κn(Sn
0 − A

n
F

n+1). (4.15)

This implies that the absolute value of the source term associated with the radiation
field in the MHD equations is equal to that in the radiation transport equation, and
hence, the energy and momentum contributed from this source term cancel each
other for the total conservation equation ∇µ(TMHD

µν + T rad
µν ) = 0.

In Appendix A, we present results of a test simulation using a semi-analytic
solution of radiation-hydrodynamical Bondi flow. In Appendix B, we also present
results of one-dimensional test simulations of Riemann problems in special relativity.
We show that by our code, it is feasible to stably perform a radiation hydrodynamics
simulation and also to derive a second-order convergent result for high values of κ
(for the optically thick case) for the general relativistic flows.

§5. Quantities for diagnostics

We monitor the total baryon rest-mass M∗, internal energy Eint, thermal com-
ponent of internal energy Eth, kinetic energy Tkin, and electromagnetic energy EB

by

M∗ =

∫

ρ∗
√

ηd3x, (5.1)

Eint =

∫

ρ∗ε
√

ηd3x, (5.2)

Eth =

∫

ρ∗εth
√

ηd3x, (5.3)

Tkin =

∫

1

2
ρ∗hviui

√
ηd3x, (5.4)

EB =

∫

TEM
µν nµnνα−1√ηd3x. (5.5)

Here, for the definition of Eint, Tkin, and EB, we follow Ref. 34). Note that M∗ =
Mdisk at initial.

In stationary axisymmetric spacetimes, the following relations are derived from
the conservation law of the energy-momentum tensor in the absence of neutrino
cooling:

∂µ(
√−g(TMHD)µ

t) = 0. (5.6)

From this relation, it is natural to define the ejection rate of energy

Ė = −
∮

r=const
(TMHD)r

t

√−gdS, (5.7)
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where dS = dθdϕ and the surface integral is performed for a two surface far from
the torus. From the continuity equation, the rest-mass ejection rate is defined in the
same manner as

Ṁ∗ =

∮

r=const
ρ∗v

rr2dS. (5.8)

Emission rates of energy for the electromagnetic field and radiation are defined
in the same manner as

ĖB = −
∮

r=const
(TEM)r

t

√−gdS, (5.9)

Ėrad = −
∮

r=const
(T rad)r

t

√−gdS. (5.10)

Pair annihilation rates of neutrinos and antineutrinos are roughly evaluated in
the following manner: First we assume that the luminosity of neutrinos and antineu-
trinos are cνe and (1−cν)e, respectively. Here, cν is a constant for which 0 < cν < 1.
Then the pair annihilation luminosity per volume is approximately estimated by35),∗)

q̇νν̄ = cmaxcσ0
e2

(mec2)2

√

EνEν̄ , (5.11)

where cmax = max[c2
ν , (1−cν)

2] cos2 Θ with Θ being the collision angle of pairs. Note
that the maximum value of cmax is 1/4. The typical value of Θ is determined by
the configuration of the neutrino-emission region: If the pair annihilation occurs in
the vicinity of the black hole and rotation axis, cosΘ is likely to be near the unity.
σ0(≈ 3.3 × 10−45 cm2) is the typical cross section of the pair annihilation, and Eν

and Eν̄ are the characteristic energy of neutrinos and antineutrinos, respectively.
From q̇νν̄ , we define an approximate pair annihilation luminosity by

Lνν̄ =

∫

W−3dV q̇νν̄ . (5.12)

In the following, we show the result of Lνν̄ with cmax

√
EνEν̄/(mec

2) = 1/4 as a
reference for the order of magnitude of Lνν̄ .

§6. Numerical results

6.1. Setting

Numerical simulations are performed in a nonuniform grid with the (x, z) co-
ordinates. In addition, we prepare 5 grid points along the y direction for solving
Einstein’s equation by the Cartoon method22) with the fourth-order accuracy. The
grid spacing for each coordinate at i-th grid point is determined by the following
rule,

∆xi =

{

∆x0 for 0 ≤ x ≤ xin,
Cx∆xi−1 for x ≥ xin,

(6.1)

∗) We here recover c for clarifying the physical units.
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Fig. 1. Snapshots for the distribution of the rest-mass density (top panels), matter temperature

(middle panels), and radiation field density (E0 = EW 3, bottom panels) at selected time slices,

t = 5.7 ms (left), 21.3 ms (middle), and 42.5 ms (right), for model 3a0m2.

