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Maybee, and O’Connell (KMOC). We focus on the gravitational impulse with radiation

reaction and the radiated momentum in black hole scattering at O(G3) to all orders in

the velocity. These classical observables require the construction and evaluation of certain

loop-level quantities which are greatly simplified by harnessing recent advances from scat-

tering amplitudes and collider physics. In particular, we make use of generalized unitarity

to construct the relevant loop integrands, employ reverse unitarity, the method of regions,

integration-by-parts (IBP), and (canonical) differential equations to simplify and evaluate

all loop and phase-space integrals to obtain the classical gravitational observables of in-

terest to two-loop order. The KMOC formalism naturally incorporates radiation effects

which enables us to explore these classical quantities beyond the conservative two-body

dynamics. From the impulse and the radiated momentum, we extract the scattering angle

and the radiated energy. Finally, we discuss universality of the impulse in the high-energy

limit and the relation to the eikonal phase.
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1 Introduction

The increasing experimental success of current gravitational wave astronomy [1, 2] com-

bined with the design specifications of future detectors [3–5] require theoretical predictions

for the classical general relativistic two-body problem to keep up with the experimental

accuracy [6].

An important tool for the generation of waveform templates, used for detection and

parameter estimation, are fast and reliable semi-analytic models of the binary merger.

Prominent examples of are the ones provided by the effective one-body (EOB) formal-

ism [7], which take as input numerical simulations combined with analytic results of the

late ringdown and early inspiralling phase of the merger. In the latter phase, the two

bodies are still widely separated and in a weak-field, slow motion regime — amenable to

perturbation theory. Traditionally, this phase is analyzed in the Post-Newtonian (PN) ap-

proximation, which is an expansion both in Newton’s constant, G, as well as the relative

velocity v of the constituents. Both are linked by the virial theorem for a bound system.

Besides the gravitational inspiral, one can also consider scattering (or hyperbolic)

events in which compact objects fly past one another while interacting gravitationally.

In such events, the deflection of the objects’ trajectories is accompanied by the emission

of gravitational radiation (dubbed gravitational Bremsstrahlung in analogy to the elec-

tromagnetic case). Even though hyperbolic motion events currently appear to be out of

experimental reach [8, 9], it has been suggested [10] that scattering observables, nonethe-

less, can be used as input to determine parameters in EOB models which are subsequently

applied to the bound state problem. Furthermore, in certain favorable circumstances, it

is even possible to directly link bound and unbound observables via analytic continua-

tion [11–13]. For scattering kinematics, as opposed to virialized bound state systems, the

velocity and G are not necessarily linked expansion parameters and it is therefore possible

to explore perturbation theory in G only, to all orders in v, the so-called Post-Minkowskian

(PM) expansion. The leading order waveform in this regime has been constructed in papers

by Peters, Kovacs, Thorne, and Crowley in the 1970s [14–18], and was recently revisited

in refs. [19–24].

From the previous comments, it should come as no surprise that the classical gravita-

tional two-body problem has attracted a renewed broad interest ranging from the classical

general relativity community to effective field theorists and scattering amplitude practi-

tioners. In our work, we focus on scattering amplitude tools to study classical black hole
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interactions in hyperbolic orbits. Recent years have seen a number of applications of on-

shell techniques, pioneered in Quantum Field Theory, to the classical general relativistic

two-body problem. Notable examples include generalized unitarity [25–27], the double

copy [28–33], and effective field theory ideas [34–36] that have produced new results for

the dynamics of spinless [10, 36–51] and spinning [52–67] black holes, including finite-size

effects [68–76]. Relativistic covariance, innate to these scattering amplitude techniques,

allows for the extraction of results to all orders in velocity, i.e. the Post-Minkowskian

expansion. Most of the initial applications of scattering amplitudes tools in the classi-

cal gravitational context involved auxiliary quantities and one derives either the eikonal

phase [77–81] or a conservative Hamiltonian [36, 82] via an EFT matching procedure [36].

In a beautiful paper, Kosower, Maybee, and O’Connell (KMOC) [83] pointed out how

to directly relate classical observables to scattering amplitudes using a version of the in-in

formalism. In their original work (and in its extension to spinning objects [84]) the for-

malism was verified at leading order (LO) and next-to-leading order (NLO) by comparing

their formulae for the electromagnetic impulse to expressions obtained by solving classical

equations of motion. Beyond leading order, however, these checks were performed at the

level of unintegrated expressions, and the full evaluation of the corresponding loop and

phase-space integrals was left as a problem for the future. Naively, the solution to this

problem poses considerable technical challenges. In our previous letter [85], we have em-

phasized the similarities between the KMOC setup and cross-section calculations in tradi-

tional particle-physics settings. We also emphasized how collider physics ideas, like reverse

unitarity [86–89], integration-by-parts reduction [90, 91], and (canonical) differential equa-

tions [92–96] are ideally suited to render the KMOC formalism a practical computational

tool to derive state-of-the-art results for the relativistic two-body dynamics. As an example

we computed the radiated momentum in a binary black hole encounter [85].

It is the aim of this work to elaborate on the technical details of our recent letter, and

to obtain additional gravitational observables. More concretely, we calculate the O(G3)

gravitational impulse, i.e. the momentum change between the initial and final state of one

of the scattering black holes. This verifies the classical calculations of Portilla [97, 98] and

Westpfahl [99, 100] done several decades ago, and extends them to one higher order using

very different methods. From the impulse, it is possible to extract the radiative scattering

angle at O(G3). Inspired by a computation in maximal supergravity [101], the radiative

GR angle has been obtained earlier by Damour [102] from a linear response computation

and was later confirmed (subject to certain assumptions) by DiVecchia et al. [103], using

eikonal methods. This scattering angle, which includes radiation reaction corrections, also

cleared up some of the confusions arising in the high-energy limit of the conservative result

of refs. [41, 43].

Since the technical bottleneck involves the evaluation of loop integrals, we give a de-

tailed account of the computation of all relevant master integrals that appear in the KMOC

setup at O(G3), i.e. at two loops. As will be reviewed in the main text, the KMOC formal-

ism includes both virtual loop amplitudes as well as phase-space integrals over products

of lower order amplitudes. Since we are interested in classical physics, these amplitudes

are expanded in the ~ → 0 limit, which is equivalent to the soft region in the language of

– 2 –
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expansion by regions [104]. We therefore lay out how to expand, reduce, and evaluate all

relevant two-loop soft integrals via differential equations that were previously adapted to

the Post-Minkowskian expansion in classical gravity [81]. One of the key advantages of the

KMOC formalism, together with the integration tools described here, is that we can treat

inclusive observables such as the total radiated momentum or the impulse, that only de-

pend on a small number of kinematic scales in an efficient and streamlined fashion without

having to go through the multi-scale gravitational waveform where subsequent integrations

are technically challenging.

The remainder of this work is organized as follows. In section 2, we briefly recall some

of the features of the KMOC formalism and summarize how to represent the gravitational

impulse (subsection 2.1) as well as the radiated momentum (subsection 2.2) in terms of

scattering amplitudes and their unitarity cuts. In section 3, we give a broad review of

the methods that have already been successfully applied to the conservative two-body

dynamics. We discuss the scattering kinematics, the relevant classical regions together with

a brief reminder of generalized unitarity that allows us to efficiently derive the relevant loop

integrands. Starting from these integrands, we recall the classical expansion (i.e. the soft

expansion in the method of regions [104]) in subsection 3.3, before reducing all integrals

to a set of independent masters with the help of integration-by-parts relations. In order to

obtain analytic expressions for the resulting master integrals, we also review the differential

equations of ref. [81]. Section 4 comments on the novelties of the soft region and introduces

reverse unitarity in subsection 4.3 to treat phase-space integrals (involving on-shell delta

functions) on the same footing as virtual ones. Section 5 is devoted to the evaluation of

the virtual and cut master integrals in the soft region. Evaluation of these integrals require

the knowledge of differential equations and their boundary conditions at certain convenient

kinematic points. We furthermore discuss the analytic continuation of these solutions to

the relevant physical scattering regions. Next, we comment on several general properties

of the KMOC observables and simplified properties in terms of scattering amplitudes in

section 6. In section 7 we present the final results for the gravitational impulse in N = 8

supergravity and general relativity and we investigate universality in the high-energy limit

and the relation to the eikonal calculation in refs. [103, 105]. We close with our conclusions

and an outlook to future directions. Appendices A, B, C, and D respectively include

details on relevant Fourier transformation identities, the relation between the impulse and

the scattering angle, unitarity relations and cutting rules to determine certain phase-space

integrals from the imaginary part of virtual diagrams, as well as our conventions for the

soft master integrals. The results of all soft master integrals, as well as our conventions are

attached to this arXiv submission as computer readable files.

Note added. In the course of this work, we learned from an independent computation

of several of the two-loop soft master integrals by Di Vecchia, Heissenberg, Russo, and

Veneziano [105] in the context of the eikonal approach to classical gravitational scattering.

We are grateful for discussions and comparisons as well as for coordinating publication.
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2 Gravitational observables via the KMOC formalism

To begin, let us briefly review the key features of the KMOC formalism. For a detailed

discussion, the reader is referred to the original article [83]. The basic idea of KMOC is

to set up a thought experiment for the scattering of two wavepackets evolving from the

asymptotic past to the asymptotic future and to measure the change of some observable,

∆O. In the asymptotic past, the wavepackets are represented by |in〉, an in quantum state

constructed from two-particle momentum eigenstates |p1, p2〉in with wavefunctions φi(pi),

which are well separated by an impact parameter bµ

|in〉 =

∫
dΦ2(p1, p2) φ1(p1)φ2(p2)ei b·p1/~ |p1, p2〉in . (2.1)

From now on we will drop the in subscript in the momentum eigenstates and leave it

implicit. For convenience, we have introduced the Lorentz-invariant multi-particle on-shell

phase-space measure1

dΦn(p1, · · ·, pn) =
∏

i

dΦ1(pi) with dΦ1(pi) = d̂Dpi Θ(±p0
i ) δ̂(p2

i −m2
i ) . (2.2)

We work in an all-outgoing convention for the momenta pi, in which physical incoming

(outgoing) states have negative (positive) energy components. The sign in the Heavyside

function, Θ, is chosen accordingly.

The incoming state |in〉 will evolve to an out state in the asymptotic future, |out〉,
which might contain additional particles produced during the interaction. The change in

an observable, O, can be simply obtained by evaluating the difference of the expectation

value of the corresponding Hermitean operator, O, between in and out states

∆O = 〈out|O|out〉 − 〈in|O|in〉 . (2.3)

In quantum mechanics, the out states are related to the in states by the time evolution

operator, i.e. the S-matrix: |out〉 = S|in〉 and we can write

∆O = i

∫
dΦ4(p1, · · ·, p4) φ1(p1)φ2(p2)φ2(p3)∗φ1(p4)∗δ̂(D)(

∑
i pi)e

i b·(p1+p4)/~ IO . (2.4)

The stripped kernel IO is related to the matrix elements via

ĨO = δ̂(D)(
∑

i pi) IO = −i 〈p4, p3|S†[O, S]|p1, p2〉 , (2.5)

where, to arrive at this expression, we have used the unitarity of the S-matrix, S†S = 1.

Following [83], ĨO can be related to scattering amplitudes by writing S = 1 + iT such that

ĨO = ĨO, v + ĨO, r = 〈p4, p3|[O, T ]|p1, p2〉 − i 〈p4, p3|T †[O, T ]|p1, p2〉 , (2.6)

which we conveniently separate into two contributions ĨO,v and ĨO, r, preemptively called

virtual and real, respectively. The reason for this nomenclature becomes apparent when

1Following [83], we introduce the notation d̂x ≡ dx/(2π) and δ̂(x) ≡ (2π)δ(x).
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one evaluates the expectation values. For the virtual part the result is simply

IO, v = ∆O
[M(p1, p2, p3, p4)

]
= ∆O M

p1

p2 p3

p4

, (2.7)

where ∆O is a measurement function acting on the scattering amplitude, M, defined as

〈p4, p3|T |p1, p2〉 = δ̂(D)(∑
i pi
)M(p1, p2, p3, p4) . (2.8)

On the other hand, to evaluate the real contribution, IO, r, we insert a complete set of

states

〈p4,p3|T †[O, T ]|p1,p2〉=
∑

X

∫
dΦ2+|X|(r1,r2,X) 〈p4,p3|T †|r1,r2,X〉〈r1,r2,X|[O, T ]|p1,p2〉 ,(2.9)

which includes a sum over an arbitrary (possibly empty) set of intermediate “messenger”

particles, X. Here dΦ2+|X|(r1, r2, X) is the multiparticle on-shell phase-space measure of

the massive scalars with momenta r1 and r2 together with the massless messengers in the

set X. The real kernel turns into

IO, r = −i
∑

X

∫
dΦ2+|X|(r1, r2, X) δ̂(D)(p1 + p2 + r1 + r2 + ℓX)

×∆O
[M(p1, p2, r2, r1, X)

]M∗(−X,−r1,−r2, p3, p4)

= −i
∑

X

∫
dΦ̃2+|X| ∆O M M∗

p1

p2 p3

p4

ℓX

r2

r1

, (2.10)

and the measuring function ∆O only acts on the amplitude on the left of the unitarity

cut which was introduced by the intermediate sum over states. Henceforth, we will use

the abbreviated graphical notation in the last line of eq. (2.10), in which the phase space

integral with measure dΦ̃2+X is understood to be computed over the legs crossing the

dashed blue line, and includes the momentum-conserving delta function. We remind the

reader that we work in an all-outgoing convention for the particle momenta and note that

all momenta crossing the cut flow from the left to the right in eq. (2.10) and the following.

While this formalism can be applied fully quantum mechanically, in this work we are

interested in classical observables. This corresponds to the regime where the Compton

wavelength of the external particles is the smallest length scale in the problem. Tracking

the KMOC argument carefully, this feature implies that most computations boil down to

simple plane-wave calculations in the classical limit. Once the dust settles, in the classical

limit, the wavepackets sharply peak about their classical values of the momenta which leads

to the appearance of on-shell delta functions and one arrives at a compact expression for

– 5 –
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the classical change of the observable O in terms of the impact parameter bµ, conjugate to

the small momentum transfer qµ = pµ
1 + pµ

4 ∼ O(~),2

∆O = i

∫
d̂Dq δ̂(−2p1 · q) δ̂(2p2 · q)eib·q (IO,v + IO,r) . (2.11)

The KMOC analysis suggests that we ought to focus on kinematic regions where the

massive particle momenta pi are large and scale like O(1) in the classical counting and

the four-momentum transfer q, as well as graviton loop variables that we will denote by ℓi

below, scale like O(~). In the effective field theory context, employing terminology from the

“method of regions” [104], the classical ~ expansion is therefore equivalent to the so-called

soft expansion.

Furthermore, we will also expand scattering amplitudes in G

M =M(0) +M(1) +M(2) + · · · = + + + · · · , (2.12)

where the L-loop amplitude is O(GL+1). The impulse (kernels) have analogous expansions

∆pµ
1 = ∆p

µ,(0)
1 + ∆p

µ,(1)
1 + ∆p

µ,(2)
1 + · · · , (2.13)

Iµ
p1

= Iµ,(0)
p1

+ Iµ,(1)
p1

+ Iµ,(2)
p1

+ · · · , (2.14)

which we are going to describe in detail in section 6. However, it is already clear from the

current statements that loop amplitudes and their unitarity cuts are essential ingredients.

2.1 Gravitational impulse

In this work, we discuss two observables relevant to classical gravitational scattering. The

first is the gravitational impulse, ∆pµ
i , which is defined as the total change in momentum

of one of the particles during the collision. In the KMOC setup this is encoded by the

appropriate quantum momentum operator Pi, which is measured asymptotically far from

the collision region as follows

∆pµ
1 = 〈in|S†

P
µ
1 S|in〉 − 〈in|Pµ

1 |in〉 . (2.15)

As summarized above, in the classical limit, this is simply a Fourier transform of the

impulse kernel Iµ
p1

from momentum transfer q to impact parameter space b

∆pµ
1 = i

∫
d̂Dq δ̂(−2p1 · q) δ̂(2p2 · q) eib·q Iµ

p1
, (2.16)

2We drop an O(q2) quantum piece in the argument of the delta functions δ̂(x) and furthermore do not

explicitly write the positive energy theta functions Θ(−p0
1 + q0) Θ(−p0

2 − q0) which can be set to 1 in the

classical limit. The quantum terms originated from parametrizing the final state momenta as p4 = −p1 + q

and p3 = −p2 − q. We note that we compute all kernels in terms of fully on-shell objects in terms of

specialized variables introduced in section 3.3. From here on out, we work in natural units ~ = 1, but the

~ counting can be restored from the q-expansion.

– 6 –
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which is separated into virtual and real contributions, given in terms of the amplitude as

Ip1, v = qµ M

p1

p2 p3

p4

, Ip1, r = −i
∑

X

∫
dΦ̃2+|X| ℓµ

1
M M∗

p1

p2 p3

p4

ℓX

ℓ2 − p2

ℓ1 − p1

, (2.17)

where the numerator insertions qµ and ℓ1 arise from the measurement function ∆P
µ
1 acting

on the respective amplitudes, which extracts the momentum change of the particle 1 line.

Note that relative to eq. (2.10), we have changed variables in the real contribution by

shifting the massive intermediate momenta ri = −pi + ℓi, so that all ℓi are small, O(~), in

the classical expansion. The impulse on particle 2 can be obtained by simple relabelling.

2.2 Radiated momentum

Another observable of interest is the total radiated momentum ∆Rµ (which has been first

computed in ref. [85]) carried away in the form of gravitational waves during the scattering

of two black holes. This observable is defined by measuring the momentum operator R
µ

of the emitted messenger particles. As explained in ref. [83], this observable only receives

real contributions and its kernel is given by unitarity cuts

Iµ
R,r = −i

∑

X

∫
dΦ̃2+X ℓµ

X
M M∗

p1

p2 p3

p4

ℓX

ℓ2 − p2

ℓ1 − p1

(2.18)

Like eqs. (2.16) and (2.17), eq. (2.18) is valid beyond perturbation theory. However, in

the following, we will expand the radiated momentum perturbatively in G. The first

contribution to ∆Rµ (obtained from eq. (2.18) by performing the Fourier transform to

impact parameter space (2.11)) arises at O(G3). This can be understood from the fact

that Bremsstrahlung of finite energy gravitons can only occur once one black holes is

slightly deflected due to its gravitational interaction with the other massive object.

