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Abstract. The clear 7σ discrepancy between measurements of the proton charge radius from muonic hy-
drogen Lamb shifts and those from hydrogen Lamb shift and electron scattering lead to both intense
theoretical and experimental efforts to understand and explain this difference. In this regard, a new ex-
periment (PRad) based on unpolarized ep elastic scattering cross section measurements normalized to
Møller scattering is underway at Jefferson Laboratory to extract the proton charge radius based on new
proton electric form factor down to values of momentum transfer squared Q2, as low as 10−4 (GeV/c)2.
To reach the precision of the experiment in such a small Q2 region requires reliable knowledge of radiative
corrections. In this paper, we present a complete calculation of radiative corrections for unpolarized elastic
ep and Møller scatterings performed within a covariant formalism resulting in the set of explicit formulas
beyond the ultra relativistic approximation (m2

e � Q2), and numerical results for the kinematics of the
PRad experiment.

PACS. PACS-key 13.40.Ks, 13.60.Fz, 13.88.+e, 25.30.Bf, 13.40.Gp

1 Introduction

The proton charge radius, defined as the root-mean-square
charge radius, is a fundamental structure parameter of the
proton. The precise knowledge of it is crucial to under-
stand how the fundamental theory of strong interaction,
quantum chromodynamics (QCD) describes the structure
of the nucleon. It is also an important input to quantum
electrodynamics (QED) calculations of hydrogen Lamb
shifts and fine structure. As such precise information about
this quantity will in principle also allow for high preci-
sion tests of QED. The proton charge radius has been
commonly determined from electron-proton elastic scat-
tering experiments [1,2]. However, the precision and the
consistency of the proton charge radius values determined
from electron scattering experiments are not at the level
that such high precision tests of QED are feasible. Instead
atomic physicists have been extracting the proton charge
radius using precise measurements of the hydrogen Lamb
shifts [3] and the state-of-the-art QED calculations [4].
Consistent results on the proton charge radius have been
obtained between electron scattering and hydrogen Lamb
shift measurements.

In 2010, the high precision measurement of the proton
charge radius performed at PSI [5] from muonic hydrogen
Lamb shift puzzled the physics community. The extracted
value (0.8418±0.0007 fm) was 7σ smaller than the previ-

ous determinations obtained from reanalysis of electron-
proton scattering experiments (0.895±0.018 fm) [6], and
based on spectroscopy of electronic hydrogen (0.8768±
0.0069 fm) [3,7,8]. More recent result from muonic hy-
drogen Lamb shift measurement at PSI (0.84087±0.0005
fm) [9] confirmed this disagreement. Furthermore, addi-
tional extractions of the proton charge radius from elec-
tron scattering at Mainz (0.879±0.008 fm) [10], from the
Jefferson Laboratory analysis which includes the new con-
straint from the proton form factor ratio obtained with
recoil polarization technique (0.875±0.010 fm) [11], and
from a Bayesian inference approach [12] are also in good
agreement with those “electronic” determinations. Recent
reanalyses of the Mainz data using a fit function based on
a conformal mapping [13] and a dispersive framework [14]
found results consistent with the muonic hydrogen mea-
surements.

This discrepancy between the experimental data led
to intense theoretical efforts aiming at explaining this dis-
agreement by including a novel two-photon exchange ef-
fect [15], an unexpected proton structure [16–18], atomic
physics corrections [19], model independent calculations
of the muonic hydrogen Lamb shift [20] and others. New
physics such as new scalar and vector particles that cou-
ple muons to protons [21–23] and dark photons [24,25] has
also been proposed to explain this discrepancy. The reli-
ability of truncated Taylor series expansion fits has also
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been investigated [26]. The observation of a smaller pro-
ton radius from muonic hydrogen compared to that from
electronic hydrogen, is still to date an open question.