where ∆x0 is a constant, ∆xi = xi+1−xi, and xi is the i-th grid point with 0 ≤ i ≤ N .
Here, xi denotes x or z. For y, the grid is set at ±∆x0 and ±2∆x0. Cx is a constant
which is set to be 1.016. We employ (N, ∆x0) = (630, 0.05MBH) and (500, 0.075MBH)
for the high and low grid resolutions, respectively. xin = 20MBH and 22.5MBH for
N = 630 and 500. With this setting, the outer boundary along each axis for the high-
and low-resolution runs is located at xN = 139MBH and 132MBH, respectively. By
several test simulations, we confirmed that the numerical results depend only weakly
on the grid resolution.∗) Hence, we only show the results for the higher-resolution

∗) We here imply that the results depend only weakly on the grid resolution in the time-averaged

sense. Because the matter and magnetic fields violently vary due to a turbulent motion induced by

magnetohydrodynamic instabilities, the results do not agree well with each other for the comparison

done at a given instance of time.
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Fig. 2. Evolution of the total rest-mass energy (M∗), kinetic energy (Tkin), internal energy (Eint),

thermal energy (Eth), and electromagnetic energy (EB) measured outside the apparent horizon

for models 3a0m2 (left) and 6a0m4 (right) as in Fig. 1. We also plot an averaged value of the

specific internal energy defined by 〈ε〉 = Eint/M∗.

runs in the following.

6.2. General features of dynamics

In the axisymmetric simulation, the magnetic field eventually escapes from the
torus after the amplification of the magnetic-field strength saturates. The reason is
that the dynamo action is not sustained in the axisymmetric system because of the
anti dynamo property.36) Thus, an extremely long-term simulation does not provide
a realistic result because the angular momentum transport process induced by the
MHD effect does not work in its late phase. Keeping in mind this fact, we always
stopped the simulations at t = 3500MBH following Ref. 11). This corresponds to
≈ 50 ms and 100 ms for MBH = 3M⊙ and 6M⊙, respectively.

Figure 1 plots the snapshots for the distribution of the rest-mass density, matter
temperature, and radiation field density (E0 = EW 3) at t = 5.7, 21.3, and 42.5 ms
for model 3a0m2. This shows the universal qualitative features for the evolution
of the system: After the simulation is started, the magnetic-field strength increases
due to the winding and MRI caused by the differential rotation (see Fig. 2). These
processes also play an active role for transporting angular momentum from inner
parts to outer parts of the torus. Due to the increase of the magnetic-field pressure,
the matter is ejected from the torus predominantly toward the high latitude (see
the left panels of Fig. 1). By this process, the geometrical thickness of the matter
distribution increases, resulting in formation of a quasisteady funnel structure which
is composed of the geometrically thick torus and a nearly vacuum region in the
vicinity of the rotational axis (see the middle and right panels of Fig. 1). Due to
the angular momentum transport process, on the other hand, the matter for which
angular momentum is removed falls into the BH, and the total mass of the torus
gradually decreases. A part of the matter ejected from the torus to a high latitude
comes back to the torus. If the angular momentum of the matter is extracted by
the magnetic processes during its travel, the matter eventually comes back to an
inner region of the torus. When it hits the torus, a shock is generated and its kinetic
energy is liberated. As a consequence of this process which continuously occurs, the
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temperature of the inner region of the torus increases to a value larger than 10 MeV,
and such a region becomes a primary emission region of neutrinos.

Because a funnel structure is formed and the neutrino emission is most active
near the inner region of the torus, neutrinos are emitted primarily toward the outward
direction in the vicinity of the rotational axis. The bottom panels of Fig. 1 indeed
shows that the neutrino radiation density is high in a cone around the rotational
axis and the opening angle of the cone is rather small (cf. Fig. 3). Due to this
collimation property, the radiation density is enhanced. This is a favorable property
for an efficient pair annihilation of neutrinos and antineutrinos near the rotational
axis.