3 Setup and review

In this section, we review the relevant technology to calculate the scattering amplitudes

that serve as building blocks in the KMOC formalism. Most tools were introduced in

refs. [41, 43, 81], in the context of classical conservative gravitational scattering, i.e. in

the potential region (cf. eq. (3.7). Readers familiar with refs. [41, 43, 81] can skip this

review. The novelties of the soft region, which includes dissipative effects, are the subject

of section 4.

– 7 –
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Kinematics. Before detailing the integrand construction via generalized unitarity, we

briefly review the relevant kinematics for the two-to-two scattering of massive black holes

in the classical limit. This allows us to link the classical ~ expansion to the soft (small |q|)
expansion familiar from the method of regions [104] and further motivate certain trunca-

tions in the integrand construction of the classical, conservative sector.

The four-particle scattering of massive scalars in an all-outgoing momentum convention

is characterized by the following kinematic invariants,

p2
1 = p2

4 = m2
1 , p2

2 = p2
3 = m2

2 , s = (p1+p2)2 , t = q2 = (p1+p4)2 , u = (p1+p3)2 . (3.1)

We work with a mostly minus metric ηµν = diag(1,−1,−1,−1) and the Mandelstam in-

variants s, t, and u are subject to the usual constraint

s + t + u = 2m2
1 + 2m2

2 . (3.2)

It will be useful to introduce the total mass and symmetric mass ratio

M = m1 + m2 , ν =
m1m2

(m1 + m2)2
, (3.3)

as well the combinations

σ =
s−m2

1−m2
2

2m1m2
=

p1 · p2

m1m2
, h(σ, ν) =

√
s

M
=
√

1 + 2ν(σ − 1) (3.4)

where σ is the relativistic factor of particle 1 in the rest-frame of particle 2 (or vice versa)

and h is the total energy-mass ratio. Physical particle scattering in the s-channel corre-

sponds to the region s > (m1 + m2)2 (or σ > 1), t = q2 < 0, and u < 0. In contrast to

the massless case, for massive 2→ 2 scattering one can define a Euclidean region where all

invariants are negative and the amplitude is real. This region also plays an important role

in the evaluation of Feynman integrals in section 5.

3.1 The method of regions and the classical limit

We are ultimately interested in classical dynamics and we would like to only retain the

minimal amount of information necessary to describe classical black holes. In this limit,

the orbital angular momentum of the scattering black hole binary system is much larger

than ~ and simply corresponds to the large angular momentum limit J ≫ 1 (in natural

units), which establishes a hierarchy of scales

s, |u|, m2
1, m2

2 ∼ J2|t| ≫ |t| = |q|2 . (3.5)

As a result, we are interested in calculating scattering amplitudes as an expansion in small

|q|. From a heuristic analysis of scales, we perform an expansion in orders of rs/|b|, where

the Schwarzschild radius is rs ∼ Gm for some common mass scale m ∼ m1 + m2, and |b| is
the relative transverse distance (conjugate to the momentum transfer q) of the system. This

implies that the relevant dimensionless expansion parameter is rs/|b| ∼ Gm/|b| ∼ Gm|q|.
For each additional order of Newton’s constant G, we need to expand the amplitude up to

– 8 –
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one additional power of |q|. The relevant term in the q-expansion at tree-, one-loop, and

two-loop level are 1/|q|2, 1/|q|, and log |q| respectively. The fact that we are interested in

the non-analytic terms in the |q| expansion is related to the long-distance effects in impact

parameter space (Analytic terms in the |q|-expansion transform to δ-function contributions

in b-space). At a given loop order (order in G), terms that are more subleading in |q| are

quantum corrections. In summary, at O(Gn), we only need to expand the scattering

amplitude of massive particles up to O(|q|n−3) in the small-q expansion [106], in order to

extract the classical dynamics. In practice, this implies that some loop integrals can be

discarded in the amplitude construction, if they are beyond the classical order.

Before moving to the actual integrand construction, it is helpful to recall the rele-

vant kinematic scaling of external and loop momenta. We separate temporal and spatial

momentum components k = (ω, k) to define the relevant momentum regions [43]

hard: ∼ m soft: ∼ |q| . (3.6)

The classical limit is equivalent to an expansion in the dimensionless power counting vari-

able λ = |q|/m. For convenience, instead of counting power of λ we can count powers of |q|
relative to the scaling dimension of the amplitude. In terms of this scaling, all matter lines

of the heavy black holes have hard momenta of pi ∼ m ∼ O(|q|0). As mentioned above, we

are interested in classical, long-distance physics mediated by graviton exchange related to

the soft region, which further splits into

soft





“quantum” soft: (ω, k) ∼ |q|(1, 1)

potential: (ω, k) ∼ |q| (v, 1)

radiation: (ω, k) ∼ |q| (v, v)

. (3.7)

In comparison to previous work that primarily focused on conservative dynamics [41, 43,

81], associated to potential modes, in the KMOC setup, we will directly work in the full

soft region. This is owed to the fact that the classical ~ expansion in the KMOC formalism

is intimately tied to the q-expansion and we do not have to make further assumptions

about small velocities v or instantaneous interactions. However, even in the KMOC setup,

we can impose this additional velocity restriction to reproduce conservative results which

serve as nontrivial cross-checks of our assembly.

3.2 Loop integrands and generalized unitarity

We have seen in section 2 that the extraction of classical gravitational observables within

the KMOC formalism involves virtual higher-loop scattering amplitudes as well as their

unitarity cuts. Crucially, all ingredients are on shell. This allows to employ a number of

simplifying features developed in the context of the scattering amplitudes program over

the last several decades. Making use of these novel tools leads to a highly simplified and

streamlined construction of the relevant loop-integrands, i.e. the rational functions before

the loop or phase-space integrations are performed. For example, the key technology at

work is generalized unitarity [25–27] and color-kinematics duality [28–33] which effectively

– 9 –



J
H
E
P
1
0
(
2
0
2
1
)
1
4
8

Figure 1. Cubic diagrams relevant for the potential-region amplitude in classical GR.

reduces all gravitational calculations to the computation of sums of products of Yang-

Mills tree-level amplitudes. This is done in terms of general D-dimensional amplitudes in

terms of formal polarization vectors which interface well with dimensional regularization

used in later parts of the calculation. Most details of the loop-integrand construction have

already been described elsewhere [41, 43], so that we can limit our review to only the most

relevant points and remain telegraphic otherwise. Here we give a general review of the

conservative sector result, before pointing out certain additions relevant in the full soft

region in section 4.

It is well known that loop integrands in quantum field theories can be reconstructed

from their singularity structure which in turn is entirely dictated by factorization. This idea

is formalized in the generalized unitarity framework which allows to construct amplitudes

from their unitarity cuts. In the following, we limit our discussion to the case of two-loop

contributions, which is of main interest in this work. The generalization to other loop

orders is (at least conceptually) straight forward. We are therefore interested in two-loop

scattering processes of two massive scalar particles that are minimally coupled to gravity.

To extract classical physics, it is not necessary to obtain the full quantum amplitude,

but instead we can directly focus on the relevant pieces that contribute to long-distance

interactions between the two black holes mediated by the exchange of gravitons. In the

case of conservative dynamics, the gravitons mediate instantaneous interactions causing

further simplifications due to the vanishing of certain potential region integrals [43]. In

particular, one requires at least one matter line per loop, together with the absence of

certain mushroom type graphs (see e.g. figure 7) that will become important in the full soft

region shortly. Since we are interested in long-distance effects, we can neglect all contact

interactions between the two black holes. In the field theory language, this corresponds to

setting to zero the four-scalar interactions. From a practical perspective, this limits the

number of relevant terms that are interesting for the amplitude construction. For further

discussions, see ref. [43].

In our calculation, we use generalized unitarity in the following way. At two-loops, we

write down an ansatz of cubic, local Feynman-like diagrams for all graph topologies that

pass our (conservative,) long-distance, non-scaleless, classical power counting constraint.

The resulting list of graphs is summarized in figure 1 [41, 43]. For each of the diagrams, we

write a yet undetermined numerator. Power-counting dictates that the two-loop numer-

ators have to have mass-dimension 12 as is easily seen by counting derivatives in simple

Feynman diagrams. Our numerator ansatz for a given cubic graph Γ is then written in

terms of Lorentz dot products between the three independent external momenta p1, p2, p3

and the two independent loop momenta ℓ1, ℓ2

NΓ = aΓ,1(p1 · p2)6 + aΓ,2(p1 · p2)5(ℓ1 · p1) + · · ·+ aΓ,n(ℓ1 · ℓ2)6 . (3.8)
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Figure 2. Spanning set of unitarity cuts relevant for the potential region O(G3).

Note that this representation of the numerator ansatz secretly includes possible contact

terms of the cubic graph, where a contact term denotes any graph Γ with one of the

propagators pinched due to a numerator factor. Here, we chose not to write the numerator

monomials in such a way that the contact-term stratification is manifest. (For similar

applications of the monomials in terms of Lorentz-invariant dot-products, see e.g. [107–

109]. For advantages of a contact term basis, see e.g. refs. [110, 111].)

In the generalized unitarity setup, it is then the goal to fix the yet undetermined

coefficients ai,j by matching the integrand ansatz in terms of cubic graphs against field

theory cuts. This is done by taking unitarity cuts of the amplitude integrand, given in

terms of products of tree-level amplitudes (on-shell functions), and equating these cuts to

the cuts of the cubic diagrams. We perform this cut matching procedure in D dimensions

where we set the state-counting parameter of the internal gravitons to Ds = 4. (See e.g. [43]

around eq. (5.18) for further details regarding the dimensional regularization choices.)

This procedure yields linear relations for the free coefficients aΓ,j that can be solved in

a straightforward manner. Once we match a spanning set of cuts, we are guaranteed to

have a correct amplitude integrand. For the conservative classical impulse and radiated

momentum at O(G3), such a spanning set of cuts is given in figure 2. As mentioned before,

these unitarity cuts are nothing but products of on-shell tree-level amplitudes summed over

the on-shell states. These tree-level amplitudes can in principle be obtained in whichever

way one can imagine, even via Feynman diagrams if necessary. For us, we make further use

of recent developments in scattering amplitudes, where we can express tree-level gravity

amplitudes as the square of Yang-Mills amplitudes via the celebrated BCJ double-copy

procedure [28–33]. How this is done in practice has already been summarized in the work

of ref. [43] so we will not reiterate these steps here.

Ultimately, we write the unitarity-based L-loop amplitude as a sum over cubic L-loop

graphs with classical counting

M(L)(p1, p2, p3, p4) =
∑

Γ∈
{

L−loop,
classical

}

∫ L∏

j

d̂Dℓj
NΓ(ℓj , pi)∏

P ∈Γ
P (ℓj , pi)

, (3.9)

where the numerators NΓ(ℓj , pi) have been determined by matching unitarity cuts and the

denominator is the product of all Feynman propagators PΓ(ℓj , pi) of graph Γ. Concretely,

for the conservative result at two-loops, this involves the diagrams in figure 1 whose nu-

merators have been constraint by matching the unitarity cuts in figure 2. We note that all

propagators retain the full kinematic dependence and have not yet been expanded in the

soft region, i.e. matter propagators are schematically of the form 1/((ℓ + pi)
2 −m2

i ).

– 11 –



J
H
E
P
1
0
(
2
0
2
1
)
1
4
8

p1

p2 p3 = −p2 − q

p4 = −p1 + q

=

p1 − q
2

p2 + q
2 p2 − q

2

p1 + q
2

Figure 3. Depiction of the parameterization of external momenta useful for the soft expansion.

3.3 Soft expansion, integration-by-parts and differential equations

In this section, we briefly review the relevant tools that allow us to go from the integrands

derived above, closer to the final integrated result. We first introduce special kinematic

variables to facilitate the classical ~ or equivalently soft (small |q|, or small λ) expansion in

the context of the method of regions [104]. All relevant definitions have already appeared

in ref. [81], so we are going to be brief. In order to facilitate integration, we perform an

integration-by-parts reduction to a minimal set of master integrals that will be solved by

differential equations.

In the following, we introduce specialized kinematics, depicted in eq. (3.10),

p1 = −
(

p1 −
q

2

)
, p2 = −

(
p2 +

q

2

)
, p3 =

(
p2 −

q

2

)
, p4 =

(
p1 +

q

2

)
, (3.10)

tailored towards the discussion of the soft expansion of the relevant integrals. These vari-

ables have the advantage that the new vectors pi are orthogonal to the momentum transfer

q, pi · q = 0 , which directly follows from the on-shell conditions p2
1 = p2

4 = m2
1 and

p2
2 = p2

3 = m2
2. Furthermore, s = (p1 + p2)2 = (p1 + p2)2 so that the physical region

s>(m1 + m2)2, q2<0 is unaltered. We also define the soft four-velocities of the two black

holes uµ
i = pµ

i /|pi|, such that u2
i = 1, and

y ≡ u1 · u2 =
1 + x2

2x
= σ +O(q2) , (3.11)

where x rationalizes various naturally appearing square-roots later on.

Note that these soft velocities coincide with the classical four velocities of the black

holes up to irrelevant corrections of O(q) that do not affect the classical observables. As

mentioned above, we are interested in the soft expansion, with the following hierarchy of

scales |ℓ| ∼ |q| ≪ |pi|, m,
√

s , or equivalently λ ≪ 1. Here, ℓ schematically represents

arbitrary combinations of graviton momenta of the form (ℓ1, ℓ2, ℓ1 ± ℓ2, . . .) and typical

graviton propagators take the form 1
ℓ2 , 1

(ℓ−q)2 , so that they have a homogeneous |q|-
scaling and therefore do not require any non-trivial expansion. Note that we can choose a

momentum routing so that graviton lines do not involve the individual momenta pi of the

external massive particles. On the other hand, matter propagators do have a non-trivial

|q| expansion which we express in terms of the dimensionless velocity variables ui

1

(ℓ− pi)2 −m2
i

=
1

ℓ2 − 2 ℓ · pi
=

1

2ui · ℓ
1

mi
− ℓ2 ∓ ℓ · q

(2ui · ℓ)2

1

m2
i

+ · · · , (3.12)
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such that each order in the expansion is homogeneous in |q| and the mass dependence

factorizes. The matter propagators effectively “eikonalize” and the soft expansion to higher

orders in |q| can lead to raised propagator powers. Graphically, we denote these eikonalized

(or linearized) matter propagators by a double-line notation, see e.g. the diagram in figure 7,

to distinguish them form unexpanded propagators e.g. in figure 1. In order to reduce

tensor integrals and integrals with doubled propagators that appear unavoidably in the

soft expansion of matter propagators (3.12), we make use of the standard practice in

collider physics and use IBP identities [90, 91]. These are due to the fact that total

derivatives identically vanish in dimensional regularization (see e.g. [112]). By writing

sufficiently many total derivatives, one obtains a set of linear relations in the space of

Feynman integrals with a given set of propagators. A key insight is that such a space is in

general finite dimensional [113] and solving IBPs reduces the task of computing a general

integral to the evaluation of a basis of master integrals. The most common approach to

solving the system of IBP identities is Laporta’s algorithm, [114, 115], implemented in a

variety of different packages. In the present work we use FIRE6 [116].

The soft expansion not only implements the classical ~ ≪ J limit by truncating at

appropriate orders in |q|, but also leads to an enormous simplification of the resulting inte-

grals. Indeed, consistent with the spirit of effective field theory, the appropriate separation

of scales allows us to focus on one scale at a time, here |q|, which essentially reduces classical

gravitational scattering to a single-scale problem.

The advantage of the new soft variables uµ
i and qµ lies in fact that the mass dependence

of a general soft (linearized) integral completely factorizes (due to the properties of the

expansion of matter propagators in eq. (3.12)) and the only remaining dimensionful scale

is q2 which can be extracted by simple dimensional analysis. Therefore, in the soft region,

the only nontrivial kinematic variable is y = u1 · u2 and we are going to find the values of

all soft integrals by deriving and solving differential equations in y here and in section 5,

respectively. In order to take derivatives with respect to y at the integrand level, we can

express the y derivative in terms of the vectors u1 and u2,3

∂

∂y
=

yuµ
1 − uµ

2

y2 − 1

∂

∂uµ
1

. (3.13)

Acting with (3.13) on the set of master integrals ~g will produce another set Feynman

integrals with the same set of propagators, which can subsequently be reduced to the

master basis ~g to yield a differential equation

∂

∂y
~g = A(y, ǫ)~g , (3.14)

where A(y, ǫ) is a matrix with rational dependence on y and ǫ = (4 −D)/2. We can use

the freedom in choosing the basis of integrals and the parametrization of the kinematics to

simplify the differential equation (3.14). In all cases discussed in this article we are able to

3Note that exactly the same differential operator appears in calculations of the angle-dependent cusp

anomalous dimensions in gauge theory, see e.g. [117].
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(a) (b) (c)

Figure 4. Sample diagrams that do not contribute in the classical limit. (a) and (b) are purely

quantum from simple |q| counting arguments, whereas (c) is naively classical but scaleless in the

soft region.

choose an appropriate set of canonical master integrals ~f [95],4 in terms of which

∂

∂y
~f = ǫ

[
∑

i

Ai
∂

∂y
log wi(y)

]
~f , (3.15)

the ǫ dependence factorizes and where Ai denote matrices with constant rational entries,

most of which were computed in ref. [81] by some of the present authors. The only missing

results were the matrices for integrals eq. (D.25)–(D.30) in the H family which scale as

odd powers of |q| before being multiplied by appropriate normalization factors, given in

appendix D. In form (3.15), the possible singularities of ~f are completely manifest. They

are given by the zeros of the elements {wi}— the alphabet of the differential equation. The

fact that the dimensional regularization parameter ǫ is factorized makes it straight forward

to solve the system iteratively order-by-order in ǫ [95].

4 Full soft integrands and reverse unitarity

As alluded to before, most of the tools describing classical conservative dynamics in terms

of scattering amplitudes have been successfully applied before, see e.g. refs. [41, 43, 81].

Taking radiation effects into account leads to a few novelties that we are going to discuss

in this section. First of all, there are additional contributions to the integrand, which

we summarize in subsection 4.1. One additional feature of the KMOC framework is the

presence of on-shell phase-space integrals. We employ reverse unitarity [86–89], well-known

from collider physics computations, in subsection 4.3, to efficiently handle such integrals.

4.1 New contributions from the soft region

In our general review of the integrand construction in subsection 3.2, we mostly discussed

the conservative sector, previously presented in refs. [41, 43]. Here, we are interested in

going beyond conservative dynamics and taking radiation effects into account. This requires

us to slightly augment the known integrand and include additional terms. The generalized

unitarity strategy to determine these additional contributions, though, is the same as for

the conservative result.