The root-mean-square (rms) charge radius of the pro-
ton is the slope of the Taylor expansion of the electric form
factor, which can be determined from elastic electron-
proton scattering [27,28], at momentum transfer Q2 → 0:

〈r2〉 = −6
dGpE(Q2)
dQ2

∣∣∣∣
Q2=0

(1)

From this expression we clearly see the significance of
measurement of the proton electric form factor at very
low Q2. An independent measurement (the PRad experi-
ment) of the proton charge radius from unpolarized elastic
ep scattering using a magnetic spectrometer free method
was proposed at Jefferson Laboratory [29]. The incident
beam electrons will scatter off a windowless cryocooled
hydrogen gas flow target and will be detected with the
high resolution PrimEx HYCAL calorimeter [30]. The ep
cross sections will be normalized to the well known Møller
cross sections measured simultaneously within the same
detector acceptance allowing to reach an unprecedented
subpercent precision of the charge radius in electron scat-
tering experiments in an essentially model independent
way. This novel technique makes possible the extraction of
the charge radius at very forward angles and thus very low
values of Q2 down to 10−4 GeV2 compared to the lowest
Q2 = 0.01 GeV2 of [10]. At Mainz, the technique of initial
state radiation in ep elastic scattering was used recently
to reach a Q2 value of 10−4 GeV2 [31]. A proposed exper-
iment at PSI [32] will measure rp down to Q2 = 4× 10−3

GeV2 from µp elastic scattering.
In order to reach such a precision, in addition to a tight

control of systematic uncertainties and a precise knowl-
edge of backgrounds associated with the experiment, a
careful calculation of radiative corrections (RC) is nec-
essary. Since in the PRad experiment the ep and Møller
cross sections will be measured separately, we need to per-
form two distinct calculations for the ep and Møller pro-
cesses. Until now, all available calculations of radiative
corrections in elastic ep [33,34] and Møller [35] scatterings
were carried out using the ultra relativistic approximation
(URA), where the electron mass squared m2

e � Q2, and
had been neglected. The explicit expressions without URA
for one-loop (i.e. vertex, self-energies and two photon ex-
change) contributions to Møller scatterings are presented
in [36], however the contribution from hard photon emis-
sion was not considered.

In sect. 2 and 3, we present a complete calculation of
the ep and Møller radiative corrections within a covariant
formalism beyond the URA. For the first time, analyti-
cal expressions were obtained for the Møller box diagrams
and for the infrared divergent contribution of the brem-
strahlung process without any approximation. It is impor-
tant to note that names given to different contributions
vary section to section. This is to match the names given
in previous papers ([33] for ep and [35] for Møller), where
the results are given in the URA, for an easier compari-
son. In section 4 we show numerical results of the total ep

and Møller radiative corrections over a wide kinematical
range relevant to the PRad experiment.

2 Radiative Corrections to the ep Elastic
Scattering Unpolarized Cross Section

In this paper, all the expressions for the cross section and
radiative corrections are presented within the covariant
formalism developed by Bardin and Shumeiko [39]. It al-
lows to obtain a general result independent of any unphys-
ical parameter like a cut-off parameter distinguishing the
regions of soft and hard photon emission, while canceling
out the infrared divergences. We consider the unpolarized
electron-proton elastic scattering:

e(k1) +N(p1) −→ e′(k2) +N(p2) (2)

with k1 (p1) and k2 (p2) being the initial and final 4-
momenta of the electron (proton). The 4-momentum of
the virtual photon is given by q = k1 − k2. The Born
Cross section of this process is given by:

dσ0

dQ2
=

2α2π

λSQ4

∑
i

θiBF0
i (3)

where:

λS = S2 − 4m2M2 (4)
F0

1 = (F1(Q2) + F2(Q2))2 (5)

F0
2 = F 2

1 (Q2) + F 2
2 (Q2)

Q2

4M2
(6)

and

θ1B = Q2 − 2m2 (7)

θ2B =
1

2M2
(SX −M2Q2) (8)

with the 4-momentum transfer Q2 = −q2 = −(k1 − k2)2,
S = 2k1 · p1, X = 2k2 · p1 = S − Q2, m and M are the
masses of the electron and proton, respectively. The Fey-
namn diagrams of interest for the calculation of radiative
corrections are shown in fig. 1. In addition to the Born
process (a), the vertex correction (b), the vacuum polar-
ization (c), and the bremsstrahlung (d) and (e) are taken
into account.
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Fig. 1: Feynman diagrams contributing to the Born and
radiative correction cross sections for ep elastic scattering.