6.3. Energetics

6.3.1. General feature

Figure 2 plots the evolution of the total rest-mass energy (M∗), kinetic en-
ergy (Tkin), internal energy (Eint), thermal energy (Eth), and electromagnetic energy
(EB), for which the integrations (5.1)–(5.5) are performed for the region outside the
apparent horizon, as well as an averaged value of the specific internal energy defined
by Eint/M∗ for models 3a0m2 (left) and 6a0m4 (right). The left panel of Fig. 2 quan-
titatively captures the features for the evolution of the system described in Fig. 1: In
the first ∼ 3 ms, the electromagnetic energy increases due to the magnetic winding
and MRI. The electromagnetic energy increases to ∼ 10% of the internal energy and
∼ 1% of the kinetic energy. Eventually, the increase of the electromagnetic energy
saturates, and then, the outflow of the material from the accretion torus and the
accretion of the material into the black hole are activated. Associated with these
dynamical processes, the shock heating is enhanced and the thermal energy steeply
increases at t ∼ 3 ms. The averaged value of the specific internal energy increases
to 〈ε〉 ∼ 0.003–0.004, implying that the averaged matter temperature is ∼ 2–3 MeV.
For t >∼ 10 ms, the system relaxes to a quasisteady accretion phase, during which the
rest mass of the torus gradually decreases. Associated with this decrease, Tkin, Eint,
and EB also decrease gradually. On the other hand, 〈ε〉 is approximately constant.
All these quantitative features approximately hold for any model considered in this
paper. This fact is observed by the comparison between the left and right panels of
Fig. 2.

6.3.2. Dependence on BH mass

Figure 3 plots the evolution of the matter ejection rate (dM/dt), electromagnetic
luminosity (dEB/dt), neutrino luminosity (Lν), and an approximate estimate for the
pair annihilation luminosity by Eq. (5.11) for models (a) 3a0m2 (b) 6a0m4, (c)
3a0m1, and (d) 6a0m6. Because of the MHD activity induced by the magnetic
winding and MRI, the material in the torus is ejected outward. The typical mass
ejection rate is ∼ 0.1M⊙/s for MBH = 3M⊙ and ∼ 0.3M⊙/s for MBH = 6M⊙ in
our employed models. After the activity of the torus turns on, the neutrino and
electromagnetic luminosities are also enhanced, and these luminosities eventually
relax to quasisteady values after the torus relaxes to a quasisteady state.

The typical neutrino luminosity is ∼ 1052 ergs/s for MBH = 3M⊙ and ∼
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Fig. 3. Matter energy ejection rate (dM/dt), electromagnetic luminosity (dEB/dt), neutrino lu-

minosity (Lν), and an approximate estimate for the pair annihilation luminosity (“pair”) (a)

for model 3a0m2, (b) for model 6a0m4, (c) for model 3a0m1, and (d) for model 6a0m6. The

neutrino luminosity measured for the opening angle around the rotational axis of θ ≤ π/20 is

also plotted (the curves plotted in the vicinity of Lν).

1051 ergs/s for MBH = 6M⊙ in our models. Thus, it is higher for the lower black hole
mass. By contrast, the dependence of the electromagnetic luminosity, ∼ 1051 ergs/s,
on the black hole mass is not as strong as that of the neutrino luminosity. The electro-
magnetic luminosity has a positive correlation with dM/dt as dEB/dt = CEMdM/dt.
The weak dependence of the ratio coefficient CEM ∼ 3×10−2 indicates that the mass
ejection is driven by the electromagnetic power. An important point indicated in
this work is that for the lower-mass black-hole system, the neutrino emission is the
primary dissipation mechanism, while for the higher-mass case, the electromagnetic
wave emission plays the primary role. We do not fully take into account the relevant
microphysical processes and the results presented in this paper are approximate ones.
However, it is strongly likely that a critical mass, which divides the dominant dissi-
pation mechanism, exists. The reason for this mass dependence will be explained as
follows.

The weak dependence of dEB/dt on the black hole mass may be explained assum-
ing that it is proportional to B2R3Ω as in the Blandford-Payne mechanism.12),13)

Here, B, R, and Ω are the typical magnetic-field strength, radius, and angular ve-
locity of the torus. We note that for the models employed in this paper, the black
hole spin is zero (or small, as a result of accretion), and hence, the Blandford-
Znajek mechanism is not relevant.10) The present models also have the parameters
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R/MBH ∼ 10 and Ω ∝ M−1
BH universally. For the saturated magnetic field strength,

B2 is approximately proportional to the gas pressure P ∝ ρc2
s ∼ ρT where cs is the

sound velocity. Here, T depends only weakly on the black hole mass, and we have
an approximate relation ρ ∝ M−2

BH for a given mass and radius of the torus. Thus,
B2 should be proportional to M−2