Compared to the conservative dynamics considered in refs. [41, 43], we have additional

diagrams depicted on the second line of figure 5. This is owed to the fact that there are

4Starting at three loops, generally this is no longer possible due to the presence of elliptic integrals [51].
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Figure 5. Cubic diagrams relevant for the classical O(G3) impulse and radiated momentum in

general relativity (including radiative contributions).

additional terms that survive in the full soft region but are zero in the potential region. In

particular, we are interested in classical physics (including radiation contributions) which,

as explained in section 2, is encoded in the soft expansion where the momenta of the

black holes scale like O(|q|0) and the momentum transfer and the momentum of internal

graviton lines scale like O(|q|). This leads to the following summary of |q|-counting rules

that facilitate the classical counting (i.e. soft counting) of linearized integrals5

graviton propagator: ∼ |q|−2 , matter propagator: ∼ |q|−1 ,

integration measure: d4ℓ ∼ |q|4 .
(4.1)

As was pointed out in ref. [81], graviton propagators scale homogeneously like |q|−2, whereas

matter propagators have a |q|-expansion starting at order |q|−1. The leading order k in |q|,
O(|q|k) for a given two-loop graph is

k = 4L + 2nv3 − 2npg − npm , (4.2)

where the factor 4L comes from the loop measure
∏L

i d4ℓi ∼ |q|4L, nv3 is the number of

three-graviton vertices of the graph, npg the number of graviton propagators, and finally

npm the number of matter propagators. We call two-loop diagrams superclassical (or

classically singular), when their leading order term in the |q| expansion starts with k < 0,

classical when k = 0, and quantum, if k > 0. With these simple counting-rules, we see

that the graph on figure 4a has k = 8 + 2× 3− 2× 6− 1 = 1 > 0 which is, as advertised,

quantum and we can therefore neglect such contributions.

Another simplification, related to the soft-expansion of Feynman integrals comes from

the knowledge that certain integrals become scaleless and therefore integrate to zero. There

are simple rules to identify such topologies even before integration which allows us to neglect

such terms in the integrand from the outset (see e.g. figure 4c).

Taking into account the above rules, we find the list of cubic graphs relevant for

radiative classical dynamics at O(G3); depicted in figure 5. Compared to the conservative

diagrams shown in figure 1, the second line is new. These additional diagrams require us

to enlarge our spanning set of cuts, compared to the conservative ones depicted in figure 2

in order to get constraints on the new numerator ansaetze. The spanning set of cuts that

allows us to fix the classical integrand in the soft region is given in figure 6.

5Note that we work in dimensional regularization, where the loop measure is dDℓ ∼ |q|D, where we work

in D = 4 − 2ǫ which yields the non-integer powers of |q| in all our integrals.
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We note that some of the unitarity cuts also involve quantum terms and in order to

match the full integrand before further classical truncation would require additional cubic

graphs not listed in figure 5. Since these additional terms are purely quantum, we can in

principle drop them from our discussion and write the amplitude analogous to eq. (3.9)

where the sum over cubic graphs now contains the additional contributions of the diagrams

on the second line of figure 5 with the numerators fixed by matching the ansatz against

the spanning set of cuts in figure 6. Consistently ignoring such quantum terms in the cut

matching procedure, however, is rather subtle.

In the full soft region, completely fixing the unitarity based ansatz requires the match-

ing of rather “deep” unitarity cuts with very few lines put on shell (such as the three-

graviton cut on the l.h.s. of figure 6). Fully matching these cuts becomes increasingly

cumbersome due to the addition of a multitude of quantum terms that are irrelevant for

classical physics. One way to circumvent this situation is to step back from the unitarity

setup and instead employ simplified gravitational Feynman rules [118, 119], closely follow-

ing the implementations in refs. [45, 120], to target the set of classical Feynman diagrams

directly. The simplification of the gravitational Feynman rules is possible due to a judicious

choice of gauge-fixing functions. The Feynman diagrams are generated by QGRAF [121], ig-

noring ghost particles which have no contributions to classical physics.6 The Lorentz index

contractions are carried out with an in-house code to produce numerators in terms of dot

products for each diagram. We have checked that the integrand constructed via the sim-

plified Feynman rules matches all relevant classical parts of the unitarity cuts of figure 6,

so that we are confident in our implementation.

Note that our integrand contains the box-bubble graph on the very right hand side

of the bottom-row of figure 5 which naively looks like a quantum contribution due to the

internal graviton loop. However, by our |q|-counting arguments, this graph is of classical

order by virtue of a 1/|q| iteration hitting a O(|q|) quantum contribution. As we will show

explicitly in subsection 6.2, these contributions cancel in the classical observables within

the KMOC formalism in a way that is similar to eikonal subtractions, see e.g. [101, 103].

With the relevant classical virtual two-loop integrand at hand, we also have all relevant

terms required for the real contributions in the KMOC setup in eqs. (2.10) and (2.18). In

fact there is no need to construct these cut contributions separately. Instead, we can take

our virtual integrand and perform the required unitarity cut. The relevant measurement

function in the form of the appropriate loop-momentum insertion for either the impulse or

radiated momentum is then simply linked to the labeling of the cut. As such, we have now

constructed all integrands that make an appearance in the KMOC formalism and we can

turn our attention to the novelties of integrating in the full soft region as well as tools that

handle these cut, or phase-space integrals. This is what we turn to next.

4.2 Soft expansion and partial fractioning

There is one aspect of special soft integrals that warrants discussion. A particular feature

of mushroom-type integrals (see e.g. figure 7) pertains to the fact that once the matter

6If desired ghost contributions can be easily fixed by matching the relevant unitarity cuts.
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Figure 6. Spanning set of unitarity cuts relevant for the soft region at O(G3).

1 2 3

ℓ2 ↑

ℓ1←

Figure 7. Linear mushroom integral.

propagators are linearized via the soft expansion of eq. (3.12), some of the propagators

in a given diagram might become linearly dependent. However, this can be addressed by

partial fractioning. In the example given by figure 7, the three matter propagators on the

top are

ρ1 = 2u1 · ℓ1 + iε , ρ2 = 2u1 · (ℓ1 + ℓ2) + iε , ρ3 = 2u1 · ℓ2 + iε . (4.3)

These expressions are linearly dependent and partial fractioning allows us to split diagrams

with all three propagators into terms with at most two of the propagators at a time

1

ρ1

1

ρ2

1

ρ3
=

1

ρ1ρ2
3

− 1

ρ2ρ2
3

, when ρ3 = ρ2 − ρ1 . (4.4)

Pictorially, this identity is expressed as a relation between mushroom-type integrals

= − , (4.5)

where the dot represents a doubled propagator. Due to the soft expansion to higher orders,

we also need to treat raised propagator powers with partial fractioning analogously to

eq. (4.4). The propagators on the right-hand side of (4.5) do not satisfy any linear relations

and they can be embedded into different top-level families where the four-point vertex is

blown up. For example

= (ℓ1 + ℓ2)2

↑ℓ1

ℓ2 ↑
. (4.6)

Similarly, we can proceed for all other mushroom topologies of figure 5. In the soft region,

these additional diagram topologies were required to match the classical part of the am-

plitude. However, upon soft expansion, their propagator structures overlap with existing

topologies so that no new integral families are required.
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The first integral on the right-hand-side of eq. (4.5) actually vanishes in dimensional

regularization, because it factorize into a box integral times a matter self energy diagram

which is scaleless in the soft region. More generally, non-factorizing integrals, where the

loop momenta can be routed such that the integral is independent of the momentum transfer

q are zero in dimensional regularization. One such example was presented in figure 4c.

4.3 Reverse unitarity

We have seen in section 2, that classical gravitational observables, like the impulse ker-

nel (2.17), or the radiated momentum kernel (2.18) involve not only virtual amplitudes,

but also certain unitarity cuts. These cut contributions include an integral over the on-

shell phase space of the exchanged states. In order to efficiently evaluate such phase-space

integrals, we follow our earlier letter [85], where we took inspiration from the enormous

progress in cross-section calculations and the computation of collider physics observables

where similar real contributions appear. For some time, it has proven advantageous to han-

dled phase-space integrals on the same footing as virtual integrals. This idea has formally

been implemented via reverse unitarity [86–89], where one replaces on-shell delta functions

and their n-th derivatives by the difference of (appropriate powers of) propagators with

varying iε prescription

2πi

(−1)n n!
δ(n)(z) =

1

(z − iε)n+1
− 1

(z + iε)n+1
. (4.7)

Trading all delta functions by differences of propagators allows us to employ standard tools

for loop integrals such as dimensional regularization, IBP reduction [90, 91], and (canonical)

differential equations [92–96] to evaluate a minimal set of master integrals. From a practical

perspective, we can treat any on-shell delta function as a regular propagator. This is owed

to the fact that integration-by-parts identities, crucial in the derivation of the differential

equations, are insensitive to the Feynman iε. The same is true for the partial fractioning

discussed in subsection 4.2. This significantly simplifies our computations and circumvents

the difficulties in having to evaluate integrals containing derivatives of delta functions that

would otherwise appear.

As will be explained in section 5, the differences between the cut integrals compared

to the virtual ones arise from the following facts:

• Certain cuts can break diagram symmetries of the virtual diagram.

• Various terms in the differential equations can be omitted because the appropriate

master integrals do not have the desired unitarity cut.

• The boundary conditions for the differential equations for the cut master integrals

change, relative to the virtual integrals.

Of course, all the described properties of cut integrals are well known from collider physics

applications and we adapt them to the gravitational setting here. To reiterate, the huge

advantage of the reverse unitarity setup arises from the fact that we can directly treat the

phase-space integrations for the inclusive classical observables (such as the gravitational
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impulse or the radiated momentum) in one go without having to perform sequential in-

tegrations over the gravitational waveform. Even for more exclusive observables, like the

radiated energy spectrum, we can add one new variable at a time, which still leads to

simplified integrals. A detailed discussion of such quantities is left to the future.

5 Evaluation of soft master integrals

In this section, we explain the evaluation of the soft master integrals relevant for the

computation of radiative observables up to O(G3). We first review the relevant kinematic

domain and show how to compute the soft integrals at one-loop level as a warm-up exercise.

Subsequently, we explain how to evaluate virtual integrals as well as two and three particle

cuts at two-loop level. This completes the set of relevant master integrals for classical

observables at O(G3). Ultimately, our set of master integrals can be recycled to obtain

analogous classical observables for different theories (such as quantum electrodynamics),

or for spinning black holes once the relevant integrands are available.

5.1 Soft one-loop integrals: Euclidean region and analytic continuation

Before elaborating on the evaluation of soft master integrals via differential equations, it

is illustrative to recall the kinematic dependence of soft integrals. As mentioned before,

upon soft expansion, all soft master integrals have their external mass and momentum

transfer (−q2) dependence determined by simple dimensional analysis. The only nontrivial

kinematic dependence of the integral is through the dimensionless variable y = u1·u2 (or

equivalently in terms of x, s.t. y=1+x2

2x ). The ǫ=(4−D)/2 dependence can sometimes be

computed exactly, otherwise we work in an expansion around ǫ=0.

The soft expansion, reviewed in section 3.3, is defined in a manifestly relativistic way

and therefore soft integrals are genuine D = 4 − 2ǫ dimensional Feynman integrals, al-

though involving linearized propagators. The manifest covariance has the benefit that the

integrals are analytic functions of y and we can use analytic continuation to relate integrals

in different kinematic regions. In contrast to the massless case, for massive 2→ 2 scatter-

ing one can define a Euclidean region where all Lorentz invariants are below production

threshold and the amplitude is real. As will become apparent from the explicit examples

below, it is advantageous to compute the soft master integrals in the Euclidean region and

then analytically continue to the desired scattering kinematics. These regions, together

with the analytic continuation are summarized in figure 8. As an illustrative example,

consider the one-loop box family of the form (see also ref. [81])7

2

1

3 4 = Gi1,i2,i3,i4 =

∫
eγEǫdDℓ

iπD/2

1

ρi1
1 ρi2

2 ρi3
3 ρi4

4

(5.1)

7In the following, we adopt the normalization conventions of ref. [122] and remove an overall factor of
i

(4π)2

(
µ2
)ǫ

≡ i
(4π)2

(
4πe−γE µ2

)ǫ
per loop, where µ is the dimensional regularization scale. To convert our

results to standard Feynman integral conventions, we multiply by i

(4π)2

(
µ2
)ǫ

per loop.
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x

−i

+i

0 1

−1

(a)

y

u-channel

s-channelEucl. region

0 1

−1

(b)

Figure 8. Kinematics in x and y space. The x plane is a double cover of the y plane, i.e. the

two points x and 1/x map to the same point y, we therefore focus on points inside the unit disc

|x| ≤ 1. Physical s-channel scattering (green region) corresponds to y > 1 and Im(y) = 0+, i.e.

0 < x < 1 and Im(x) = 0−. Physical u-channel scattering (red region) corresponds to y < −1

and Im(y) = 0−, i.e. −1 < x < 0 and Im(x) = 0+. There is also a Euclidean region connecting

the two for real −1 < y < +1 which corresponds to points on the unit circle |x| = 1. Due to the

double-cover property, x = +i and x = −i map to y = 0.

where the linearized propagators are explicitly

ρ1 = 2u1 · ℓ + iε , ρ2 = −2u2 · ℓ + iε , ρ3 = ℓ2 + iε , ρ4 = (ℓ− q)2 + iε . (5.2)

There are 3 master integrals

f1 = ǫ(−q2) G0,0,2,1 , f2 = ǫ2
√
−q2 G1,0,1,1 , f3 = ǫ2

√
y2 − 1(−q2) G1,1,1,1 . (5.3)

The differential equation is

∂

∂x
~f =

ǫ

x




0 0 0

0 0 0

1 0 0


 ~f . (5.4)

The system only has a single letter and can thus be integrated to all orders, using x = −1

as a boundary condition

~f(x) =




0

0

ǫ log(−x)f1(−1)


+ ~f(−1) . (5.5)

For the boundary conditions, we can directly evaluate the bubble and triangle integrals,

using the master formula for the linearized triangle with arbitrary powers of the propagators

(see e.g. ref. [122])

∫
dDℓ

iπD/2

1

[ℓ2]a1 [(ℓ− q)2]a2 [2v · ℓ + iε]a3
= (−1)a1+a2+a3(−q2)D/2−a1−a2−1/2a3

× Γ (a3/2) Γ (D/2−a1−a3/2) Γ (D/2−a2−a3/2) Γ (a1+a2+a3/2−D/2)

2Γ (a1) Γ (a2) Γ (a3) Γ (D−a1−a2−a3)
, v · q = 0, v2 = 1.

(5.6)
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Applied to the integrals of interest, we find

= −
(
−q2

)−1−ǫ
eγEǫ ǫΓ(−ǫ)2Γ(1 + ǫ)

2Γ(−2ǫ)
(5.7)

= −
(
−q2

)− 1
2

−ǫ
eγEǫ

√
πΓ
(

1
2 − ǫ

)2
Γ
(
ǫ + 1

2

)

2Γ(1− 2ǫ)
. (5.8)

For the boundary condition of the box integral, we resort to the method of regions. For

this analysis it is convenient to choose a frame which coincides with the rest frame of u1

up to q-corrections

u1 = (1, 0, 0, 0) , u2 = (
√

1 + v2, 0, 0, v ) . (5.9)

In this frame we have y =
√

v2 + 1. By crossing the limit x → −1 corresponds to the

static limit of the crossed box integral. The leading contribution in this region comes from

the potential region, where the integral vanishes, the subleading contribution from the

“quantum soft” region scales as O(v), so we find f3(−1) = 0. With this we can evaluate

the crossed box integral

= (−q2)−1−ǫeγEǫ Γ(−ǫ)2Γ(1 + ǫ)

2Γ(−2ǫ)

log(x)√
y2 − 1

, x > 0 . (5.10)

By analytic continuation, we obtain the box integral

= −(−q2)−1−ǫeγEǫ Γ(−ǫ)2Γ(1 + ǫ)

2Γ(−2ǫ)

log(x)− iπ√
y2 − 1

, x > 0 . (5.11)

Now as we discussed before, we can use the same differential equation (5.4) for the two-

particle cuts. In this case the triangle and bubble functions are trivially zero because they

do not have a relevant cut. This directly implies that the cut box integral is constant

and given by its value at y = 1. The integral can be directly evaluated and reduced to a

(D − 2)-dimensional Euclidean bubble integral

=
1√

y2 − 1

∫
eγEǫdDℓ

iπD/2

δ̂(2u1 · ℓ) δ̂(2u2 · ℓ)
ℓ2(ℓ− q)2

=
−iπ√
y2−1

∫
eγEǫdD−2ℓ⊥

π(D−2)/2

1

ℓ2
⊥(ℓ⊥−q⊥)2

= (−q2)−1−ǫeγEǫ iπ√
y2−1

Γ(−ǫ)2Γ(1 + ǫ)

Γ(−2ǫ)
,

(5.12)

and we can check that the cutting rules are satisfied8

= 2i Im

[ ]
. (5.13)

8The additional factor of i is due to our conventions of the integral measure.
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(a) (b) (c) (d) (e) (f) (g)

Figure 9. Single-scale integrals appearing as boundary values for two-loop soft integrals.

The triangle integral has no x dependence and is therefore completely specified by the

boundary conditions at x = −1.

5.2 Virtual two-loop integrals

The most involved part in our KMOC computation of the classical gravitational observables

at O(G3) is the evaluation of the virtual two-loop soft integrals. The differential equation

matrices have been constructed in ref. [81], with the exception of the odd-in-|q| integrals for

the H family which we add in this work.9 A complete list of all master integrals, together

with our conventions, is given in appendix D.

Similarly to the one-loop discussion, it is advantageous to first evaluate all integrals in

the Euclidean region and then analytically continue to the desired scattering kinematics. In

the Euclidean region, the integrals are real-valued which serves as a valuable cross check on

the calculation and also facilitates numerical verification against e.g. PySecDec [123, 124].10

In the most general (nonplanar) case, which the IX integral in figure 11 is an example

of, the Euclidean region is −1 < y < 1. The scattering regions are (1) s-channel: y >

1, Im(y) = 0+, (2) u-channel: y < −1, Im(y) = 0−. For planar integrals, the Euclidean

region is larger, given by y < 1, and includes the u-channel scattering region, so a nontrivial

analytic continuation is needed only for the s-channel scattering region.

The boundary conditions can be fixed by various methods, we discuss a set of sufficient

conditions given by known single scale integrals, regularity and the method of regions.

Single scale integrals. First, there are a handful of single-scale integrals independent

of y, for example the sunrise integral in figure 9b. These integrals are either factorizing

into one-loop integrals (figure 9e–9g), or can be performed loop-by-loop (figure 9b–9d),

eventually reducing them to one-loop integrals which can be evaluated using the master

formula (5.6). Some integrals, like the double triangle in figure 9a, can be computed using

the trick of symmetrizing over the graviton momenta. This turns the matter propagators

into delta functions and the integral becomes three-dimensional (cf. appendix A of ref. [81]).

