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Abstract: The formation of CaSi2 polycrystalline structures under the postgrowth electron irradiation
of epitaxial CaF2/Si(111) films with embedded thin Si layers was studied. The dependence on the
electron exposure time was investigated for two types of structures with different film thicknesses.
The optimal conditions for the formation of two-dimensional CaSi2 structures were found. Raman
spectra of the structures after a 1 min electron irradiation demonstrated only one pronounced peak
corresponding to the vibrations of Si atoms in the plane of the calcium-intercalated two-dimensional
Si layer. An increase in the exposure time resulted in the transition from two- to three-dimensional
CaSi2 structures having more complex Raman spectra with additional peaks typical of bulk CaSi2
crystals. Based on the results of microscopic studies and transport measurements, a model explaining
the observed effects was proposed.

Keywords: calcium silicide; two-dimensional layer; Raman spectroscopy; electron irradiation

1. Introduction

In recent decades, there has been increased interest in the synthesis of graphene-like
structures based on silicon. Many works have been devoted to the problem of silicene
production and its device applications (see reviews [1,2] and references therein). However,
obtaining a two-dimensional material that contains a single silicon layer remains an un-
solved problem. The monolayer silicene is expected to have unique properties, such as
tunable band gaps [3], a quantum spin Hall effect [4], high-temperature superconductiv-
ity [5] and giant magnetoresistance [6]. Despite great progress having been achieved in
the epitaxial synthesis of silicene [7,8], its poor air stability makes its device application
difficult [9]. Recently, Yaokawa et al. [10] reported the formation of bilayer silicene (BLSi)
by treating calcium-intercalated monolayer silicene (CaSi2) with a BF4-based ionic liquid.
The bilayer silicenes were sandwiched between planar crystals of CaF2 and/or CaSi2. The
authors [10] predicted that BLSi would be more stable in air than monolayer silicene, be-
cause it has a low density of dangling bonds. We believe that the CaF2–CaSi2 system is a
very prospective basis for future device applications; thus, we focus on CaSi2, an attractive
precursor of BLSi. Recently, it was found that calcium-intercalated silicon atomic layers
in CaSi2 exhibit electronic properties typical of graphene-like materials [11]. Many scien-
tific groups are currently involved in the research of calcium silicides [12–21]. A variety
of methods has been proposed to produce calcium silicides with different compositions
that exhibit semimetallic or semiconducting properties. However, the two-dimensional
structures based on calcium silicides have not been obtained. There have been attempts to
grow two-dimensional silicon layers on CaF2 using the molecular beam epitaxy method,
but up to now, there has been no significant success in this direction. As a rule, in the
case of conventional silicon deposition on CaF2, three-dimensional nuclei are formed due
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to a poor wettability of the silicon on this fluoride [22,23], preventing a two-dimensional
layer growth.

Earlier, we proposed a method for CaSi2 synthesis using electron beam irradiation
during the growth of CaF2 layers with molecular beam epitaxy (MBE) [19,24,25]. It was
assumed that the formation of CaSi2 occurs through the stimulated decomposition of CaF2
into Ca and F [26]. Fluorine is desorbed from the surface, and remaining calcium atoms
bind chemically with silicon atoms, which come from the Si substrate at sufficiently high
temperatures (>300 ◦C) under electron irradiation [24]. Calcium silicide produced in this
way is a nonhomogeneous three-dimensional material representing a triangular network of
elongated crystallites protruding from the surface of the CaF2 film by tens of nanometers.
These crystallites are oriented along directions {1–10} and have a characteristic length of
~1 µm. We recently found a way to produce more homogeneous CaSi2 films [27]. The idea
is to introduce additional intermediate silicon layers into the growing CaF2 film. In this case,
the CaSi2 film growth under simultaneous e-beam irradiation occurs in a layer-by-layer
mode. Another opportunity to increase the CaSi2 film homogeneity is postgrowth electron
irradiation after CaF2 deposition [25].

In the present paper, we used both of these approaches to obtain a two-dimensional
material based on calcium silicide. The electron beam was used to irradiate the surface
of an already grown CaF2 film with embedded thin Si layers. By adjusting the time of
electronic exposure, the CaF2 film thickness and the temperature of the substrate, it was
possible to tune the properties of the material synthesized under an electron beam and
obtain two-dimensional CaSi2 regions.