BHT , and B2R3Ω ∝ M0
BHT : dEB/dt should depend

only weakly on the black hole mass. This agrees with the present numerical results.
The dependence of the neutrino luminosity on the black hole mass may be esti-

mated in the following manner. Suppose that the mass accretion rate of a torus into
the black hole is Ṁin. Then, the accretion luminosity Lacc is approximately written
as MBHṀin/R. Because MBH/R is ∼ 0.1 depending weakly on the black hole mass,
Lacc ∝ Ṁin. For a given disk mass, Ṁin ∼ Mdisk/τ where τ is the accretion time
scale which should be proportional to MBH. Thus, Lacc ∝ M−1

BH. If the neutrino lu-
minosity is proportional to Lacc, it should be proportional to M−1

BH: For the smaller
black hole mass, the neutrino luminosity should be larger. This agrees qualitatively
with the present numerical results.

6.3.3. Neutrino pair annihilation luminosity

In Fig. 3, the neutrino luminosity measured for the angle θ ≤ π/20 is also plotted.
Comparing this with the total neutrino luminosity shows that neutrinos are emitted
substantially toward the outward direction along the rotation axis. This is likely to
come from the facts that the inner region of the torus has the maximum temperature
and that a funnel structure is formed after the magnetic instabilities turn on. This
collimation effect enhances the neutrino radiation density near the axis, and as a
result, the efficiency of the pair annihilation of neutrinos and antineutrinos will be
also enhanced.

The pair annihilation luminosity depends most strongly on the black hole mass.
The reason is that it is proportional to the square of the neutrino luminosity. For
the binary-neutron-star model with MBH = 3M⊙, the typical magnitude is 1048–
1049 ergs/s whereas for the black-hole-neutron-star-binary model with MBH = 6M⊙,
it is ∼ 1047 ergs/s. For a hypothetical duration of the neutrino emission ∼ 100 ms
for MBH = 3M⊙, the total energy deposited could be ∼ 1048 ergs. This value could
explain the total energy of relatively weak SGRB. By contrast, for MBH = 6M⊙, the
total energy could be at most 1047 ergs even for the time duration of 1 s. This is too
low to explain the observed SGRB. However, a word of the note is appropriate here.
First, we do not take into account some of important neutrino emission processes
and realistic microphysics in this work. The neutrino luminosity could be higher
than that estimated in this work in reality. If so, the pair-annihilation luminosity
could be higher than that presented in this paper. Second, we do not consider the
spin of black holes, although a black hole of a relatively high spin is likely to be
formed for the merger of binary neutron stars and black hole-neutron star binaries.
For such a high-spin black hole, the neutrino luminosity could be by one order of
magnitude larger than that presented in this paper.14),37) This suggests that the
pair-annihilation luminosity could be by two order of magnitude larger for the case
that a black hole has a high spin. More detailed study taking into account the
detailed microphysics and high black hole spin is the issue for our subsequent work.
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§7. Summary

We present our first numerical result of the GRRMHD simulation for black
hole-torus systems in the framework of full general relativity. Taking into account
the latest results of the numerical-relativity simulation for black hole-neutron star
binaries and binary neutron stars, we evolve the systems of MBH = 3M⊙ or 6M⊙

and of the torus mass 0.14–0.38M⊙ with the maximum density of the torus 5×1011–
3×1012 g/cm3. We incorporate some of neutrino processes (absorption and emission
via the interaction with free nucleons) in an approximate manner. The following is
the summary for the results obtained in this paper:

• The typical order of the neutrino luminosity is 1052 ergs/s for MBH = 3M⊙

and 1051 ergs/s for MBH = 6M⊙. Because we do not take into account some of
important processes of the neutrino emission, these values may be considered
as a lower bound for the neutrino luminosity.

• Neutrinos are dominantly emitted toward the outward direction along the rota-
tion axis of the accretion torus. The reason is that after MHD instabilities set
in, a high-temperature region appears in the inner edge of the accretion torus
and also a funnel structure, which enhances the emission toward the direction
along the rotational axis, is formed.

• The order of the electromagnetic luminosity is 1051 ergs/s and it depends only
weakly on the black hole mass in our present models. Thus, for MBH = 3M⊙,
the neutrino luminosity is larger than the electromagnetic luminosity, while for
MBH = 6M⊙, two luminosities are comparable. The order-of-magnitude esti-
mate supports this result, and hence, it is likely that there is a critical black hole
mass above which the neutrino luminosity is smaller than the electromagnetic
luminosity.