Regularity. Another input is the regularity of integrals in the Euclidean region. In

our kinematic parametrization, this translates to the statement that the s-channel planar

integrals have to be regular at y = −1 or x = −1. At two loops, this only provides non-

trivial constraints for planar integrals in the u-channel. Finally, integrals odd under parity√
y2 − 1 → −

√
y2 − 1 have to vanish at y = −1. Using all these conditions, we obtain

all-order boundary conditions for all integrals in the H family.

9Since IBP reduction of an integral gives a sum of master integral with analytic-in-q2 coefficients, integrals

that scale like odd powers of |q| form a decoupled system under IBP relations and differential equations.
10Some pure integrals have a prefactor

√
y2 − 1, and become purely imaginary without a real part.
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Analysis of regions. For the remaining integrals we obtain boundary conditions by

the method of regions, splitting the soft region into subregions defined in eq. (3.7). We

again adapt the frame defined in eq. (5.9). As an illustrative example of how we can use

the method of regions to obtain boundary values at two-loops, we consider the scalar III

integral. By naive velocity power-counting the leading contribution in the small velocity

limit comes from the region where all gravitons are in the potential region. In this region

the integral scales as 1/v2. All other regions are suppressed in velocity — the next-to-

leading contribution arises from the region where one of the gravitons is in the radiation

region and scales as v−1−2ǫ by naive power-counting. Therefore the value of the canonically

normalized scalar III integral at v = 0 equals the potential-region boundary value, which

has been computed in ref. [81],

ǫ4(y2 − 1) =
π2

2
ǫ2 − π3

12
ǫ3 +O(ǫ4) +O(v1−2ǫ) . (5.14)

Combining these different methods allows us to determine a complete set of boundary con-

ditions to all orders in ǫ for the virtual soft integrals relevant at O(G3). The complete

velocity-dependent analytic values of the soft master integrals can then be obtained by

integrating the differential equations from ref. [81] in conjunction with the soft bound-

ary conditions. The explicit values of all master integrals are given in the ancillary files

accompanying this work.

5.3 Two-particle cut integrals from sub-loop integration

A general two-particle cut integral can be evaluated by sub-loop integration. This is true

for any loop order, however we focus on the two-loop case here. This can be seen as follows:

all two-particle cut integrals that we encounter in the KMOC-formalism, including those

with a numerator insertion, can be cast into the form

IL IR =

∫
eγEǫdDℓ

iπD/2
δ̂(2u1 · ℓ) δ̂(2u2 · ℓ) IL(ℓ2, y) IR((ℓ− q)2, y) , (5.15)

where IL and IR are the sub loop integrals to the left and right of the two-particle cut,

respectively. Since the momentum transfer is the only dimensionful quantity, it can be

fixed by dimensional analysis

IL(ℓ2, y) =
[
−ℓ2

]αL
ĨL(y) , IR((ℓ− q)2, y) =

[
−(ℓ− q)2

]αR
ĨR(y) . (5.16)

This leads to the following formula relating the sub-loop integrations to the cut

IL IR =ĨL ĨR

∫
eγEǫdDℓ

iπD/2
δ̂(2u1 · ℓ) δ̂(2u2 · ℓ)

[
−ℓ2

]αL
[
−(ℓ− q)2

]αR
. (5.17)
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The δ-functions localize the integral to an (euclidean) integral over transverse space11

IL IR =−i(2π)2 ĨL ĨR

4
√

y2−1

∫
eγEǫdD−2ℓ⊥

π(D−2)/2

[
ℓ2

⊥
]αL

[
(ℓ⊥−q⊥)2

]αR
(5.18)

=−iπ
ĨL ĨR√
y2−1

(−q2)1−ǫ+αL+αR
Γ(1−ǫ+αL)Γ(1−ǫ+αR)Γ(ǫ−αL−αR−1)

e−γEǫΓ(−αL)Γ(−αR)Γ(2−2ǫ+αL+αR)
.

As a concrete example we consider the two-particle-cut of the scalar III, where we have

IL= =
1

−ℓ2
, IR=

[ ]∗
=

−eγEǫ

[−(ℓ−q)2]1+ǫ

Γ(−ǫ)2Γ(1+ǫ)

2Γ(−2ǫ)

log x+iπ√
y2 − 1

. (5.19)

Combining eqs. (5.18) and (5.19), we find

= (−q2)−2ǫ

[
e2γEǫπ2 csc(2πǫ)Γ(−ǫ)3

2Γ(−2ǫ)Γ(−3ǫ)

]
log(x) + iπ

y2 − 1
. (5.20)

Likewise, we can evaluate all other two-particle cut integrals by our loop-by-loop integration

technique, using the known one-loop building blocks and the general master formula in

eq. (5.18). Notably, the imaginary parts of the one-loop building blocks change, depending

on whether they are inserted to the left or to the right of the cut legs.

5.4 Triple-cut integrals from differential equations and Cutkosky rules

We first start by considering triple cuts of integrals inside the H family. It will turn out that

all other triple-cut integrals can be obtained from these via differential equations. Using

the cutting rules, reviewed in appendix C, we can relate the triple cut to the imaginary

part for a H-type integral we find

IH,3pt−cut = 2 Im IH . (5.21)

Since we already computed the virtual integrals in subsection 5.2, this allows to obtain all

triple-cuts in the H family. To give a concrete example, we have

= 2 Im

[ ]
(5.22)

= (−q2)−2ǫ−1 π

ǫ2
√

y2 − 1

{
1− 2ǫ

[
log(1− x2)− log(x)

]
+O(ǫ2)

}
.

We notice that there are only four integrals which cannot be embedded into the H topology

or its crossing, namely the III and the IX and the planar and non-planar box triangles. For

these integrals we can make use of a particular feature of the differential equation, which is

that derivatives of these integrals are expressible in terms of integrals inside the H topology.

11See also the relevant discussion around eq. (A.3) in appendix A.
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Therefore these integrals can be computed by direct integration. As a concrete example

we consider a triple cut of the IX integral. The derivative of the canonically normalized

IX integral is proportional to a N-type integral, which is known from the H family

∂

∂x


(y2 − 1)


 = −1

x



√

y2 − 1


 . (5.23)

For the boundary condition we make use of the method of regions. The power-counting for

a cut integral is identical to the corresponding virtual integral. For the triple-cut contri-

bution, one of the gravitons is on-shell and therefore this integral receives no contribution

from the potential region. The leading behavior as v → 0 is therefore dictated by the

potential-radiation region which scales as O(v−1−2ǫ) by the power-counting of eq. (3.6).

As the integral appearing in the canonical differential equation is normalized by a factor of

y2 − 1 = v2 (see appendix D for details) it vanishes in the static limit and using eq. (5.22)

we find

=− 1

y2−1

∫ x

1

dx′

x′



√

y′2−1


 (5.24)

=−(−q2)−2ǫ−1 π

ǫ2(y2−1)

{
log(x)+ǫ

[
log(x)2+Li2(x2)−π2

6

]
+O(ǫ2)

}
.

Similar ideas also apply to the three-particle cut integrals of III and will not be displayed

explicitly. This concludes our discussion of all relevant virtual and cut master integrals

required for the determination of O(G3) classical observables in the KMOC formalism.

Integral checks. We have performed several consistency checks on our virtual and phase-

space integrals. As mentioned previously, for the virtual two-loop integrals, we have per-

formed extensive numerical checks to high precision against PySecDec [123, 124] in the

Euclidean region where the integrals are real-valued. As a cross-check of our analytic con-

tinuation, we have furthermore performed numerical comparisons for scattering kinematics

in s and u-channel regions, where our analytic results agree with numerical values within

numerical errors.

We also compared our results to available analytic expressions for the full integrals in

the equal mass m1=m2 case, finding agreement for the non-analytic-in-q parts for the H-

type integrals [125] and ladder-integrals [126–128], to the orders of ǫ = (4−D)/2 available

in the literature.

Furthermore, we have checked the results of our master integrals against cutting rules.

For example, we have checked that eqs. (C.16) and (C.17) hold as relations for the soft-

expanded master integrals, i.e. with all quadratic matter propagators replaced by their

linearized expressions at the leading order expansion in |q| given by the first term on the

r.h.s. of eq. (3.12).

Lastly, our virtual master integrals have been checked against an independent calcu-

lation [105]. Each integral has been checked to the maximum order of ǫ that has been

computed in both papers.
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We note that all velocity-dependent functions satisfy a first-entry condition [129],

where only x is allowed as first symbol [130–132] entry. This is obvious for the one-loop

integrals (which only contain log x), but becomes nontrivial at two-loop order and suggests

potentially further simplifications by eliminating more explicit boundary value evaluations

due to this analyticity property.

6 Simplifications in the KMOC setup

We have reviewed the KMOC formalism in section 2, together with general formulae for the

gravitational impulse kernel (2.17), and the radiated momentum kernel (2.18). Here, we

would like to discuss a convenient organization of these quantities as well as aspects of their

perturbative expansions, before presenting their explicit results in maximal supergravity

and general relativity up to O(G3) in section 7. More concretely, we use unitarity and the

cutting rules to obtain simplified KMOC formulae where certain properties of the impulse

kernel, such as its reality properties or the absence of superclassical term are more manifest.

To begin the discussion, it is convenient to decompose the total impulse into its trans-

verse, ∆p⊥, and longitudinal, ∆pu, components

∆pµ = ∆pµ
⊥ + ∆pµ

u , (6.1)

such that ui·∆p⊥=0 and q·∆pu=0. (For the relevant kinematic definitions, cf. the beginning

of section 3.3.) Correspondingly, the impulse kernel can be written as

Iµ
p1

= I⊥ qµ +
∑

i=1,2

Iui
ǔµ

i , (6.2)

where we have defined dual four-velocities

ǔµ
1 =

yuµ
2 − uµ

1

y2 − 1
, ǔµ

2 =
yuµ

1 − uµ
2

y2 − 1
, (6.3)

which satisfy ui·ǔj = δij and are still orthogonal to the momentum transfer q. Decomposing

the loop momentum dependent impulse numerator in a similar fashion12

ℓµ
1 =

ℓ1 · q
q2

qµ + (ℓ1 · u1) ǔµ
1 + (ℓ1 · u2) ǔµ

2 , (6.4)

reveals that only the transverse part of the impulse has a virtual contribution

I⊥ = M

p1

p2 p3

p4

− i
∑

X

∫
dΦ̃2+|X|

ℓ1 · q
q2 M M∗

p1

p2 p3

p4

ℓX

ℓ2 − p2

ℓ1 − p1

, (6.5)

12In principle, there is an orthogonal direction ε(·, q, ǔ1, ǔ2) that, however, does not play a role.
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whereas the longitudinal part is purely real, i.e. it only receives contributions from the

unitarity cut terms

Iui
=− i

∑

X

∫
dΦ̃2+|X| ℓ1 · ui M M∗

p1

p2 p3

p4

ℓX

ℓ2 − p2

ℓ1 − p1

. (6.6)

Note that due to the difference in the |a| scaling of qµ and ǔµ
i , we have to expand the

longitudinal impulse kernels to one higher order in |q| compared to the transverse ones.

Finally, all classical observables are real13 (not complex), and the various factors of i in the

KMOC setup serve this purpose. In particular, the transverse KMOC kernels need to be

purely real to yield a real result after the final Fourier transform (eq. (2.11)), whereas the

longitudinal kernels are purely imaginary. Indeed, it will serve as a nontrivial check of our

computation, that all imaginary contributions to the classical observables cancel.

6.1 Leading and next-to-leading order impulse

At leading order, O(G), the impulse kernel is given by the tree level scattering amplitude

Iµ,(0)
p1

= qµ

p1

p2 p3

p4

. (6.7)

There is only the virtual contribution at this order, since the scattering amplitude starts

at O(G) and the real contribution is quadratic in the amplitude.

At next-to-leading order, O(G2), the impulse kernel receives both virtual and real

contributions. The transverse component is

I(1)
⊥ =

p1

p2 p3

p4

− i

∫
dΦ̃2

ℓ1 · q
q2

p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1

, (6.8)

and the longitudinal component is

I(1)
ui

=− i

∫
dΦ̃2 ℓ1 · ui

p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1

. (6.9)

In ref. [83] it was shown that the superclassical part of the one-loop virtual amplitude

cancels at the integrand level when expanded in the classical limit. Here, we offer an alter-

13The reality properties of (possibly) complex quantities should not to be confused with our nomenclature

of real, i.e. cut, contributions to various classical observables.
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native argument that will streamline the calculation of the kernel. The basic observation

is that the cut has a horizontal flip symmetry which does not change the sign of the in-

tegral. Thus one might average over the two different labellings of loop momenta, related

by ℓ1 ↔ q−ℓ1
1

2

[
ℓ1 · q

q2
+

(q − ℓ1) · q
q2

]
=

1

2
. (6.10)

This means that the transverse impulse numerator insertion is in fact constant and the

cut contribution can be related to the imaginary part of the amplitude via the unitarity

relation in eq. (C.5). Thus, by virtue of eqs. (6.10) and (C.5), all imaginary parts cancel

and we find that the transverse classical impulse kernel is given by the real part of the

one-loop amplitude,

I⊥ = Re




p1

p2 p3

p4




(6.11)

We will explicitly show in section 7.2, that at this order the superclassical pieces are

contained in the imaginary part of the amplitude. Roughly, this can be understood from

the fact that the imaginary part is related by unitarity (C.5) to a cut that corresponds to

the iteration of lower orders and therefore cancel in the impulse kernel.

The computation of the longitudinal kernels Iui
can also be simplified. We begin by

noting that the four velocities ui in the numerator insertions in eq. (6.9) satisfy ui·q=0.

Thus, we can express them in terms of the momenta of the scattering amplitude (see

the definition of the soft variables in section 3.1) as u1=(−p1+q/2)/m1 + O(q2) and

u2=(−p2−q/2)/m2 +O(q2), and we can write

ℓ1 · u1 =
−q2

4m1
+

[
(ℓ1 − p1)2 −m2

1

]− ℓ2
1

2m1
− (ℓ1 − q)2 − ℓ2

1

4m1
=
−q2

4m1
+ · · · ,

ℓ1 · u2 =
+q2

4m2
−
[
(ℓ1 + p2)2 −m2

2

]− ℓ2
1

2m2
+

(ℓ1 − q)2 − ℓ2
1

4m2
=

+q2

4m2
+ · · · .

(6.12)

We have used the on-shell conditions (ℓ1−p1)2−m2
1 = 0, (ℓ2−p2)2−m2

2=(ℓ1+p2)2−m2
2=0

and the · · · indicates contributions that pinch graviton propagators as well as quantum

suppressed terms, which can be ignored. At one-loop, the former yield short distance

matter contact terms which are irrelevant for widely separated black holes. The resulting

numerator is again loop-momentum independent. Using unitarity (C.5), we find that the

longitudinal impulse kernels are directly proportional to the imaginary part of the one-

loop amplitude. Collecting all the ingredients we obtain a more direct relation between the

impulse kernel and the scattering amplitude at this order

Iµ,(1)
p1

= qµ Re




p1

p2 p3

p4




+ i (−q2)

(
ǔµ

1

2m1
− ǔµ

2

2m2

)
Im




p1

p2 p3

p4




, (6.13)
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from which we learn that the impulse can be directly extracted from the virtual amplitude

without the need of evaluating any phase space integrals.

6.2 Next-to-next-to-leading order impulse

Next we discuss the simplifications at next-to-next-to-leading order, O(G3). We will focus

on the transverse part of the impulse and offer some comments about the longitudinal part.

6.2.1 Transverse part

At this order the transverse impulse kernel is given by

I(2)
⊥ = − i

∫
dΦ̃2

ℓ1 · q
q2




p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1

+

p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1




− i

∫
dΦ̃3

ℓ1 · q
q2

p1

p2 p3

p4

ℓX

ℓ2 − p2

ℓ1 − p1

. (6.14)

The three-particle cut in the second line always produces a real contribution. This cut

enjoys the same horizontal flip symmetry as the one-loop two-particle cut. Thus one might

once again average over the two different labellings of loop momenta as in eq. (6.10)

∫
dΦ̃3

ℓ1 · q
q2

p1

p2 p3

p4

ℓX

ℓ2 − p2

ℓ1 − p1

=
1

2

∫
dΦ̃3

p1

p2 p3

p4

ℓX

ℓ2 − p2

ℓ1 − p1

. (6.15)

The same considerations are valid for the real part of two-particle cuts. Any contribu-

tion and its horizontally flipped version combine to give a trivial impulse numerator upon

averaging as in eq. (6.10) such that

∫
dΦ̃2

ℓ1 · q
q2

Re




p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1

+

p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1




=
1

2

∫
dΦ̃2




p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1

+

p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1




.

(6.16)
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where we have dropped the restriction to the real part in the second line since the imaginary

parts cancel in the sum in the absence of a nontrivial numerator. Therefore, the three-,

and (real part of the) two-particle cut real contributions combine to cancel the imaginary

part of the virtual amplitude in the impulse kernel, by virtue of unitarity (C.6).

The remaining pieces are the real part of the virtual amplitude together with the

imaginary part of the two-particle cuts. The latter arises from the imaginary parts of the

one-loop amplitudes on either side of the cut, which have opposite sign. Once again, we

can simplify these by using one-loop unitarity (C.5) on the one-loop amplitude on the left

of the cut

Im




p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1




=
1

2

∫
dΦ̃2

p1

p2 p3

p4

ℓ4 − p2

ℓ3 − p1

ℓ2 − p2

ℓ1 − p1

, (6.17)

where the additional phase-space integration on the r.h.s. is over the newly cut legs, denoted

by ℓ3−p1 and ℓ4−p2. The contribution with the one-loop amplitude on the right of the cut

has the opposite sign. Combining both into a single term by choosing uniform labels we

find our final expression for the transverse impulse

I(2)
⊥ = Re





− i

∫
dΦ̃2

2

(ℓ1 − ℓ3) · q
2q2

p1

p2 p3

p4

ℓ4 − p2

ℓ3 − p1

ℓ2 − p2

ℓ1 − p1

. (6.18)

Eq. (6.18) provides a simplified prescription for the calculation of the impulse kernel, which

reveals among other things, that the purpose of the (real part of) two-particle and three-

particle cuts at this order is to cancel part of the imaginary part of the virtual amplitude.

The only non-trivial contribution of the cuts (i.e. the real part of the impulse kernel), take

the form of the cubed of the tree amplitude, which is reminiscent of the calculation of the

eikonal phase.