2. Materials and Methods

The experiments were conducted in the “Katun-100” MBE unit equipped with a
CaF2 effusion source with a graphite crucible under ultrahigh vacuum conditions. The
structures were synthesized on Si (111) substrates with a 100 mm diameter. Before the
growth, the silicon substrates underwent a double surface cleaning. After a standard
chemical treatment, the protective silicon oxide layer was formed. This protective layer
was removed in the MBE chamber at 720 ◦C in a weak Si flux until the appearance of a
7 × 7 superstructure fixed with reflection high-energy electron diffraction (RHEED), after
which a 50 nm thick buffer Si layer was grown at a temperature of 550 ◦C.

The epitaxial CaF2 film growth was carried out at a deposition rate of ~2 nm/min at
a substrate temperature of 550 ◦C. During the growth, the selected area of the CaF2 film
was controlled with RHEED using the following electron beam parameters: an acceleration
voltage of 20 keV and a current density of 50 µA/m2. The beam incidence angle was 4◦.
Two structures of different CaF2 film thicknesses (29 nm and 53 nm) with incorporated Si
layers were grown at a temperature of 550 ◦C (Figure 1). The first structure contained 9 Si
layers with a thickness of 0.3 nm (~1 BL of silicon), separated by 2 nm thick CaF2 interlayers.
Si layers were grown on a 10 nm thick CaF2 film. The last Si layer was covered with a
3 nm thick CaF2 layer. The rate of Si deposition was ~0.6 nm/min. The second structure
contained 1 BL Si layer grown on a 50 nm thick CaF2 film and covered with a 3 nm CaF2
layer. Just after the growth, the already-formed films were exposed to electron irradiation
produced with an electron beam used for RHEED under ultrahigh vacuum conditions.
The electron exposure times were 1, 2, 4 and 10 min, and each time, the electron beam
was moved to a new place on the substrate. The substrate temperature during electron
irradiation was kept at 550 ◦C. As a result, the electron-beam-modified areas were formed
on the surface of the grown film. These areas were strips with a metallic luster with a length
of 3–4 cm and a width of 2 mm. One of the strips was obtained during the control of the
film growth with RHEED, and was used later for testing the Raman measurements. The
strips were investigated with energy-dispersive X-ray spectroscopy (EDX), atomic force
microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy. The
thickness of the grown films was controlled with ellipsometry [28]. The conductivity and
magnetoresistance were measured on the strips as functions of the electron irradiation
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time. Contacts for transport measurements were created through the soldering of silver
wires using indium solder. The magnetoresistance and temperature dependences of the
conductivity were measured using an SR850 synchronous amplifier in a transport helium
Dewar vessel in a magnetic field up to 4 T.

Nanomaterials 2022, 12, x FOR PEER REVIEW 3 of 11 
 

 

measurements. The strips were investigated with energy-dispersive X-ray spectroscopy 
(EDX), atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman 
spectroscopy. The thickness of the grown films was controlled with ellipsometry [28]. 
The conductivity and magnetoresistance were measured on the strips as functions of the 
electron irradiation time. Contacts for transport measurements were created through the 
soldering of silver wires using indium solder. The magnetoresistance and temperature 
dependences of the conductivity were measured using an SR850 synchronous amplifier 
in a transport helium Dewar vessel in a magnetic field up to 4 T. 

 
Figure 1. A schematic representation of two structures under study. 

3. Results and Discussion 
As a result of studies with SEM (Figure 2) and EDX (Figure 3), it was found that at 

short electron beam exposure times (1–2 min) on the CaF2 surface, individual micro-
structures were formed. The size and shape of the obtained structures depended on the 
thickness of the epitaxial CaF2 films. According to RHEED measurements, these struc-
tures were polycrystalline. The RHEED images obtained in analogous experimental 
conditions were presented in [25]. 

In the case of a 29 nm thick film, the small structures resembling rounded spots with 
a characteristic size of ~1 μm formed on the surface (see left panels in Figures 2 and 3). 
For a 53 nm thick film, larger snowflake-like structures formed several times (see right 
panels in Figures 2 and 3). The density of the polycrystalline structures on the surface of a 
29 nm thick film was a few times higher than that for a 53 nm thick film. In both cases 
with increasing irradiation times (see from top to bottom panels in Figures 2 and 3), the 
area occupied by these structures increased. At a 10 min exposure time, for a 53 nm thick 
film, they overlapped, forming almost a continuous layer (Figure 2f). Combining the re-
sults of the EDX and Raman studies (see below), one could conclude that the resulting 
polycrystalline structures contained Ca and Si. 