• A very approximate estimate for the total pair annihilation rate of neutrino-
antineutrino pairs suggests that the order of the magnitude of the luminosity
associated with this process is 1049 ergs/s for M⊙ = 3M⊙ and 1047 ergs/s for
M⊙ = 6M⊙. Again, these values may be considered as a lower bound because
we do not incorporate some of important processes of the neutrino emission
nor the black hole spin; the value may be underestimated by a factor of 10–
100. Taking into account this fact, the present results suggest that SGRB with
relatively low energy may be driven from the remnants formed from the merger
of black hole-neutron star binaries and binary neutron stars, respectively.
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Appendix A

Radiation Field in the Optically Thick Spherical Flow

As shown in Refs. 16) and 18), it is possible to derive an approximate solution
of the radiation field in the optically thick limit using the diffusion approximation.
We here describe the analytic solution of the Bondi flow in the framework of ra-
diation hydrodynamics, i.e., an accretion flow of the matter and radiation in the
Schwarzschild background.30) We also show that our numerical code can generate
the analytic solutions for the radiation flows (J ,Hα) and (E ,Fi).

We choose the line element in the Kerr-Schild coordinates,

ds2 = −
(

1 − 2M

r

)

dt̄2 +
4M

r
dt̄dr +

(

1 +
2M

r

)

dr2 + r2(dθ2 + sin2 θdϕ2), (A.1)

where M and r are the gravitational mass and areal coordinate. In this metric, the
coordinate singularity at r = 2M does not give any messy problem.

First, we consider the optically thick limit. In this case, the total stress-energy
tensor is written as

T tot
µν =

(

ρh +
4

3
J eq

)

uµuν +
(

P +
1

3
J eq

)

gµν . (A.2)

Here we do not consider the magnetic field for simplicity. However, it is straightfor-
ward to take into account a purely radial magnetic field11) and our code was already
shown to reproduce such a solution.25)

In the following, we assume that the radiation is composed of photons, writing
J eq = arT

4, and consider the case that the EOS of the matter is described by
P = Kρ4/3 = ρε/3, i.e., the Γ = 4/3 ideal fluid. Then for the ideal gas, ε = 3kBT/m
where m is the mass of the gas particle. In this EOS, J eq is written as 3K ′ρ4/3

where K ′ = ar(mK/kB)4/3. Then, the total stress-energy tensor is written by

T tot
µν =

(

ρ + 4(K + K ′)ρ4/3
)

uµuν + (K + K ′)ρ4/3gµν . (A.3)

Namely, the stress-energy tensor is the same as that for the effective EOS, Peff =
(K+K ′)ρ4/3. This implies that it is easy to generate a Bondi solution, i.e., ρ, ur, and
Peff as functions of r for a given value of K +K ′. If the ratio of K ′/K is determined,
we also obtain P and J eq as functions of r.

In the optically thick medium, the correction of the radiation fields in our nota-
tion is written as18)

J = J eq + lJ (1) and Hi = lH
(1)
i , (A.4)

where l is the mean free path of the radiation, κ−1, which is smaller than the typical
size of the system (i.e., l ≪ M), and

J (1) = −uµ∇µJ eq − 4

3
J eq∇µuµ, (A.5)

H(1)
α = −1

3
h β

α ∇βJ eq − 4

3
J equβ∇βuα. (A.6)
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Fig. 4. ρ, J , and Hi as functions of r/M for κ = 1 (left) and 10 (right) and for N = 1000. The

points and dashed curves denote the numerical results and analytic solutions.

Here, J eq is written as 3K ′P/K. Using this relation, we find

J (1) = 0, H(1)
r = −1 + uru

r

3
J eq

,r − 4

3
J eq

(

urur,r +
M

r2
(ut + ur)2

)

, (A.7)

and hence,

J = J eq + O(l2), (A.8)

Hi = lH(1)
r γr

i + O(l2). (A.9)

In the numerical simulation, we evolve the variables E0 and (F0)i. Then, we derive
J and Hi using the relation for the optically thick case as

J =
3

2w2 + 1

[

(2w2 − 1)E0 − 2w(F0)iV
i
]

, (A.10)

Hi = w−1(F0)i +
1

w(2w2 + 1)

[

− 4w3E0 + (4w2 + 1)ui(F0)jV
j
]

. (A.11)

The test simulations were performed for a Bondi flow solution with a critical
radius 12M and dM/dt = 1. We set κ to be constant and choose κ = 1, 10, 30,
and 100. The computational domain with [0 : 50M ] for both x and z is covered by
the uniform grid with the grid number N = 250, 500, and 1000. The simulations
were always performed for the time duration of 50M because for such a duration, a
relaxed converged solution is obtained. The results shown in the following are the
snapshots at t = 50M . The time step of the simulation was fixed to be 0.5∆x where
∆x = 50M/N .