Eq. (6.18) also manifests the fact that the transverse impulse kernel is real, as re-

quired by the fact that its Fourier transform is the transverse impulse which is a physical

observable and hence also real. It also facilitates exposing the cancellation of certain quan-

tum contributions to the transverse impulse. For example, diagrams involving self-energy

corrections to virtual graviton propagators are quantum corrections (i.e. not relevant for

classical physics). Individual diagrams of this class can still be of order q0, i.e. naively of

classical order, according to the power counting rules in eqs. (4.1) and (4.2) arises from

a cancellation between the O(1/q2) dependence of the single graviton exchange and the

O(q2) quantum correction to the graviton propagator which yields a O(|q|0) contribution

that should cancel in the classical impulse kernel. Using the identity

p2 p3

p4p1

+

p3 p2

p4p1

=

p2 p3

p4p1

+O(|q|) , (6.19)

– 30 –



J
H
E
P
1
0
(
2
0
2
1
)
1
4
8

we learn that such contributions are imaginary and indeed absent in eq. (6.18). We note

that this integral only receives contributions from the “quantum soft” velocity region (see

eq. (3.7)). It would be interesting to explore whether the contributions from such region

can be consistently dropped at an earlier stage in the calculation without spoiling some of

the advantages of the full soft region computations.

In addition, eq. (6.18) allows us to show the integrand level cancellation of superclas-

sical terms. We first notice that all tree-amplitudes entering the iterated two-particle cut

are on the same footing and are functions M(σ, q2
i ) of the respective momentum transfer.

Only the on-shell delta functions break the invariance of the cut under the permutation of

the qi’s. However at leading order in the classical expansion we have

δ(p2
1−m2

1) δ((p1+q1)2−m2
1) δ((p1+q1+q2)2−m2

1) δ((p1+q1+q2+q3)2−m2
1)

= δ(p2
1−m2

1) δ(2p1 · q1) δ(2p1 · q2) δ(2p1 · q3) +O(|q|)
(6.20)

and likewise for the delta functions involving p2. Therefore, realizing that ℓ1−ℓ3=− q2 and

summing over the cyclic relabellings, we find

∫
dΦ̃2

2

(ℓ1 − ℓ3) · q
2q2

p1

p2 p3

p4

ℓ4 − p2

ℓ3 − p1

ℓ2 − p2

ℓ1 − p1

= −1

3

∫
dΦ̃2

2

(q1 + q2 + q3) · q
2q2

p1

p2 p3

p4

ℓ4 − p2

ℓ3 − p1

ℓ2 − p2

ℓ1 − p1

+O(q0)

= −1

6

∫
dΦ̃2

2

p1

p2 p3

p4

ℓ4 − p2

ℓ3 − p1

ℓ2 − p2

ℓ1 − p1

+O(q0) . (6.21)

The leading superclassical part of the virtual amplitude is purely contained in the planar

double-box diagram. The same symmetrization relation can be applied to this diagram.

Carefully keeping track of the iǫ in the denominators yields

δ(q1 + q2 + q3 + q)

q2
1q2

2q3
3

N (pi, qi)

3!

(
1

[(p1+q1)2−m2
1][(p1+q1 + q2)2−m2

1]
+ perms(q1, q2, q3)

)

×
(

1

[(p2−q1)2−m2
2][(p2−q1−q2)2−m2

2]
+ perms(q1, q2, q3)

)

=
1

6

N (pi, qi)δ(q1 + q2 + q3 + q)

q2
1q2

2q3
3

δ(2p1 · q1)δ(2p1 · q2)δ(−2p2 · q1)δ(−2p2 · q2) , (6.22)

which generates on-shell delta functions from the four matter propagators and cancels

against (6.21). Naively, there still remains a superclassical contribution in the virtual
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amplitude at O(|q|−1), but this can be shown to be purely imaginary so it is manifestly

absent in eq. (6.18).

An alternative, and perhaps more explicit, derivation of our simplified formulae pro-

ceeds by considering the contribution from each diagram in our integrand to eq. (3.9),

together with the cutting rules in appendix C. We now give an explicit example of such

proof focusing on the contribution of the III diagram to the impulse on the bottom matter

line. The impulse numerator combines into a scalar in the sum over the two two-particle

cuts as follows,

ℓ1 · q
q2

Re

[
ℓ1 ℓ2 ℓ3

]
+

(ℓ1 + ℓ2) · q
q2

Re

[
ℓ1 ℓ2 ℓ3

]

=
ℓ1 · q

q2
Re

[
ℓ1 ℓ2 ℓ3

]
+

(ℓ2 + ℓ3) · q
q2

Re

[
ℓ1 ℓ2 ℓ3

]

=
(ℓ1 + ℓ2 + ℓ3) · q

q2
Re

[
ℓ1 ℓ2 ℓ3

]
= Re

[
ℓ1 ℓ2 ℓ3

]
,

(6.23)

where we used ℓ1 +ℓ2 +ℓ3 = q in the last line. In the second term of the second line we used

the fact that the horizontal flip symmetry of the diagram is unaffected when considering

only the real part of the involved diagrams, despite the fact that the r.h.s. of the cut in

each diagram represents a complex conjugated amplitude. Similarly, the impulse numerator

combines into a scalar in the sum over the two three-particle cuts. Here we do not need

to take the real part because all these expressions are real by themselves, with tree-level

expressions on both l.h.s. and r.h.s. of the cuts.

(ℓ1 + ℓ2) · q
q2

ℓ1 ℓ2 ℓ3 +
ℓ1 · q

q2
ℓ1 ℓ2 ℓ3

=
(ℓ1 + ℓ2) · q

q2
ℓ1 ℓ2 ℓ3 +

ℓ3 · q
q2

ℓ1 ℓ2 ℓ3

=
(ℓ1 + ℓ2 + ℓ3) · q

q2
ℓ1 ℓ2 ℓ3 =

ℓ1 ℓ2 ℓ3

(6.24)

where we have again used the horizontal flip-symmetry of the cut diagram between the

second term on the first and second line. Having canceled the nontrivial impulse numerators

for both the three-particle cut and two-particle cut contributions, it can be seen that the

imaginary parts cancel between all contributions to eq. (2.17) originating from the III

diagram, using the three-term relation from Cutkosky rules given by eq. (C.16).
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6.2.2 Longitudinal part

Finally, we discuss briefly the simplification in the computation of the longitudinal part

of the impulse. Recall that neither part of the longitudinal impulse kernel receives virtual

contributions, Iui ,v = 0 and at this order the real contributions are

I(2)
ui

=−i

∫
dΦ̃2

ℓ1 · ui

q2




p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1

+

p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1




− i

∫
dΦ̃3

ℓ1 · ui

q2

p1

p2 p3

p4

ℓX

ℓ2 − p2

ℓ1 − p1

. (6.25)

The subsequent Fourier transform does not flip reality properties so that we find the follow-

ing is true for the longitudinal part of the impulse: three-particle cuts give real contribu-

tions to the impulse kernel. Every diagram and its horizontally flipped version contribute

equally, due to the identity

[ℓ− (q−ℓ)]·ui = 2ℓ · ui . (6.26)

The same considerations are valid for the real part of two-particle-cut contributions, so

every diagram and its horizontally flipped version contribute equally. For the imaginary

parts of double-cut contributions, an extra sign difference causes cancellation between each

diagram and its horizontally flipped version.

Therefore, to calculate the longitudinal impulse, we only need three-particle-cut contri-

butions and the real part of two-particle-cut contributions. Since the double-cut integrand

contains an overall factor of i, and only odd-in-|q| master integrals are needed for the lon-

gitudinal impulse, we only need the box-triangle master integral eq. (D.14) with a cut on

the box side as well as its horizontally flipped version.

7 Results

In this section, we present the results of our computation of the two classical gravitational

observables studied in this work: the impulse and the radiated momentum for the scattering

of two black holes both in N = 8 supergravity and in general relativity through O(G3).

For the maximally supersymmetric case, the study of this scattering process was initi-

ated in ref. [133], and revisited in ref. [81] in the conservative sector. The loop integrands

up to two-loops (or next-to-next-to-leading order) were constructed in ref. [81] by dimen-

sionally reducing the known massless loop integrands [134, 135], and are reproduced here.

7.1 LO impulse

Before discussing the impulse computation at loop level, for completeness, we give a light-

ening discussion of the leading order impulse, which is purely transverse (see eq. (6.7)) and
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basically the Fourier transform of the classical long-distance tree-level scattering amplitude

M(0)(p1, p2, p3, p4) = ct

p1

p2 p3

p4

M(0)
N =8(p1, p2, p3, p4) = (8πG)

(
s−|m1+m2eiφ|2

)2

−t
=(8πG)

4m2
1m2

2(σ− cos φ)2

−t

M(0)
GR(p1, p2, p3, p4) = (8πG)

(s−m2
1−m2

2)2−2m2
1m2

2

−t
=(8πG)

2m2
1m2

2(2σ2 − 1)

−t

(7.1)

An analogous leading order analysis has already been performed in the original work of

KMOC [83]. The impulse kernel is given by

I(0)
p1

= qµM(0)(p1, p2, p3, p4) (7.2)

In maximal supergravity, we discuss the scattering of non-identical scalars and include the

BPS angle φ [81, 133]. The factor s−|m1 + m2eiφ|2 = 2m1m2(cosh η− cos φ) expresses the

prefactor in terms of the relative rapidity η = arccosh(σ) between the two massive states.

Upon Fourier transforming to impact parameter space, we find the leading order im-

pulse in both theories

∆p
µ,(0)
1,N =8 =

GM2ν

|b|
4(σ− cos φ)2

√
σ2 − 1

bµ

|b|

∆p
µ,(0)
1,GR =

GM2ν

|b|
2(2σ2 − 1)√

σ2 − 1

bµ

|b| .
(7.3)

Our result in general relativity agrees with the earlier expressions derived in refs. [97, 98].

7.2 NLO impulse

At next-to-leading order, the structure of the one-loop classical amplitude is as follows

M(1)(p1, p2, p3, p4) = cIIIII + cXIX + ctri,1Itri,1 + ctri,2Itri,2

= cII

p1

p2 p3

p4

+cX

p1

p2 p3

p4

+ctri,1

p1

p2 p3

p4

+ctri,2

p1

p2 p3

p4

(7.4)

where ci are the rational coefficients of the loop integrals. As we will see, at the classical

level, the structure of the amplitude reveals that there is no difference between the con-

servative and radiative impulse at this order. The reason is that in general cII = cX so

the box and crossed box integral appear in the combination III + IX. Using the values of

these soft integrals computed in section. 5 and comparing to the values in the potential

region given e.g. in eqs. (4.54) and (4.59) of ref. [81] we see that the difference between soft

and potential region cancels in the sum. In addition the value of the triangle integral is

identical in both regions.
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7.2.1 N = 8 supergravity

Let us begin our one-loop discussion with the appropriate loop integrand for the scattering

of non-identical scalars [81, 133]

M(1)(1φ1 , 2φ2 , 3φ̄2
, 4φ̄1

) = −i(8πG)2
(
s− |m1 + m2eiφ|2

)4
(III + IX) (7.5)

where we use the same notation as in the tree-level analysis.

M(1)(p1, p2, p3, p4) =

≡cII︷ ︸︸ ︷
−i (8πG)216m4

1m4
2(σ− cos φ)4




p1

p2 p3

p4

+

p1

p2 p3

p4




(7.6)

Equipped with this integrand, we can soft expand both the III and IX integrals and plug the

resulting expressions into the impulse kernels eqs. (6.8) and (6.9) to obtain the transverse

and longitudinal components. Let us discuss the transverse part first. From the real term,

we only get a contribution from the cut of the box integral, where we have expanded the

impulse numerator in our preferred basis (6.4) and truncated at the classical order. On

the other hand, summing the box and cross-box is equivalent to a symmetrization of the

graviton loop momentum. This effectively cancels the real parts of the box and cross-

box integrals and sets on-shell the two matter propagators in the box and yields a purely

imaginary term in the virtual part of the impulse kernel which exactly cancels the cut

contribution so that we are left with

I(1)
⊥ = Re

[
M(1)(p1, p2, p3, p4)

]
= 0 , (7.7)

consistent with the general expectation of eq. (6.11). The fact that the real parts of the

one-loop amplitude is zero shows that there is no transverse deflection of the black hole

orbits at one loop in maximal supergravity. Ultimately, this is due to the no-triangle

property [136–139] which was also linked to the non-precession of black hole orbits in

ref. [133]. A similar cancellation of the imaginary parts in the impulse was shown in

ref. [83] for the electromagnetic impulse.

On the other hand, there is a contribution for the longitudinal impulse kernel. Naively,

one could have guessed that the longitudinal impulse numerators ℓ1 · ui, together with the

cut conditions of the matter lines do not yield a contribution. However, in accord with

the general expectation of eq. (6.13), due to subleading terms in the soft expansion there

remains a contribution. Alternative to the general expectation from eq. (6.13), we can

directly compute all diagrams in eqs. (6.8) and (6.9) using the explicit results for all soft

integrals from the previous section. This is quite instructive and will be used at higher

loops as well. Upon soft expansion and IBP reduction of the real longitudinal impulse

contributions, we find

Iu1 = −i
(−q2) cII

4m2
1m2

i

16π2
, Iu2 = +i

(−q2) cII

4m1m2
2

i

16π2
, (7.8)
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where the double line, again, denotes linearized soft propagators. The factor i/(16π2)

originates from the difference in normalization conventions between our soft integrals and

standard Feynman diagrams. The value of the cut soft box is given in eq. (5.12). Next, We

perform the Fourier transform (2.11) to impact parameter space, using the results collected

in appendix A to arrive at the final (purely longitudinal) result for the impulse

∆p
µ,(1)
1 =

G2M4ν2

|b|2
8 (σ − cos φ)4

(σ2 − 1)

[
1

m1
ǔµ

1 −
1

m2
ǔµ

2

]
. (7.9)

Note that we can replace the soft velocities in ǔ by the usual ones for free, since all

superclassical pieces have canceled and we only need the leading in q terms.

We would like to mention that at one loop order, the impulse is the same in the soft

and potential region and receives no radiative contributions at the classical order. This

is owed to the fact that soft bubble integrals (that vanish in the potential region) only

contribute at higher orders in the ~ expansion and are therefore irrelevant. This also

allows us to compare the one-loop impulse to the conservative result obtained from the

scattering angle [81], finding full agreement. The extraction of the conservative impulse

from the scattering angle is reviewed in appendix B, where it becomes clear that the

(conservative) longitudinal impulse is completely dictated by lower-order information due

to on-shell conditions.

7.2.2 General relativity

Next, we consider general relativity. In principle, the same computational tools that led

to all results in maximal supergravity are also applicable here. The only complication

originates from a more complex loop integrand and more contributing soft master integrals.

Just like in maximal supergravity, we begin our discussion of the one-loop impulse

with the relevant integrand, which is known from e.g. [133, 134]. Notably, we find that at

one loop in D = 4 there is no distinction between the conservative result and the full soft

region and it suffices to consider the following covariant diagrams

M(1)(p1, p2, p3, p4) = cIIIII + cXIX + ctri,1Itri,1 + ctri,2Itri,2

= cII

p1

p2 p3

p4

+ cX

p1

p2 p3

p4

+ ctri,1

p1

p2 p3

p4

+ ctri,2

p1

p2 p3

p4

(7.10)

where Itri,i is the triangle with matter propagator of mass mi, and the coefficients are

cII = cX = −i(8πG)24m4
1m4

2(1− 2σ2)2 , ctri,i = −i(8πG)2 3m2
1m2

2 m2
i (1− 5σ2) (7.11)

We could proceed with the general relation in eq. (6.13), however, here we explicitly check

its validity by soft expanding eqs. (6.8) and (6.9). Subsequently, we insert the explicit

results for all soft integrals from the previous section.

Let us begin by discussing the transverse part of the impulse, that has in principle two

contributions, one from the virtual amplitude and one from the real piece. In the impulse
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formula, only the box diagram contributes to the cut and by the same reasoning as in

N = 8, it just cancels the virtual boxes and we are left with only triangle contributions

I(1)
⊥ =

ctri,1

m1

i

16π2

p1

p2 p3

p4

+
ctri,2

m2

i

16π2

p1

p2 p3

p4

, (7.12)

where the linearized triangle is given in eq. (5.8) and we have again taken into account the

standard normalization of Feynman integrals leading to the additional factor of i/(16π2).

The transverse impulse kernel therefore reads

I(1)
⊥ = (−q2)−ǫ 6 iπ2 G2m2

1m2
2(m1 + m2)(1− 5σ2)√
−q2

. (7.13)

From the kernel we can easily calculate the transverse impulse via (2.11)

∆p
µ,(1)
1,⊥ =

G2M3ν

|b|2
3π

4

(5σ2 − 1)√
σ2 − 1

bµ

|b| (7.14)

The remaining longitudinal impulse computation is essentially identical to the one in maxi-

mal supergravity, as only the box integral has the two-particle cut. Consequently, we simply

have to replace the box coefficient cII in eq. (7.8) by its pure gravity counterpart (7.11)

∆p
µ,(1)
1,u =

G2M4ν2

|b|2
2 (1− 2σ2)2

(σ2 − 1)

[
1

m1
ǔµ

1 −
1

m2
ǔµ

2

]
, (7.15)

so that the leading high-energy limit (σ ≫ 1) of the longitudinal impulse coincides between

GR and maximal supergravity.

This concludes our one-loop calculation of the gravitational impulse within the KMOC

formalism. We agree with previous results [45, 99, 100, 140] that can also be obtained from

the scattering angle only (see appendix B), since conservative and soft region results are

identical in D = 4 up to classical order.

7.3 NNLO conservative impulse

Before deriving novel results in the full soft region, it turns out that we can test our two-

loop setup by reproducing known results for the conservative dynamics from the KMOC

point of view. This can be done by performing the calculation in the potential region,

defined in eq. (3.7). If we separate the impulse into conservative and radiative pieces

∆pµ
1 = ∆pµ

1 ,cons. + ∆pµ
1 ,rad , (7.16)

the potential region only captures the conservative contribution, ∆pµ
1 ,cons..

In the potential region, the gravitons are off-shell and therefore there cannot be real

(on-shell) graviton emission. Hence, only the virtual integrals and the contribution from

two-particle cuts to the real impulse kernel in eq. (6.14) survive. Furthermore the “mush-

room” integrals are identically zero in the potential region, and hence do not contribute to
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any conservative quantity. All the remaining integrals can be evaluated using the differen-

tial equations of sections 3.3 and 5, although with modified boundary conditions appropri-

ate for the potential region as originally described in ref. [81]. Reproducing the conservative

impulse [45] and the scattering angle [41, 43] constitutes a highly nontrivial check of the

most complicated parts of our assembly.