An analysis of the SEM data revealed another interesting feature of the 53 nm thick 
film. There was a network of characteristic cracks present on their surface (Figure 2, right 
panels). They extended from the ray of one snowflake to the ray of another snowflake 
along the characteristic directions {1–10}, occasionally changing direction to another one. 
Most likely, they were the result of the plastic relaxation of the film. The longer the time 
of electronic exposure, the greater the density of these cracks. On the surface of the film 
with a smaller thickness of 29 nm, such cracks were practically absent. Two reasons could 
be responsible for the crack formation: the strain in the film due to a difference in the 
CaSi2 and CaF2 lattice constants and the overpressure of free fluorine produced in the 
film volume during electron irradiation. The longer the time of electron exposure, the 
larger the CaSi2 structures incorporated in the CaF2 film. Figure 2d demonstrates the 
surface of a 53 nm thick sample after a 4 min electron irradiation. In this case, the CaSi2 
structures became three-dimensional objects embedded in CaF2 film. They squeezed CaF2 

Figure 1. A schematic representation of two structures under study.

3. Results and Discussion

As a result of studies with SEM (Figure 2) and EDX (Figure 3), it was found that at short
electron beam exposure times (1–2 min) on the CaF2 surface, individual microstructures
were formed. The size and shape of the obtained structures depended on the thickness
of the epitaxial CaF2 films. According to RHEED measurements, these structures were
polycrystalline. The RHEED images obtained in analogous experimental conditions were
presented in [25].

In the case of a 29 nm thick film, the small structures resembling rounded spots with
a characteristic size of ~1 µm formed on the surface (see left panels in Figures 2 and 3).
For a 53 nm thick film, larger snowflake-like structures formed several times (see right
panels in Figures 2 and 3). The density of the polycrystalline structures on the surface
of a 29 nm thick film was a few times higher than that for a 53 nm thick film. In both
cases with increasing irradiation times (see from top to bottom panels in Figures 2 and 3),
the area occupied by these structures increased. At a 10 min exposure time, for a 53 nm
thick film, they overlapped, forming almost a continuous layer (Figure 2f). Combining the
results of the EDX and Raman studies (see below), one could conclude that the resulting
polycrystalline structures contained Ca and Si.

An analysis of the SEM data revealed another interesting feature of the 53 nm thick
film. There was a network of characteristic cracks present on their surface (Figure 2, right
panels). They extended from the ray of one snowflake to the ray of another snowflake
along the characteristic directions {1–10}, occasionally changing direction to another one.
Most likely, they were the result of the plastic relaxation of the film. The longer the time
of electronic exposure, the greater the density of these cracks. On the surface of the film
with a smaller thickness of 29 nm, such cracks were practically absent. Two reasons could
be responsible for the crack formation: the strain in the film due to a difference in the
CaSi2 and CaF2 lattice constants and the overpressure of free fluorine produced in the film
volume during electron irradiation. The longer the time of electron exposure, the larger
the CaSi2 structures incorporated in the CaF2 film. Figure 2d demonstrates the surface of
a 53 nm thick sample after a 4 min electron irradiation. In this case, the CaSi2 structures
became three-dimensional objects embedded in CaF2 film. They squeezed CaF2 between
them and caused the appearance of cracks. The amount of free fluorine stored in the film
also increased with exposure time, which could have also led to the film cracking.
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Figure 2. SEM data obtained for structures with different thicknesses. Left column—29 nm thick
film; right column—53 nm thick film. Panels (a,b) correspond to a 2 min exposure time. Panels
(c,d) correspond to a 4 min exposure time. Panels (e,f) correspond to a 10 min exposure time.