Figure 4 plots ρ, J , and Hi as functions of r/M for κ = 1 and 10, and N = 1000.
The points and solid curves are the numerical results and approximate analytic
solutions valid up to O(l). The data are extracted along the x-axis. This figure shows
that the numerical computation reproduces the analytic solutions quite accurately
for κ = 10. For κ = 1, the diffusion approximation does not accurately hold near
the black hole horizon, and Hi for the numerical solution does not agree with the
analytic solution. However, for the outer region, the diffusion approximation still
works. It should be noted that the magnitude of Hi is proportional to κ−1 for κ > 1.
This is also found from this figure.
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Fig. 5. (a) The relative error of J and Hi as functions of r/M for κ = 10. The solid, dashed,

and dotted curves are the results for N = 1000, 500, and 250, respectively. (b) Comparison of

5[J (N = 500)−J (N = 1000)] (dashed curves) and [J (N = 250)−J (N = 1000)] (solid curves)

for κ = 1 (upper) and 10 (lower curves).

Next, we focus on the convergence of the numerical solutions. Figure 5(a) plots
the relative errors for J and Hi along the x-axis. Here, the relative error of a
quantity Q is defined by

Error =
∣

∣

∣

Qnumerical solution

Qanalytic solution
− 1

∣

∣

∣, (A.12)

and the analytic solution is that denoted by Eqs. (A.8) and (A.9). Figure 5(a) shows
that the error does not decrease with improving the grid resolution. The reason is
that the accuracy of the analytic solutions is not good enough due to the neglection
of the term of order O(l2).

To confirm that the numerical solution shows the convergent behavior, we then
compare

5[Q(N = 500) −Q(N = 1000)] and Q(N = 250) −Q(N = 1000), (A.13)

where Q(N) denotes a numerical result with the grid number N . If the computation
is second-order convergent, i.e., Q behaves as Q = Q(N → ∞) + ∆x2Q2, these two
quantities should agree. Figure 5(b) compares these two quantities for J and Hi.
This indeed shows the agreement and that the numerical results are second-order
convergent. Note that the reason of the violation of the second-order convergence
for the error smaller than ∼ 10−4 is that other error sources come into the play for
such a small error size.

Because the numerical results obey the second-order convergent behavior, it is
possible to derive an exact solution for N → ∞ approximately. Such an “exact”
solution is different from the approximate analytic solution in which the term of
O(l) is not taken into account. Thus the relative difference between the “exact”
solution and the analytic solution should be proportional to κ−1. To confirm that
the numerical solution reproduces this fact, we plot the following relative error of
Hr in Fig. 6 for κ = 1, 10, 30, and 100:

∣

∣

∣

Q“exact” solution

Qanalytic solution
− 1

∣

∣

∣. (A.14)
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Fig. 6. The relative error between the extrapolated results and analytic results of J and Hi as

functions of r/M . The magnitude of the error should be proportional to κ−1 and the figure

shows that this is indeed the case.

It is found that this error is approximately proportional to κ−1. This fact further
validates our numerical solutions.

Appendix B

One Dimensional Special Relativistic Tests

The University of Illinois at Urbana-Champaign (UIUC) group proposed four
one-dimensional test problems of the radiation hydrodynamics in special relativity,38)

for the optically thick limit (the Eddington closure, Lµν = J hµν/3, is assumed).
They derived four semi-analytic stationary solutions for Riemann problems. Then,
they performed the following test: The derived semi-analytic solutions are boosted
by a Lorentz transformation and they confirmed that their code can reproduce the
boosted non-stationary solutions. However, by this test, one can check only the fact
that the code can reproduce a coordinate translation of given stationary solutions.