7.3.1 N = 8 supergravity

The two-loop integrand of maximally supersymmetric gravity is obtained by dimensional

reduction of the massless integrand [135] with the following result [81]

M(2) = −(8πG)316m4
1m4

2(σ − cos φ)4×
{

4m2
1m2

2(σ− cos φ)2




p1

p2 p3

p4

+
p1

p2 p3

p4

+
p1

p2 p3

p4




+ (−q2)2




p1

p2 p3

p4

+

p1

p2 p3

p4

+

p1

p2 p3

p4

+

p1

p2 p3

p4

+

p1

p2 p3

p4




+ (2↔ 3) ,

}

(7.17)

where (2 ↔ 3) instructs to add terms with p2 and p3 interchanged. This integrand is the

complete quantum integrand for the supergravity amplitude, and hence is valid both for

conservative dynamics, as well as in the full soft region discussed below. Note that the final

four scalar diagrams are quantum suppressed in N = 8 because they are accompanied by

the q4 prefactor and only the H-diagram survives.

Upon classically expanding the integrand (in |q| or ~), subsequent IBP reduction to a

set of soft master integrals, and inserting the appropriate values for both the virtual and

cut pieces evaluated in the potential region, we find the impulse kernels

I(2)
⊥,cons = −(−q2)−2ǫ

ǫ

16 π G3 m2
1m2

2 (σ− cos φ)4

√
σ2 − 1

[
(σ− cos φ)2 s

(σ2 − 1)3/2
+ 4m1m2 arcsinh

√
σ − 1

2

]

I(2)
u1,cons = I(2)

u2,cons = 0 . (7.18)

Note that three particle cuts are zero in the potential region, as the internal graviton lines

are never on-shell. As expected, the superclassical terms in the transverse impulse kernel

cancel between the virtual diagrams and two-particle cuts. Furthermore, the longitudinal

impulse kernel does not receive a virtual contribution and vanishes due to a cancellation be-

tween the two-particle cuts of double boxes and crossed double boxes. Fourier transforming

to impact parameter space yields

∆p
µ,(2)
1,cons = −G3M4ν

|b|3
16 (σ− cos φ)4

(σ2 − 1)

bµ

|b|

[
(σ− cos φ)2 h2(σ, ν)

(σ2 − 1)3/2
+ 4ν arcsinh

√
σ − 1

2

]
. (7.19)
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7.3.2 General relativity

We can repeat a similar conservative two-loop analysis for pure gravity. The integrand

is more complicated than (7.17) and contains additional diagrams but has already been

constructed previously in refs. [41, 43], and reproduced by the present authors using gen-

eralized unitarity. It only involves the cubic graphs in the first row of figure 5. Taking said

integrand, expanding it in the classical limit, reducing to a minimal set of master integrals

and inserting the appropriate potential region values of the master integrals [81] allows us

to obtain the impulse kernels

I(2)
⊥,cons = (−q2)−2ǫ 2πG3m2

1m2
2

ǫ

[
s

(
16σ2 − 1

(σ2 − 1)2

)
(7.20)

− 4

3
m1m2 σ

(
14σ2 + 25

)
+ 8m1m2

(
−4σ4 + 12σ2 + 3

) arcsinh
√

σ−1
2√

σ2 − 1

]
,

I(2)
u1,cons = i(−q2)

1
2

−2ǫ 12π2 G3 m2
1m3

2(m1+m2)
(
2σ2 − 1

) (
5σ2 − 1

)
√

σ2 − 1
, (7.21)

I(2)
u2,cons = −i(−q2)

1
2

−2ǫ 12π2 G3 m3
1m2

2(m1+m2)
(
2σ2 − 1

) (
5σ2 − 1

)
√

σ2 − 1
. (7.22)

Fourier transforming to impact parameter space, we obtain

∆p
µ,(2)
1,⊥,cons =

G3M4ν

|b|3
2√

σ2−1

bµ

|b|

[
h2(σ, ν)

(
16σ2 − 1

(σ2 − 1)2

)
(7.23)

− 4

3
ν σ

(
14σ2 + 25

)
− 8ν

(
4σ4 − 12σ2 − 3

) arcsinh
√

σ−1
2√

σ2 − 1

]

The conservative impulse has a logarithmic divergence at high energies, corresponding to

that in the scattering angle of refs. [41, 43]. By comparing to the maximal supergravity

result we find that the coefficient is universal in agreement with ref. [81]. We will come

back to this point when considering the full impulse including radiation reaction.

The longitudinal impulse is

∆p
µ,(2)
1,u,cons =

G3M5ν2

|b|3
3π
(
2σ2−1

) (
5σ2−1

)

2 (σ2 − 1)

[
1

m1
ǔµ

1 −
1

m2
ǔµ

2

]
. (7.24)

We note that the longitudinal part of the conservative impulse does not contain new in-

formation. Its purpose at a given order in G is to ensure that the energy transfer between

the two particles is such that they remain on-shell after transverse deflection at previous

orders. In other words, the longitudinal impulse is the solution to the equation

0 = (p1 + ∆p1)2 −m2
1 = p1 ·∆(1)p1 +

(
∆(0)p1

)2
(7.25)

which must be satisfied at each order in G. This was used in [46] to obtain the O(G3)

longitudinal impulse in General relativity. In contrast our result in eq. (7.24) follows from

direct calculation and eq. (7.25) serves as a check on our methodology.
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7.4 NNLO radiative impulse

7.4.1 N = 8 supergravity

For the radiative impulse in maximal supergravity, we start from the full integrand in

eq. (7.17) obtained via dimensional reduction. Upon soft expansion of the integrand,

subsequent IBP reduction to a set of soft master integrals, and inserting the appropriate

values for both the virtual and cut pieces, we find the following impulse kernels

I(2)
⊥ = 4π

(−q2)−2ǫ

ǫ
G3m3

1m3
2

[(
f1(σ, φ)− 4s(σ− cos φ)6

m1m2(σ2 − 1)2

)

+
(
σf3(σ, φ)−16(σ− cos φ)4

) arcsinh
√

σ−1
2√

σ2 − 1

]
, (7.26)

I(2)
u1

= 0

I(2)
u2

= i(−q2)
1
2

−2ǫ8π2G3m3
1m3

2

√
σ2 − 1

[
f1(σ, φ) + f2(σ, φ) log

(
σ + 1

2

)

+ f3(σ, φ)
σ arcsinh

√
σ−1

2√
σ2 − 1

]
, (7.27)

where we highlight the terms that were already present in the conservative impulse in

eq. (7.19) in blue and we use s=m2
1+m2

2+2m1m2 σ in some terms for compactness. We

also define the convenient coefficient functions that depend on σ and the BPS angle φ

f1(σ, φ) =
8(σ − cos φ)6

(σ2 − 1)3/2
, f2(σ, φ) = −8(σ − cos φ)4

√
σ2 − 1

,

f3(σ, φ) =
16(σ − cos φ)5(σ2 + σ cos φ− 2)

σ (σ2 − 1)3/2
.

(7.28)

We would like to point out that all superclassical terms have cancelled in the impulse kernel

directly. For the leading superclassical terms in the transverse impulse, this is due to the

simple argument given in section 6. The fact that all other superclassical terms likewise

cancel, serves as a further cross-check of our setup. For the longitudinal impulse, the

cancellation is very simple and occurs when we add up the three-particle cuts of integrals

III (planar double-box) and IX (nonplanar double-box) and combine them with the three-

particle cut of the u-channel IX.

Performing the Fourier transform to impact parameter space, and subtracting the

conservative contribution in eq. (7.19) the impulse on particle 1 is

∆p
µ,(2)
1,rad =

G3M4ν2

|b|3

{
4√

σ2 − 1

bµ

|b|

[
f1(σ, φ) + f3(σ, φ)

σ arcsinh
√

σ−1
2√

σ2 − 1

]

+ π ǔµ
2

[
f1(σ, φ) + f2(σ, φ) log

(
σ + 1

2

)
+ f3(σ, φ)

σ arcsinh
√

σ−1
2√

σ2 − 1

]}
.

(7.29)
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Note that due to the absence of transverse deflection at O(G2), the full longitudinal deflec-

tion in ∆p
µ,(2)
1 is purely radiative and along the ǔµ

2 direction. At this point we note that

the same coefficient functions f1, f3 encode both the transverse and longitudinal compo-

nents of the radiative impulse, except for the novel radiative term associated with log σ+1
2

which arises from the H diagram. This will be compared to general relativity case in the

next subsection.

The relation between the radiative contribution to the angle and the radiative impulse

at this order is given in eq. (B.14), so we recognize

χ
(2)
rad =

G3M3ν

|b|3
4h(σ, ν)

σ2 − 1

[
f1(σ, φ) + f3(σ, φ)

σ arcsinh
√

σ−1
2√

σ2 − 1

]
(7.30)

This can be compared to the result for the result with φ = π/2 calculated using eikonal

methods in [101, 103], finding full agreement.

7.4.2 General relativity

The computation of the impulse in general relativity is rather involved, starting with the

more complicated form of the integrand, whose construction was outlined in section 4.1. We

employ the same soft expansion, IBP and differential equation technology described above

where all virtual and cut master integrals are evaluated in the soft region. Assembling all

the pieces, we find the GR impulse kernels

I(2)
⊥ = 4π

(−q2)−2ǫ

ǫ
G3m2

1m2
2

[
s

(
8σ2 − 1

2 (σ2 − 1)2

)
(7.31)

+ m1m2

(
fLS

1 (σ)−2

3
σ(14σ2 + 25)

)

+ m1m2

(
σfLS

3 (σ)−4
(
4σ4 − 12σ2 − 3

)) arcsinh
√

σ−1
2√

σ2 − 1

]
,

I(2)
u1

= 8π2i(−q2)
1
2

−2ǫG3 m3
1m3

2

[
(m1+m2)

m1

3(2σ2 − 1)(5σ2 − 1)

2
√

σ2 − 1

]
, (7.32)

I(2)
u2

= 8π2i(−q2)
1
2

−2ǫG3 m3
1m3

2

[
−(m1+m2)

m2

3
(
2σ2 − 1

) (
5σ2 − 1

)

2
√

σ2 − 1
(7.33)

+
√

σ2 − 1


f1(σ) + f2(σ) log

(
σ + 1

2

)
+ f3(σ)

σ arcsinh
√

σ−1
2√

σ2 − 1



]

,

where the coefficient functions are given by

fLS
1 (σ) = −(2σ2 − 1)2(5σ2 − 8)

3(σ2 − 1)3/2
,

fLS
3 (σ) =

2(2σ2 − 1)2(2σ2 − 3)

(σ2 − 1)3/2
,

f1(σ) =
210σ6 − 552σ5 + 339σ4 − 912σ3 + 3148σ2 − 3336σ + 1151

48 (σ2 − 1)3/2
,
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f2(σ) = −35σ4 + 60σ3 − 150σ2 + 76σ − 5

8
√

σ2 − 1
,

f3(σ) =

(
2σ2 − 3

) (
35σ4 − 30σ2 + 11

)

8(σ2 − 1)3/2
. (7.34)

After taking the Fourier transform in eq. (2.11) and subtracting the conservative result in

eqs. (7.23) and (7.24) we obtain the following result for the radiative impulse in general

relativity

∆p
µ,(2)
1,rad =

G3M4ν2

|b|3

{
4√

σ2−1

bµ

|b|

[
fLS

1 (σ)+fLS
3 (σ)

σ arcsinh
√

σ−1
2√

σ2−1

]

+π ǔµ
2

[
f1(σ)+f2(σ) log

(
σ +1

2

)
+f3(σ)

σ arcsinh
√

σ−1
2√

σ2−1

]}
.

(7.35)

The structure is very similar to the result in maximal supergravity. However, unlike in the

case of supergravity, where the longitudinal and transverse impulse was controlled by the

same algebraic functions fi, in general relativity, the structure is different. Interestingly,

the radiative transverse impulse is captured by algebraic functions fLS
i that purely encode

leading soft (LS) dynamics of gravitons [103]. In hindsight, the fact that in N = 8 su-

pergravity the leading soft theorem also controls most of the longitudinal impulse can be

understood as a consequence of the no-triangle property of theories with maximal super-

symmetry [136–139]. In the absence of triangles the Weinberg soft factor exactly captures

the contributions from all diagrams where the radiated gravitons are emitted from a matter

leg. Thus the only new contribution can arise from the H diagram, which indeed produces

the term with log σ+1
2 , as pointed out above.

Using eq. (B.14) we obtain the radiative contribution to the scattering angle in general

relativity

χ
(2)
rad =

G3M3ν

|b|3
4h(σ, ν)

σ2 − 1

[
fLS

1 (σ) + fLS
3 (σ)

σ arcsinh
√

σ−1
2√

σ2 − 1

]
. (7.36)

This result agrees with the computation by Damour in ref. [102] via a linear response

formula derived in ref. [141]. This was later reproduced in [103] using a beautiful relation

between the real part of the eikonal and the infrared divergence in its imaginary part.

Such relation was proven for N = 8 supergravity by explicit computation and conjectured

more generally.

7.5 LO radiated momentum

Besides the gravitational impulse, considered in the previous subsections, we are also able

to compute the radiated momentum, both in general relativity and maximal supergravity.

This observable starts at O(G3) and is related to the energy loss, which has been the subject

of our short letter [85] and we present them here just for completeness. In the KMOC setup,

the radiated momentum can be obtained either directly by considering the expression in

subsection 2.2, or from momentum conservation and the impulse on particles 1 and 2,

0 = ∆Rµ + ∆pµ
1 + ∆pµ

2 (7.37)
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For us, it was originally easier to obtain the radiated momentum directly, as it only involves

the three-particle cut of two-loop diagrams at O(G3) and therefore requires fewer terms in

the full soft integrand. We found the following result in D = 4

∆Rµ =
G3m2

1m2
2

|b|3
uµ

1 + uµ
2

σ + 1
E(σ) +O(G4) , (7.38)

where we define

E(σ)

π
= f1(σ)+f2(σ) log

(
σ+1

2

)
+f3(σ)

σ arcsinh
√

σ−1
2√

σ2−1
, (7.39)

with the theory dependent coefficient functions fi(σ). This analytic structure is directly

inherited from the longitudinal part of the radiative impulse, computed in section 7.4,

by momentum conservation. As was pointed out in refs. [13, 18], the homogeneous mass

dependence in eq. (7.38) signals that the result is entirely specified by the probe limit

m1 ≪ m2. Note that the radiated momentum in eq. (7.38) is purely longitudinal and

yields the energy radiated as gravitational waves. In the center-of-mass (c.m.) frame of

the hyperbolic motion, we find

∆Ehyp =
(p1+p2) ·∆R

|p1+p2|
=

G3M4ν2

|b|3 h(ν, σ)
E(σ)+O(G4) . (7.40)

From the scattering result of eq. (7.40), we obtain the energy loss for elliptic (bound) orbits

via analytic continuation [11–13] of the result

∆Eell(σ, J) = ∆Ehyp(σ, J)−∆Ehyp(σ,−J) , (7.41)

from the physical region σ > 1 to the Euclidean region σ < 1, where σ is related to the

dimensionless binding energy E=h(ν,σ)−1
ν <0 [13]

∆Eell(σ, J) =
G3M7ν5(1− σ2)

3
2

J3 h(ν, σ)4
Ẽell(σ) +O(G4) , (7.42)

where Ẽ takes the same general form as eq. (7.39) [85] and has the expected simplified ν

dependence previously observed in ref. [13]. From our perspective, this is simply inherited

from the analytic continuation of the hyperbolic result.

As stated previously, the explicit result for radiated momentum in eq. (7.38) has been

obtained in ref. [85], where the theory specific coefficient functions in general relativity are

the same that appear in the impulse computation, cf. eq. (7.34). The energy loss for a black

hole scattering event can be expanded in small velocity v=
√

σ2−1
σ and compared to known

Post-Newtonian (PN) data, finding agreement with the result known up to 2PN [13, 18,

142]. We furthermore compared the small velocity expansion of the energy loss in elliptic

orbits in eq. (7.42) to the 3PN expressions for the instantaneous energy flux integrated

over one orbit from refs. [142–150] in the large eccentricity limit, i.e. to leading order in

large J , again finding perfect agreement with the PN data where our results overlap. After

ref. [85] appeared, Bini, Damour, and Geralico, informed us privately of their computation
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in the small velocity limit up to O(v15) which appeared in ref. [151], also agreeing with

our result. Additionally, refs. [23, 24] verified the low-velocity limit up to O(v4) and O(v7)

respectively, from a world-line EFT perspective, and ref. [105] reproduced our result with

full velocity dependence using methods similar to ref. [85].

Finally, the radiated energy also appears in the tail term [13, 152, 153] of the O(G4)

radial action, which has been recently obtained by ref. [51] by an independent computation.

Comparing eq. (7.40) to that expression, we find full agreement.

7.6 Comments on universality and relation to eikonal phase

It is interesting to study the high energy limit of the gravitational observables considered

in this work. Famously, the leading order observables are universal in this limit [154].

Similarly, the gravitational deflection angle has been observed to have universal properties

at O(G3) [77, 81, 101, 102, 155], so it is natural to ask whether or not the same is true for

the gravitational impulse.

Recombining the radiative impulse in eq. (7.29) with the conservative impulse in

eq. (7.19), we can study the high-energy (σ ≫ 1) limit of the full result. The leading

high-energy pieces cancel between radiative and conservative contributions, consistent with

previous observations [101].

∆p
µ,(2)
1 =

G3M4ν

|b|3
([

16(2ν−1)σ +O(σ0)
] bµ

|b| +
[
8π ν(1+2 log 2)σ3 +O(σ2)

]
ǔµ

2

)
, (7.43)

where it is interesting to note that the leading nonzero terms are independent of the BPS

angle φ. On the other hand, taking the limit of our general relativity result we find

∆p
µ,(2)
1 =

G3M4ν

|b|3
([
− 32(2ν−1)σ+O(σ0)

] bµ

|b| +
[35

8
π ν(1+2 log 2)σ3+O(σ2)

]
ǔµ

2

)
. (7.44)

The logarithmic high-energy divergence in the conservative impulse cancels, as ex-

pected [101, 102], once radiation reaction effects are included. Interestingly, by compar-

ing (7.44) to the maximal supergravity result (7.43), we find that the universality of the

scattering angle (including radiation reaction) described in ref. [101] does not hold for the

full impulse (both in the transverse and longitudinal directions), due to a cancellation

between the leading conservative and radiative contributions. However, computing the

angle from the impulse requires taking into account products of lower-order terms which

restore the previously observed universality of the high-energy limit of the scattering an-

gle [101, 102]

χ
(2)
HE,GR = χ

(2)
HE,N =8 =

32G3m3
1m3

2σ3

3J3
=

[
χ

(0)
HE,GR

]3

3!
. (7.45)

Here, we have written the result in terms of the angular momentum J = |b||p| =

|b|Mν
√

σ2−1
h(σ,ν) and note that subleading terms in the large σ expansion differ between

both theories.