The AFM study helped us to understand how snowflakes formed. Figure 4 shows
the morphology of the surface after a 1 min electron irradiation for both structures. We
could see that craters formed on the film’s surface. The shape and size of the craters were
different and consistent with the SEM results. For the first structure, the depth of the crater
was close to the thickness of the epitaxial film. The crater walls were formed with broken
pieces of the epitaxial film. The total height of the walls from the bottom of the crater was,
on average, 130 nm. For the second structure, the craters were flatter, and their depth
was approximately two times smaller than the film’s thickness. Such a picture suggested
the following interpretation: CaF2 decomposed into calcium and fluorine in the whole
volume of the film, since the electron beam at the used energies penetrated the entire depth
of the film. Interstitial fluorine atoms could move rapidly along the anion close-packed
direction via a replacement sequence [29,30]. Parts of the fluorine atoms came to the surface
and were desorbed [31,32]. Fluorine vacancies surrounded by Ca (F centers) diffused to
the surface [33,34] and could meet on their way the embedded Si layers. Ca atoms could
bind to the Si atoms, and two-dimensional CaSi2 islands (or sections of two-dimensional
CaSi2 layers) could form. The remaining parts of the fluorine atoms collected in certain
places near the defects, which could be twin boundaries or stacking faults in the CaF2 film.
The highest defect density was observed at the CaF2/Si heterointerface, so parts of the
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fluorine atoms accumulated near the bottom of the film, forming fluorine bubbles (see the
detailed study of bubble formation in Ref. [31]). When the critical overpressure was reached,
there was an explosion and the formation of a crater. In the following stages, due to the
diffusion and electron irradiation, the crater walls flattened, and the material of the walls
was distributed around the crater. The crater itself could be filled with some material such
as a calcium-silicon compound (see EDX data, Figure 3). As long as the crater was not filled,
intense silicon diffusion from the substrate could occur along the crater walls. All this led
to the formation of structures resembling snowflakes, which can be seen in Figures 2 and 3.
The difference in the size and density of calcium silicide structures observed for samples
with different thicknesses could be explained by the different amounts of fluorine produced
in the volume of CaF2 films. The amount of fluorine per “nucleation” center, where calcium
silicide structures were formed, was several times greater for a 53 nm thick film, so the
explosions occurred at an earlier stage, leading to a larger size of calcium silicide crystallites.
The density of explosions was lower for the thicker film, because only the larger fluorine
bubbles burst through.
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Figure 3. (a)—Energy-dispersive X-ray spectroscopy data obtained for the structures with different
thicknesses of epitaxial films. Left column—29 nm thick film; right column—53 nm thick film. Panels
(a,b) correspond to a 2 min exposure time. Panels (c,d) (correspond to a 4 min exposure time.

According to the Raman data, a narrow intensive peak at ≈ 419 cm−1 (Figure 5,
left panel, spectrum six) was observed for a 29 nm thick film at the minimum irradia-
tion time (1 min). This peak corresponded to vibrations of Si atoms in the plane of the
calcium-intercalated two-dimensional Si layer [35] that supported the assumption about the
formation of the CaSi2 two-dimensional layer (or its regions). With an increasing irradiation
time, the intensity of this peak decreased, and its position slightly shifted to the lower
frequencies. At a 10 min irradiation, the peak intensity fell by a factor of three, and the
peak position was ≈ 417.5 cm−1 (Figure 5, left panel, spectrum three). At the same time, an
additional peak appeared at ≈ 386 cm−1.
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Figure 5. Raman spectra obtained for structures with different thicknesses of epitaxial films; left panel:
29 nm; right panel: 53 nm. Spectrum (1) corresponds to a Si(111) substrate, spectrum (2) corresponds
to a film grown with simultaneous electron irradiation during deposition of CaF2. Other spectra
correspond to regions of the films formed with postgrowth electron irradiation with different electron
exposure times: (3) 10 min; (4) 4 min; (5) 2 min; (6) 1 min.

An analogous peak with the same position was observed in the Raman spectrum from
the CaSi2 film obtained with electron beam irradiation during the growth of CaF2 layers
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(Figure 5, left panel, spectrum two). This peak corresponded to the vibrations of Si atoms
in the direction perpendicular to the plane of a two-dimensional calcium-intercalated Si
layer [35]. These changes indicated the appearance of three-dimensional CaSi2 structures
in the studied films at sufficiently long irradiation times. For a 53 nm thick film, a peak
corresponding to vibrations of Si atoms in the direction perpendicular to the plane of
the two-dimensional calcium-intercalated Si layer was already observed in the Raman
spectrum of the sample with a 2 min electron irradiation (Figure 5, right panel, spectrum
five). The peak amplitude increased with the increasing irradiation time, indicating the
appearance of three-dimensional structures at earlier stages of irradiation as compared to a
29 nm thick film.