Subsequently, Zanotti et al.39) proposed a more nontrivial shock tube test in
which the stationary solutions by the UIUC group should be produced in a dynamical
simulation: They initially prepared a discontinuous initial condition and performed
simulations until the numerical data relaxes to a solution derived in Ref. 38). Hence,
we performed the test simulations in the same manner as in Ref. 39). We confirmed
that our code can accurately produce these solutions as illustrated in the following.

Table II. The chosen constants and initial data for the one-dimensional test simulations. Adiabatic

index, Γ , an artificially chosen value of ar, the value of κ0, (ρ, P, ux,J ) for x < 0 and x > 0,

respectively. ar is determined by J /(P/ρ)4 for x > 0, and then, J for x > 0 is determined by

ar(P/ρ)4.

No Γ ar κ0 (ρ, P, ux,J )x<0 (ρ, P, ux,J )x>0

1 5/3 1010/0.81 0.4 (1.0, 3.0e-5, 0.015, 1.0e-8) (2.401, 1.612e-4, 0.006247, 2.509e-7)

2 5/3 78125 0.2 (1.0, 4.0e-3, 0.25, 2.0e-5) (3.109, 0.04512, 0.0804, 3.464e-3)

3 2 107/6.48 0.3 (1.0, 60, 10.0, 2.0) (7.9963, 1.25058, 2.342e3, 1.136e3)

4 5/3 109/7.2 0.08 (1.0, 6.0e-3, 0.69, 0.18) (3.65, 0.3588, 1.89, 1.297)
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Fig. 7. Numerical results for one-dimensional test problems in special relativity (test 1: top left,

test 2: top right, test 3: bottom left, and test 4: bottom right). The solid curves and open

circles denote the semi-analytic solutions and numerical results, respectively.

In the test of Ref. 39), the stationary solution is numerically derived preparing
the initial conditions shown in Table II. In these conditions, the discontinuity at
x = 0 is present, but during the dynamical evolution, the matter and radiation fields
relax to a stationary solution after a sufficiently time duration. We performed the
simulations until the stationarity was reached; the time duration of the numerical
simulations is 5000 for the tests 1 and 2, 100 for the test 3, and 300 for the test
4. The numerical simulations were performed with the Γ -law EOS, P = (Γ − 1)ρε.
The opacity is assumed to have the form κ = κ0ρ where κ0 is a given constant.
The mean free path defined by 1/κ is rather long >∼ 0.1 in these tests, although the
Eddington closure is assumed. The temperature is simply determined by P/ρ during
the simulation.

In the tests 1 and 2, the radiation pressure is much smaller than the gas pres-
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sure. Thus, these are the tests in which one checks whether the radiation fields are
accurately evolved in an approximately fixed dynamical fluid flow with shocks. In
the tests 3 and 4, the radiation pressure is as strong as or stronger than the gas
pressure. These are regarded as the tests by which one checks whether the code can
accurately derive the system in which both the gas and radiation play an important
role.

The simulations were performed with the grid spacing ∆x = 0.03 for the com-
putational domain [−15 : 15] for the tests 1–3. For the test 4, we set ∆x = 0.02
with the computational domain [−20 : 20]. At the outer boundaries, we imposed
the boundary condition that the fluid and radiation states remain to be the initial
states which are identical with the semi-analytic solutions. The time step is set to
be 0.5∆x for all the tests.

Figure 7 plots the numerical results for all the four test simulations. The solid
curves and open circles denote the semi-analytic solutions and numerical results,
which overlap with each other and cannot be distinguished in these figures. Thus,
Fig. 7 shows that for all the four test simulations, the numerical computation sat-
isfactorily reproduces the semi-analytic solutions, as in Ref. 39). This shows an
evidence that our numerical code is reliable.

Before closing this section, we note the following fact for the test 3. In this
test, the stationary solution for the region −10 <∼ x <∼ 0 satisfies J 2 < HµHµ and
J ≪ arT

4. This implies that the solution is not physical, and moreover, the local
thermodynamical equilibrium is not satisfied although the relation Lµν = J hµν/3 is
chosen for the closure. This test is nothing but a numerical game. Thus, even if a
numerical code can produce the stationary solution in this test, it might not prove
that the code is suitable for physical simulations.
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22) M. Alcubierre, S. Brandt, B. Brügmann, D. Holz, E. Seidel, R. Takahashi and J. Thorn-
burg, Int. J. Mod. Phys. D 10 (2001), 273.
M. Shibata, Prog. Theor. Phys. 104 (2000), 325; Phys. Rev. D 67 (2003), 024033.
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