It is also interesting to consider the relation between the transverse impulse, ∆p1,⊥
obtained in our calculation and the corresponding quantity derived from the eikonal ap-

proach in refs. [103, 105]. Comparing their conjecture for the real part of the two-loop
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eikonal phase to the transverse impulse (best seen from eq. (7.31)), all but one velocity

dependent factors agree (up to some overall scaling due to the distinction between the two

quantities). The only difference is related to the s-dependent term in the first line of (7.31)

and is due to the difference between the asymptotic impact parameter b and the eikonal

one, be (see eq. (B.11)), which yields a correction proportional to
[
χ(0)

]3
. Indeed, rewriting

our result for the transverse impulse in terms of the eikonal impact parameter we find in

N = 8 supergravity

∆p
µ (2)
1 ,⊥ (be) =

G3M4ν

|be|3
4√

σ2 − 1

bµ
e

|be|

[
f1(σ, φ)

+
(
σf3(σ, φ)− 16(σ− cos φ)4

) arcsinh
√

σ−1
2√

σ2 − 1

]
, (7.46)

where the
[
χ(0)

]3
correction cancels the terms proportional to s in the conservative part of

the impulse of N = 8 in eq. (7.19). In general relativity

∆p
µ (2)
1 ,⊥ (be) =

G3M4ν

|be|3
4√

σ2 − 1

bµ
e

|be|

[
h2(σ, ν)

(
8σ2 − 1−(2σ2 − 1)3

2 (σ2 − 1)2

)
(7.47)

+ ν

(
fLS

1 (σ)− 2

3
σ(14σ2 + 25)

)

+ ν
(
σfLS

3 (σ)− 4
(
4σ4 − 12σ2 − 3

)) arcsinh
√

σ−1
2√

σ2 − 1

]
, (7.48)

where we have denoted in red the correction due to the change of variables from b to be.

Taking the high energy limit holding be fixed restores universality in the transverse impulse

∆p
µ (2)
1 ,⊥ (be) =

32G3M4ν2σ2

|be|3
bµ

e

|be|
+O(σ) , (7.49)

which now arises from the
[
χ(0)

]3
correction introduced by the alternative choice of impact

parameter. Note however that the impulse now grows as σ2, rather than σ in the transverse

part of eq. (7.44).

After this change of variables, we observe that, up to this order, the transverse impulse

in N = 8 supergravity agrees with that in refs. [103, 105] which is given in terms of the

Real part of the eikonal phase, δ(be), as14

∆pµ
1 ⊥(be) = −∂ Re δ(be)

∂be,µ
(7.50)

The same relation is true if we compare to the conjectured result for the eikonal phase in

general relativity from refs. [103, 105], thus proving their conjecture. It would be interesting

to verify it again directly by calculating the eikonal phase using the results from this work.

This findings suggest a more general relation between the transverse impulse kernel and

the eikonal phase which warrants further investigation.

14This is denoted by Qµ in ref. [105].
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Regarding the longitudinal part of the impulse, or the energy loss, we can study our full

velocity dependent expressions in the ultra-relativistic limit σ →∞ of eq. (7.39). In N = 8

supegravity, we found the result for a single BPS angle [133] which has the structure of

eqs. (7.39) and (7.34) with the appropriate φ-dependent coefficient functions already defined

in eq. (7.28). The fi in eq. (7.28) agree with our previous expressions [85] for φ = π/2. As

in pure gravity, the ultra-relativistic limit σ →∞ of the radiated momentum is controlled

by the combinations f1 and −f2 + f3/2

E(σ) = 8π(1 + 2 log 2)σ3 +O(σ2) , (7.51)

with the leading high-energy term being independent of φ. Similarly, in general relativity

E(σ) =
35

8
π(1 + 2 log 2)σ3 +O

(
σ2
)

. (7.52)

Note that the apparent logarithmic divergence cancels in both cases. The high-energy

limit of the general relativity energy loss can be compared to the prediction by Kovacs and

Thorne [18], based upon the numerical probe calculation by Peters [14]. Our expression

agrees structurally with [18], but disagree in the numerical coefficient. After ref. [85]

appeared, we were informed of a numerical computation of the high-energy coefficient,

which appeared in ref. [151] and agrees with our analytic result.

Although the high-energy limit does not coincide ins eqs. (7.51) and (7.52) in its

rational prefactors (8 vs. 35/8), we noted in ref. [85] that the ratio of the logarithmic

(log 2) and non-logarithmic contributions is universal. Ultimately, it might not be too

surprising that the radiated momentum depends on the theory content, since the number

of massless messengers that can be radiated change between the two theories which suggests

the bigger overall coefficient in maximal supergravity. Note that, in any case, our results

are only valid for σ ≪ (GEcm/b)−1, beyond which perturbation theory breaks down. For

large enough σ, according to eq. (7.52), the radiated energy exceeds the incoming energy,

which, of course, is unphysical. Resolving this issue requires to account for destructive

interference from multi-graviton emissions, which cuts off the spectrum of gravitational

waves at high-frequency,15 as explained in refs. [78, 79, 156].

8 Conclusions

In this work, we have employed the general formalism devised by Kosower, Maybee, and

O’Connell (KMOC) to extract classical gravitational observables for the scattering of spin-

less black holes up to O(G3), or third Post-Minkowskian order. This framework naturally

includes radiative effects and goes beyond the much-discussed conservative binary dynam-

ics. The presence of the gravitational interaction between the two massive black holes

has two key physical effects, 1) a deflection and momentum shift on the individual black

holes which is related to the gravitational impulse, and 2) the emission of gravitational

Bremsstrahlung which is related to the radiated momentum. In our previous work, we have

15We thank Gabriele Veneziano for discussions on this point.
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already presented the radiated momentum in general relativity and maximal supersym-

metric gravity (N = 8 SUGRA). Here, we also present expressions for the impulse (which

is related to the scattering angle) in both theories.

In order to render the general KMOC framework a practical computational tool, we

have incorporated a number of ideas from collider physics to handle virtual Feynman

integrals together with phase-space integration. Starting from generalized unitarity to

construct loop integrands from gauge-invariant on-shell quantities, we employ the method

of regions to facilitate the classical expansion. The relevant Feynman diagrams can be

reduced to a minimal set of master integrals with the help of integration-by-parts identities.

Using reverse unitarity we treat virtual and phase-space integrals on the same footing. At

the end of the reduction step, we are left with a small set of independent integrals. In

order to evaluate the master integrals, we solve a set of (canonical) differential equations,

where the main complication is reduced to the computation to the boundary values of the

master integrals. Making available all analytic expressions for the soft master integrals,

we assemble the classical impulse and radiative momentum observables in both GR and

maximal supergravity. Our results include the full radiation effects at O(G3), but we have

also reproduced the conservative gravitational impulse in GR, matching known results.

From the impulse and the radiated momentum, we can derive the radiative scattering angle

and the energy loss. Since our results are valid to all orders in the velocity, we are able to

check against different regimes in the literature and compare against the Post-Newtonian

computations by expanding our results in small velocity as well as against high-energy

expectations. We find agreement with all known results where they overlap.

We have compared our results to the eikonal approach in refs. [103, 105] and found that

the transverse impulse, when written in the appropriate variables is directly connected to

the eikonal phase. This shows that the conjectured relation between the real and imaginary

parts of the eikonal phase, put forward in ref. [103], is also valid in general relativity. It

also suggest suggests a more general relation between the transverse impulse kernel and

the eikonal phase which warrants further investigation.

For the classical quantities considered here, we performed the full phase-space integra-

tion over all intermediate particles appearing in the KMOC setup, without imposing any

further restrictions (or phase space cuts). In principle, the reverse unitarity method can

also be adjusted to incorporate additional measurements on the final state particles [86–

88]. One can envision a similar adaptation to the gravitational setup to measure more

exclusive observables, such as the radiated energy spectrum or the angular distribution

of the radiated momentum. These quantities depend on more scales and we leave their

discussions to future work.

Besides attempting similar computations at higher orders in Newton’s constant and

the discussion of more exclusive observables, it would also be interesting to generalize the

O(G3) computation for spinning observables as well as to include tidal effects. Since all

relevant master integrals are known, the only remaining change requires the construction of

more complicated loop integrands. Since this step is very mature and can be automatized

and streamlined via generalized unitarity, it should be possible to tackle such observables

in the near future.
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A Fourier transform formulae

The final step of the classical impulse and radiated momentum computation involves the

evaluation of Fourier transform integrals of the kind

f̃α(b2) = i

∫
d̂Dq δ̂(−2m1u1 · q)δ̂(2m2u2 · q) eiq·b (−q2)−α , (A.1)

f̃µ
α (b2) = i

∫
d̂Dq δ̂(−2m1u1 · q)δ̂(2m2u2 · q) eiq·b qµ(−q2)−α . (A.2)

These are simply related by differentiation f̃µ
α (b2) = −i∂f̃α(b2)/∂bµ, so we need only con-

sider fα(b2). It is convenient to use a Sudakov decomposition of the D-dimensional Lorentz

vector qµ,

qµ = x1uµ
1 + x2uµ

2 + q
µ
⊥ , (A.3)

where q
µ
⊥ points in the (D − 2)-dimensional subspace transverse to u1, u2. With this

parametrization the integral above becomes

f̃α(b2) =
i

4m1m2

√
y2 − 1

∫
d̂D−2q⊥d̂x1d̂x2δ̂(x1)δ̂(x2)eiq·b (−q2)−α

=
i

4m1m2

√
y2 − 1

∫
d̂D−2q⊥e−iq⊥·b⊥(q2

⊥)−α .

(A.4)

so that the delta functions localize two of the integration variables and force the momentum

transfer into the D − 2 dimensional transverse subspace. Note that the impact parameter

is always transverse so b2
⊥ = −b2 ≡ |b|2. The remaining Fourier transform is elementary

and we obtain

fα(b2) =
i

m1m2

√
y2 − 1

Γ (D/2− 1− α)

22α+2(π)
D−2

2 Γ (α)

1

|b|D−2−2α
,

fµ
α (b2) = − 1

m1m2

√
y2 − 1

Γ (D/2− α)

22α+1(π)
D−2

2 Γ (α)

bµ

|b|D−1−2α
.

(A.5)
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B Gravitational impulse and scattering angle

The gravitational impulse ∆pµ
i describes the deflection of gravitationally interacting par-

ticles along the entirety of their hyperbolic trajectory. Another basic observable for such a

scattering process is the scattering angle χ in the center-of-mass frame. In this appendix

we describe the relation between these two observables.

Let us begin by considering a conservative scattering process. In this case, ∆pµ
i, cons.

and χcons. are exactly equivalent and contain the same information. It is well known how

to relate the scattering angle in the center-of-mass frame to the impulse. The incoming

and outgoing momenta have components

pµ
1 = (E1, p) , pµ

1 + ∆pµ
1, cons. = (E1, p′) ,

pµ
2 = (E2,−p) , pµ

2 + ∆pµ
2, cons. = (E2,−p′) ,

(B.1)

with |p| = |p′|, such that ∆pµ
1, cons. = −∆pµ

2, cons. = (0, p′ − p). Thus

− (∆pi, cons.)
2 = (p′ − p)2 = 4|p|2 sin2 χcons.

2
, (B.2)

or equivalently

sin
χcons.

2
=

√
−(∆pi,cons.)2

2|p| . (B.3)

The relation (B.3) can be inverted to write the impulse in terms of the scattering angle.

This can be done, for instance, by solving the on-shell conditions for the final state

(pi + ∆pi, cons.)
2 = m2

i , (B.4)

together with momentum conservation ∆pµ
1, cons. = −∆pµ

2, cons. and the condition in

eq. (B.1). One way to do this is by first decomposing the impulse in terms of the ba-

sis vectors

∆pµ
1, cons. = a1

bµ

|b| + a2 ǔµ
1 + a3ǔµ

2 (B.5)

and then solving for the three coefficients ai using the stated conditions. The result is

∆pµ
1, cons. = |p| sin χcons.

bµ

|b| + |p|(1− cos χcons.)

( |p|
m1

ǔµ
1−
|p|
m2

ǔµ
2

)
, (B.6)

which can be expanded perturbatively in G

(∆p
(0)
1, cons.)

µ = |p|χ(0)
cons.

bµ

|b| (B.7)

(∆p
(1)
1, cons.)

µ = |p|χ(1)
cons.

bµ

|b| + |p| 1
2

(χ(0)
cons.)

2
( |p|

m1
ǔµ

1−
|p|
m2

ǔµ
2

)
(B.8)

(∆p
(2)
1, cons.)

µ = |p|
(
χ(2)

cons. −
1

6
(χ(0)

cons.)
3
) bµ

|b| + |p|χ(0)
cons.χ

(1)
cons.

( |p|
m1

ǔµ
1−
|p|
m2

ǔµ
2

)
, (B.9)
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where χ
(n)
cons. ∼ O(Gn+1). Note that magnitude of the c.o.m three-momentum p can be

written in terms of the quantities used in the rest of the paper as follows

|p| = m1m2

√
σ2 − 1√

2m1m2σ + m2
1 + m2

2

=
Mν
√

σ2 − 1

h(σ, ν)
. (B.10)

Using eqs. (B.7)–(B.9) together with eq. (B.10) we have checked that our computations

of the gravitational impulse agree with the known results for the conservative scattering

angle at O(G), O(G2) [10, 40, 82, 157] and O(G3) [41, 43, 46].

As a side comment, note that this formula nicely explains the structure of the conserva-

tive result in maximal supergravity, where the one-loop scattering angle χ
(1)
cons. is zero [81],

which can be attributed to the “no-triangle” property of this theory [133]. In particular,

this implies that the one-loop impulse is purely longitudinal, and the two-loop impulse

purely transverse, in agreement with our explicit calculation.

Let us point out that the definition of the impact parameter b is chosen in terms of the

initial momenta such that it satisfies b · p1 = b · p2 = 0. This choice, however, breaks the

symmetry between the initial and final state in the conservative process (i.e. time reversal

invariance). Instead, one could choose to modify the impact parameter as follows

bµ
eik = bµ − |b| sin

χcons.

2

( |p|
m1

ǔµ
1−
|p|
m2

ǔµ
2

)
, (B.11)

such that it more symmetric between the initial and final state beik · pi = −beik · (pi +

∆pi). Due to this modification, the magnitude changes |beik| = |b| cos χcons.

2 , and beik

can be recognized as the so-called “eikonal impact parameter” that naturally arises from

semiclassical considerations in the eikonal approach [155]. Almost by definition, the impulse

is purely transverse in these variables, that is, proportional to bµ
eik,

∆pµ
1, cons. = 2|p| sin χcons.

2

bµ
eik

|beik|
. (B.12)

This form of the conservative impulse is the most convenient to compare to results from

the eikonal method.

More generally, radiative effects imply that the c.o.m of the binary is not an inertial

reference frame, so the relation between the scattering angle and impulse is not as straight

forward in the non-conservative setup. Momentum conservation ∆pµ
1 + ∆pµ

2 = −∆Rµ

illustrates that the radiative dynamics are a multi-body process and that the center of

mass recoils. One can still write down an analogous formula to eqs. (B.7)–(B.9) that

relates the radiated momentum and radiative scattering angle to the impulse, although

generically, the precise meaning of the angle becomes somewhat obscure in the presence of

radiation. Said differently, including radiation, the kinematics is that of a five-point process

for which there are two t-channel invariants, which translates to two angles. At O(G3),

however, the leading recoil effects do not yet affect the transverse part of the impulse and

the angle is still given by

sin χ =

√
−(∆p1,⊥)2

|p| . (B.13)
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Alternatively, separating the angle in a conservative and a radiative piece, χ = χcons.+χrad,

we find at order O(G3) the following relation

∆p
(2)
1,rad ,⊥ = |p|χ(2)

rad

bµ

|b| . (B.14)

C Review of unitarity and cutting rules

In this appendix we review how unitarity and the cutting rules relate the imaginary part

of virtual amplitudes or diagrams to their unitarity cuts. This is used in the main text to

simplify the calculation of the KMOC impulse kernel.

Unitarity. As is well known, the unitarity of the S-matrix implies similar unitarity re-

lations for S-matrix elements themselves. For the four-point amplitude these arise from

writing S = 1 + iT , inserting the unitarity relation

SS† = 1 ↔ 2 Im T = −i(T − T †) = TT † (C.1)

between initial and final two-particle states,

2 Im〈p4,p3|T |p1,p2〉 = 〈p4,p3|TT †|p1,p2〉 (C.2)

and inserting a complete set of states as follows

〈p4,p3|TT †|p1,p2〉=
∑

X

∫
dΦ2+|X|(r1,r2,X) 〈p4,p3|T |r1,r2,X〉〈r1,r2,X|T †|p1,p2〉 . (C.3)

This can be represented pictorially as follows

2 Im




M

p1

p2 p3

p4




=
∑

X

∫
dΦ̃2+|X| M M∗

p1

p2 p3

p4

ℓX

ℓ2 − p2

ℓ1 − p1

. (C.4)

For forward scattering, the relation above is nothing but the famous optical theorem, but

here we will use it as a general relation for arbitrary q in perturbation theory. At one-loop

it relates the imaginary part of the virtual amplitude to its two-particle cuts

2 Im




p1

p2 p3

p4




=

∫
dΦ̃2

p1

p2 p3

p4

ℓ2 − p2

ℓ1 − p1

. (C.5)

At two-loops, the unitarity relation includes more terms with both two- and three-particle

cuts and is given by

2 Im





 =

∫
dΦ̃2 +

∫
dΦ̃3 +

∫
dΦ̃2 .

(C.6)
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Similar generalizations also hold to higher-loop order which are, however, irrelevant for the

discussion in the present work. Note that these relations were crucial in order to simplify

the KMOC kernels and proof the reality properties of the classical observables of interest

which led to the results in section 6.

Cutting rules. Alternatively, our computation of phase space integrals can be based on

Cutkosky’s cutting rules [158], which can be applied to individual diagrams, rather than

the full amplitude. For us, the application of the cutting rules is twofold. First, we make

use of them to simplify the KMOC kernels in section 6. Second, we extensively utilize

these rules to deduce phase-space integrals from virtual integrals. In fact, we actually use

the cutting rules for soft-expanded integrals, where massive propagators are linearized and

have the form i/(2ui · ℓi) while their cut versions have the form 2πθ(ℓ0
i )δ(2ui · ℓi), but

the usual proofs of cutting rules, e.g. using Veltman’s largest time equation [159], carry

through unchanged.