The conductance measurements of the films under study (Figure 6) were in good
agreement with the SEM and EDX data. The conductance increased with the electron
exposure time, with the temperature dependence of the conductivity changing from the
semiconductor to the metal one. For the same electron irradiation time, the conductance
of the thicker sample was always larger than that of the thinner one. Correspondingly, a
53 nm thick sample already exhibited a metallic behavior after a 4-min irradiation, while a
29 nm thick sample behaved like a semiconductor at this irradiation time.
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To understand how the conductivity of the samples with short times of electron
irradiation (2 min for a 53 nm thick film and 4 min for a 29 nm thick film) was realized, we
needed to take into account that the samples were nonuniform—most likely, they contained
metallic clusters of different sizes and densities. As can be seen from the SEM and EDX
data (Figures 2 and 3), the distance between visible CaSi2 crystallites at a short irradiation
time was quite large for a measurable conductivity. Moreover, as-grown CaF2 film without
electron irradiation behaved like an insulator; thus, to explain the observed experimental
data, one had to assume that small clusters, not distinguishable with SEM and EDX, were
formed between large CaSi2 crystallites. This assumption is supported by a number of
works [32,36] showing that electron irradiation causes the near-surface region of CaF2 to
become conductive. The results [33] demonstrated that electron irradiation stimulates
the formation of F centers, the diffusion of which to the surface leads to its enrichment
with calcium. In the near-surface region, metallic colloidal pieces were formed, which
provided conductivity. Similar results were obtained after the ultraviolet irradiation of
CaF2 film on Si(111) [37]. We supposed that, in our samples with short irradiation times, the
conductivity between large CaSi2 crystallites was carried out through transitions between
these small metallic clusters. This feature seemed to determine the conductivity behavior
with decreasing temperatures in these samples (Figure 6). With an increasing irradiation
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time, the size and number of CaSi2 crystallites increased, leading to their convergence and
overlapping, respectively; film conductivity increased too, going to a metallic one.

Figure 7 demonstrates the magnetoresistance (MR) of the 53 nm thick samples after 4
and 10 min of electron irradiation and the MR of the 29 nm thick sample after 10 min of
electron irradiation. One could see that the behavior of MR was qualitatively similar for
these samples. In low magnetic fields, we observed a negative MR that crossed over to a
positive one as magnetic field B increased. The transition from the negative to the positive
MR depended on the sample thickness and the electron irradiation time. The greater the
conductivity of the sample, the faster the change in the MR sign. For the less conductive
samples (29 nm thick samples), this took place in the stronger fields. A negative MR is
usually associated with the suppression of weak localization in the magnetic field [38]. A
positive MR in metallic samples is due to the Lorentz deflection of carriers [39].
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Figure 7. Magnetoresistance of films formed with postgrowth electron irradiation with different times
of electron exposure. Curves 1 and 2 are related to the film with a thickness of 53 nm after electron
irradiation for 10 min and 4 min, respectively. Curve 3 corresponds to the film with a thickness of
29 nm after electron irradiation for 10 min.

According to the Kohler rule [40], in this case, R(B)/R(B = 0) ∼ 1 + (µB)2. From the
slope of R/R0(B2) dependence (inset to Figure 7), we could estimate the carrier mobility µ.
For a 53 nm thick film, µ was found to be ~560 cm2 V−1 s−1 for the sample with a 10 min
electron irradiation and ~380 cm2 V−1 s−1 for the sample with a 4 min electron irradiation,
correspondingly. For a 29 nm thick sample irradiated for 10 min, µ~ 165 cm2 V−1 s−1.

The obtained results allowed us to reconstruct the scheme of the CaSi2 formation
under the electron irradiation of already-grown CaF2 films. The electron irradiation led
to a strong excitation of the film atomic system. The bonds between calcium and fluorine
atoms broke. One part of the fluorine atoms reached the surface and were desorbed. The
other part accumulated near defects and then escaped from the film during the explosions.
Fluorine vacancies surrounded by Ca (F centers) diffused to the surface [33] and could
meet on their way the embedded Si layers. At this stage calcium atoms, bound with silicon
atoms from these layers and formed the two-dimensional CaSi2 regions. In the next stages,
after the explosions, the number of Si atoms increased due to diffusion from the substrate
along the crater walls, and the three-dimensional CaSi2 crystallites began to form. With
an increasing irradiation time, the surface density of polycrystalline structures became
larger, and their size increased, finally resulting in the formation of a continuous metallic
conducting layer.

4. Conclusions

The obtained results demonstrated that the postgrowth electron irradiation of CaF2
films with embedded thin Si layers could be used to produce CaSi2 structures, including



Nanomaterials 2022, 12, 3623 9 of 10

two-dimensional ones. By adjusting the energy of electrons, the time of electron exposure,
the thickness of the CaF2 film and the temperature of the substrate, it was possible to
find the optimal conditions for the formation of two-dimensional CaSi2 structures under
electron beam irradiation. The key point was to prevent the formation of fluorine bubbles,
which provided the appearance of three-dimensional CaSi2 structures.
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