For illustration purposes, we consider a field theory with two massive complex scalar

fields Φ1 and Φ2, and a light scalar field φ, whose Lagrangian density is

L =
2∑

i=1

(
∂µΦ†

i ∂µΦi −m2
i Φ†

i Φi

)
+

1

2
∂µφ∂µφ− κ

2∑

i=1

Φ†
i Φi φ−

κ

3!
φ3 . (C.7)

From the point of view of individual Feynman diagrams, the difference between this the-

ory and the gravitational theory considered in the body of the paper is that the latter

diagrams contain additional numerator, which leave the discussion below unchanged. The

Feynman vertices are always −iκ, for Φ†
1Φ1φ, Φ†

2Φ2φ, and φ3 couplings. The propagators

with momentum k are i/(k2 − m2
1), i/(k2 − m2

2), and i/(k2) for the fields Φ1, Φ2, and

φ, respectively. We use thick dashed black lines to denote heavy scalar particles Φi, and

thin dashed lines to denote light scalar particles φ. For discussing loop integration, it is

convenient to introduce the notion of “scalar integrals” which have unit numerators with

all factors of i removed. For example, a simple two-loop diagram for Φ1 + Φ2 → Φ1 + Φ2

scattering an the corresponding scalar integral are

= i . (C.8)

The scalar diagram on the r.h.s. of (C.8) is essentially the same as the Feynman diagram

on the l.h.s., except that dashed lines are replaced by solid lines to indicate that every

propagator is understood to be without the i factor in the numerator, and every vertex is

simply κ rather than −iκ.

Cutting rules and translation to scalar integrals. Having defined the virtual scalar

and Feynman diagrams, we introduce unitarity cuts of Feynman diagrams, where a vertical

blue dashed line highlights the cut propagators, e.g.

. (C.9)
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Every cut propagator is given by the simple replacement rule

i

k2 −m2
−→ 2π θ(k0) δ(k2 −m2), (C.10)

which simultaneously imposes the positive energy and the on-shell condition. Instead of

performing the full loop integration, in the presence of the on-shell conditions, the remain-

ing integrals are over the Lorentz-invariant phase space of the on-shell states exchanged

across the cut. According to the Cutkosky rules, the uncut propagators and vertices on

the left hand side of the cut are given by their usual expressions, while those on the

right are given by the complex conjugates of their usual expressions. In this notation, the

“rightmost” cut is always the same as the uncut diagram up to certain factors, while the

“leftmost” cut is equal to the conjugate of the uncut diagram,

= = i ,

=







∗

= −i







∗

,

(C.11)

When using solid lines, the propagators and vertices on either side of the cut are without

any factors of the imaginary unit i, while cut propagators are still given by the right hand

side of eq. (C.10), 2π θ(k0) δ(k2 −m2). Using the cutting rules, the sum of all cuts in a

given channel is zero,

+ + = 0 (C.12)

Translating to scalar integrals without i factors, this reads as

− i







∗

+ + i





 = 0 (C.13)

or, equivalently,

2 Im





 = , (C.14)
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similar to the usual statement of the optical theorem, but with generally different momenta

on the left and on the right. For the ladder diagram, the cutting rule involves more terms,

+ +

+ + + = 0 , (C.15)

which translates into the following relation for scalar integrals, using diagram symmetries

to combine the 6 terms into 3 terms,

2 Im





 = 2 + 2 Im





 , (C.16)

where we kept an overall factor of 2 to emphasize the origin in eq. (C.15).

The crossed double box satisfies a relation analogous to eq. (C.16),

2 Im





 = 2 + Im





 . (C.17)

A clear difference from the above equation for the planar double box, (C.16), is that the

double cut contribution (i.e. the last term) is multiplied by (−1) rather than (−2), because

the crossed double box has only one double cut.

The u-channel double box has no double cut or triple cut. The u-channel crossed

double box has only one triple cut, which evaluates to twice the imaginary part of the

virtual integral, analogous to eq. (C.14).

Note that eq. (C.15) is also valid for field theories other than scalar φ3 theory, so

eq. (C.15) holds with numerators multiplying the loop integrand of every diagram in the

relation, and therefore also for scattering amplitudes and their unitarity cuts!16

D Master integrals

As explained in ref. [81] at two-loops there are three irreducible families of master integrals,

the III, H and IX families. These families contain a total of 20 unique linearized-propagator

16Depending on the properties of the numerator, diagram symmetries might be broken so that one cannot

directly obtain eq. (C.16). After IBP reduction, however, we will mostly be dealing with master integrals

without numerators for which the symmetry is restored.
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Figure 10. Propagators for III (a) and H family (b).

master integrals. As explained in ref. [81] at two-loops there are three irreducible families

of master integrals, the III, H and IX families. All results can be found in a computer

readable format in the ancillary files of this arXiv submission.

III and H families. We first consider generic integrals of the form

Ii1,i2,...,i9 =

∫
dDℓ1

(2π)D

∫
dDℓ2

(2π)D

1

ρ̃i1
1 ρ̃i2

2 · · · ρ̃i9
9

. (D.1)

Where the propagators are

ρ̃1 = (ℓ1 − p1)2 −m2
1 , ρ̃2 = (ℓ1 + p2)2 −m2

2 , ρ̃3 = (ℓ2 − p4)2 −m2
1 ,

ρ̃4 = (ℓ2 + p3)2 −m2
2 , ρ̃5 = ℓ2

1 , ρ̃6 = ℓ2
2 ,

ρ̃7 = (ℓ1 + ℓ2 − q)2 , ρ̃8 = (ℓ1 − q)2 , ρ̃9 = (ℓ2 − q)2 . (D.2)

The scalar III double-box integral is IIII = I1,1,1,1,1,1,1,0,0, the scalar H double-box is

IH = I0,1,1,0,1,1,1,1,1. In the soft region, we construct an expansion of the integrand around

small |ℓi| ∼ |q|, where the leading order parts of ρ̃i, denoted by ρi are given by

ρ1 = 2 ℓ1 · u1 , ρ2 = −2 ℓ1 · u2 , ρ3 = −2 ℓ2 · u1 ,

ρ4 = 2 ℓ2 · u2 , ρ5 = ℓ2
1 , ρ6 = ℓ2

2 ,

ρ7 = (ℓ1 + ℓ2 − q)2 , ρ8 = (ℓ1 − q)2 , ρ9 = (ℓ2 − q)2 . (D.3)

The labeling of the propagators is depicted in figure 10 and the soft integrals are defined

with the following normalization conventions

Gi1, i2,...,i9 =

∫
dDℓ1 eγEǫ

iπD/2

∫
dDℓ2 eγEǫ

iπD/2

1

ρi1
1 ρi2

2 . . . ρi9
9

. (D.4)

A pure basis for the III family is given by

fIII,1 = ǫ2(−q2)G0,0,0,0,1,2,2,0,0 , (D.5)

fIII,2 = ǫ4
√

y2 − 1 G0,1,1,0,1,1,1,0,0 , (D.6)

fIII,3 = ǫ3(−q2)
√

y2 − 1 G0,1,1,0,2,1,1,0,0 , (D.7)

fIII,4 = −ǫ2(−q2)G0,2,2,0,1,1,1,0,0 + ǫ3y (−q2)G0,1,1,0,2,1,1,0,0 , (D.8)
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fIII,5 = ǫ3
√

y2 − 1 (−q2)G1,1,0,0,1,1,2,0,0 , (D.9)

fIII,6 = ǫ3(1− 6ǫ) G1,0,1,0,1,1,1,0,0 , (D.10)

fIII,7 = ǫ4
(
y2 − 1

)
(−q2)G1,1,1,1,1,1,1,0,0 , (D.11)

fIII,8 = ǫ3
√
−q2G1,0,0,0,1,1,2,0,0 , (D.12)

fIII,9 = ǫ3
√
−q2G0,2,1,0,1,1,1,0,0 , (D.13)

fIII,10 = ǫ4
√

y2 − 1
√
−q2G1,1,1,0,1,1,1,0,0 . (D.14)

A pure basis for the H family is given by

fH,1 = ǫ2(−q2)G0,0,0,0,0,0,1,2,2 , (D.15)

fH,2 = ǫ2(1− 4ǫ) G0,0,2,0,1,0,1,1,0 , (D.16)

fH,3 = ǫ2(−q2)2G0,0,0,0,2,1,0,1,2 , (D.17)

fH,4 = ǫ4(−q2)G0,1,1,0,1,1,0,1,1 , (D.18)

fH,5 = ǫ4
√

y2 − 1 G0,1,1,0,0,0,1,1,1 , (D.19)

fH,6 = ǫ3
√

y2 − 1 (−q2)G0,1,1,0,0,0,2,1,1 , (D.20)

fH,7 = −ǫ2(−q2)G0,2,2,0,0,0,1,1,1 + ǫ3y (−q2)G0,1,1,0,0,0,2,1,1 , (D.21)

fH,8 =
ǫ2(4ǫ− 1)√

y2 − 1
[(2ǫ− 1)G0,1,1,0,0,1,1,0,1 + y G0,2,0,0,0,1,1,0,1] , (D.22)

fH,9 = ǫ4
√

y2 − 1 (−q2)2G0,1,1,0,1,1,1,1,1 , (D.23)

fH,10 = −ǫ4(−q2)G−1,1,1,−1,1,1,1,1,1 +
1

2
ǫ2(2ǫ− 1) G0,0,0,0,1,1,0,1,1

+ 2ǫ4y (−q2)G0,1,1,0,1,1,0,1,1 + ǫ(3ǫ− 2)(3ǫ− 1) (−q2)−1G0,0,0,0,1,1,1,0,0 , (D.24)

fH,11 =
1√
−q2

ǫ2(2ǫ− 1)(3ǫ− 1)G0,1,0,0,1,1,1,0,0 , (D.25)

fH,12 = ǫ3
√
−q2G0,2,1,0,1,1,1,0,0 , (D.26)

fH,13 = ǫ3(2ǫ− 1)
√
−q2G0,1,0,0,1,1,0,1,1 , (D.27)

fH,14 =
1√
−q2

ǫ2(2ǫ− 1)2G0,1,0,0,0,1,1,0,1 , (D.28)

fH,15 = ǫ3
√
−q2G0,1,2,0,1,0,1,1,0 , (D.29)

fH,16 = (y − 1)ǫ3(−q2)5/2G0,2,1,0,1,1,1,1,1 +
12ǫ3(2ǫ− 1)(3ǫ− 1)

(2ǫ + 1)
√
−q2

G0,1,0,0,1,1,1,0,0

+
16ǫ4

√
−q2

(y + 1)(2ǫ + 1)
G0,1,2,0,1,0,1,1,0 +

16yǫ3(2ǫ− 1)2

(y + 1)(2ǫ + 1)
√
−q2

G0,1,0,0,0,1,1,0,1

− 4(y + 1)ǫ4
√
−q2

(2ǫ + 1)
G0,2,1,0,1,1,1,0,0 . (D.30)

Differential equation for odd-in-|q| H master integrals. We give the missing ma-

trices appearing in the differential equations eq. (3.15), for the odd-in-|q| master integrals
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Figure 11. Propagators for the IX family.

eqs. (D.25)–(D.30) that were not previously written out in ref. [81]. To be more precise,

these are integrals that scale like half-integer powers of |q| =
√
−q2, before being multiplied

by normalization factors like
√
−q2.

A
(o)
H,0 =




0 0 0 0 0 0

0 −2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 2 0

0 −8 −4 0 0 0




, A
(o)
H,+1 =




0 0 0 0 0 0

3 −2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −2 −2 0

−24 16 0 −16 −16 −2




,

A
(o)
H,−1 =




0 0 0 0 0 0

−3 6 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2 −2 0

24 0 8 16 16 2




,

(D.31)

where the subscript 0 indicates that the coefficient matrix is associated with d log x and

the subscripts ±1 refer to d log(1∓ x).

IX family. We first consider generic integrals of the form

Ii1,i2,...,i9 =

∫
dDℓ1

(2π)D

∫
dDℓ2

(2π)D

1

ρ̃i1
1 ρ̃i2

2 · · · ρ̃i9
9

. (D.32)

Where the propagators are, as depicted in figure 11

ρ̃1 = (ℓ1 − p1)2 −m2
1 , ρ̃2 = (ℓ1 + p2)2 −m2

2 , ρ̃3 = (ℓ2 − p4)2 −m2
1 ,

ρ̃4 = (ℓ1 + ℓ2 − q − p3)2 −m2
2 , ρ̃5 = ℓ2

1 , ρ̃6 = ℓ2
2 ,

ρ̃7 = (ℓ1 + ℓ2 − q)2 , ρ̃8 = (ℓ1 − q)2 , ρ̃9 = (ℓ2 − q)2 , (D.33)

and the scalar non-planar double-box integral is IIX = I1,1,1,1,1,1,1,0,0. The small-|q| expan-

sion consists of integrals of the form

Gi1, i2,...,i9 =

∫
dDℓ1 eγEǫ

iπD/2

∫
dDℓ2 eγEǫ

iπD/2

1

ρi1
1 ρi2

2 . . . ρi9
9

, (D.34)

where the leading order parts of the propagators are

ρ1 = 2 ℓ1 · u1 , ρ2 = −2 ℓ1 · u2 , ρ3 = −2 ℓ2 · u1 ,

ρ4 = −2 (ℓ1 + ℓ2) · u2 , ρ5 = ℓ2
1 , ρ6 = ℓ2

2 ,

ρ7 = (ℓ1 + ℓ2 − q)2 , ρ8 = (ℓ1 − q)2 , ρ9 = (ℓ2 − q)2 . (D.35)
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A pure basis of master integrals is given by

fIX,1 = ǫ2(−q2)G0,0,0,0,2,2,1,0,0 , (D.36)

fIX,2 = ǫ4
√

y2 − 1 G0,0,1,1,1,1,1,0,0 , (D.37)

fIX,3 = ǫ3(−q2)
√

y2 − 1 G0,0,1,1,2,1,1,0,0 , (D.38)

fIX,4 = ǫ2(−q2)G0,0,2,2,1,1,1,0,0 + ǫ3(−q2)yG0,0,1,1,2,1,1,0,0 , (D.39)

fIX,5 = ǫ4
√

y2 − 1 G0,1,1,0,1,1,1,0,0 , (D.40)

fIX,6 = ǫ3(−q2)
√

y2 − 1 G0,1,1,0,1,1,2,0,0 , (D.41)

fIX,7 = ǫ2(−q2)G0,2,2,0,1,1,1,0,0 − ǫ3(−q2)y G0,1,1,0,1,1,2,0,0 , (D.42)

fIX,8 = ǫ3(1− 6ǫ)G1,0,1,0,1,1,1,0,0 , (D.43)

fIX,9 = ǫ3(−q2)
√

y2 − 1 G1,1,0,0,1,1,2,0,0 , (D.44)

fIX,10 = ǫ4(−q2)(y2 − 1)G1,1,1,1,1,1,1,0,0 , (D.45)

fIX,11 = ǫ3
√
−q2G1,0,0,0,1,1,2,0,0 , (D.46)

fIX,12 = ǫ3
√
−q2G0,2,1,0,1,1,1,0,0 , (D.47)

fIX,13 = ǫ3
√
−q2G0,0,2,1,1,1,1,0,0 , (D.48)

fIX,14 = ǫ4
√
−q2

√
y2 − 1G1,0,1,1,1,1,1,0,0 , (D.49)

fIX,15 = ǫ4
√
−q2

√
y2 − 1G1,1,1,0,1,1,1,0,0 . (D.50)

Values of the master integrals in the Euclidean region. In this appendix we give

the explicit values of the soft integrals in the Euclidean region up to order ǫ2. Higher orders

in ǫ can be found in the ancillary files. For convenience, we choose to write all integrals

in terms of the x variable, cf. eq. (3.11) and subsection 5.1, figure 8. Even though not

manifest in this representation, the integrals are purely real or imaginary (depending on

whether or not the integral is normalized by
√

y2 − 1) in the Euclidean region x = eiθ , θ ∈
(0,−π/2]∪ [π/2, π). Furthermore, all functions satisfy the first-entry condition [129], where

only x is allowed as first symbol [130–132] entry.

fH,1 =
π2ǫ2

6
− 1 , (D.51)

fH,2 =
π2ǫ2

24
− 1

4
, (D.52)

fH,3 = 1− π2ǫ2

6
, (D.53)

fH,4 = 0 , (D.54)

fH,5 = 0 , (D.55)

fH,6 = −1

2
ǫ log(−x) + ǫ2

(
Li2(−x) + Li2(x)− π2

12
(D.56)

+ log(−x)

[
log(1− x2)− 1

2
log(−x)

])
,
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fH,7 =
1

12
ǫ2
(
6 log2(−x) + π2

)
+

1

2
, (D.57)

fH,8 =
1

2
ǫ log(−x)− ǫ2

(
Li2(−x) + Li2(x)− π2

12
(D.58)

+ log(−x)

[
log(1− x2)− 1

2
log(−x)

])
,

fH,9 = 0 , (D.59)

fH,10 = 0 , (D.60)

fH,11 = −1

2
π2ǫ2 , (D.61)

fH,12 = −1

4
π2ǫ2 , (D.62)

fH,13 =
π2ǫ2

2
, (D.63)

fH,14 =
π2ǫ2

4
, (D.64)

fH,15 =
π2ǫ2

4
, (D.65)

fH,16 = 0 , (D.66)

fIII,5 = −3

4
ǫ log(−x) , (D.67)

fIII,6 = −1

6
π2ǫ2 , (D.68)

fIII,7 = −1

2
ǫ2 log2(−x) , (D.69)

fIII,10 = 0 , (D.70)

fIX,10 =
1

4
ǫ2 log(−x)(log(−x) + iπ) , (D.71)

fIX,14 = 0 . (D.72)

The remaining functions are related to these as follows

fIII,1 = fIX,1 = fH,1 , (D.73)

fIII,2 = fIX,5 = (fIX,2|x→−x) = fH,5 , (D.74)

fIII,3 = fIX,6 = (fIX,3|x→−x) = fH,6 , (D.75)

fIII,4 = −fIX,7 = (−fIX,4|x→−x) = fH,7 , (D.76)

fIII,8 = −fH,11 , (D.77)

fIII,9 = fIX,12 = (−fIX,13|x→−x) = fH,12 , (D.78)

fIX,8 = fIII,6 , (D.79)

fIX,9 = fIII,5 , (D.80)

fIX,15 = fIII,10 . (D.81)
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