The cross section of the bremsstrahlung process:

e(k1) +N(p1) −→ e′(k2) +N(p2) + γ(k) (9)

where k is the 4-momentum of the emitted hard photon,
is given by:

dσr =
1

2
√
λS
M2

rdΓr (10)

The phase space can be expressed in terms of the inelas-
ticity v = Λ2 −M2, (Λ = k1 + p1 − k2), τ = k · q/k · p1

and the angle φ between the planes (q,k) and (k1,k2):

dΓr =
dQ2

4(2π)4
√
λS

vmax∫
0

dv

4
√
λY

τmax∫
τmin

dτ
v

(1 + τ)2

2π∫
0

dφ

(11)

where λY = (v+Q2)2+4M2Q2. The limits of integrations
are given by:

vmax =
2Q2(λS −Q2(S +m2 +M2))

Q2(S + 2m2) +
√
Q2λS(Q2 + 4m2)

(12)

τmax,min =
1

2M2
(v +Q2 ±

√
λY ) (13)

Usually an experimental cut is applied to inelasticity v.
In this case the value of this cut should be used for vmax
instead of (12). The matrix element squared M2

r of the
bremsstrahlung process is given by the product of the ra-
diative leptonic tensor Lrµν by the hadronic tensor Wµν :

M2
r =

e6

t2
LrµνWµν =

e6

t2
Lrµν

2∑
i=1

wiµνFi. (14)

The structure functions F1,2 can be written via F0
1,2 by

the following replacement of the argument Q2 → Q2 +

τv/(1 + τ). The contractions of the two tensors can be
expanded in powers of R = 2p1 · k = v/(1 + τ):

Lrµνw
i
µν = −4π

√
λY

3∑
j=1

Rjθij (15)

with: w1
µν = −gµν , w2

µν = p1µp1ν/M
2. The functions

θij are given by:

θ11 = 4(Q2 − 2m2)FIR (16)
θ12 = 4τFIR (17)
θ13 = −4F − 2τ2Fd (18)

θ21 =
2
M2

(SX −M2Q2)FIR (19)

θ22 =
1

2M2
(2(S +X)F2− + (S2 −X2)F1+ (20)

+2(S −X − 2M2τ)FIR − τ(S +X)2Fd) (21)

θ23 =
1

2M2
(4M2F + (4m2 + 2M2τ2

−(S −X)τ)Fd − (S +X)F1+) (22)

where:

FIR = F2+ − (Q2 + 2m2)Fd, Fd =
F

z1z2

F2± = Fm2

(
1
z2
2

± 1
z2
1

)
, F1+ =

F

z1
+
F

z2

F =
1

2π
√
λY

The propagators are given by:

z1 =
1
λY

[
Q2(S +X) + τ(S(S −X) + 2M2Q2) (23)

−2M
√
λz cosφ

]
z2 =

1
λY

[
Q2(S +X) + τ(S(S −X)− 2M2Q2) (24)

−2M
√
λz cosφ

]
with: λz = (τ − τmin)(τmax− τ)(SXQ2−M2Q4−m2λY ).
To extract the infrared divergence we use the transforma-
tion:

σR = σR − σIR + σIR = σF + σIR (25)

where σF is infrared divergence free (finite when k → 0).
We used the notation σa ≡ dσa/dQ2 (a = R, IR, F, etc).

The infrared part of the cross section σIR, can be writ-
ten as a sum of a soft σS and hard part σH by splitting
the domain of integration over the inelaticity:

σIR =
α

π
(δS + δH)σ0 (26)

δH + δS can be written as [39]:

δH + δS = 2
(
Q2
mLm − 1

)
ln
vmax
Mλ

(27)

+
1
2

(SLS + (S −Q2)L0
X) + Sφ(Q2

m, λm, a, b)
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with λ the infinitesimal photon mass and

Q2
m = Q2 + 2m2 (28)

Lm =
1√
λm

ln
√
λm +Q2

√
λm −Q2

(29)

λm = Q4 + 4m2Q2 (30)

LS =
1√
λS

ln
S +
√
λS

S −
√
λS

(31)

L0
X =

1√
λ0
X

ln
S −Q2 +

√
λ0
X

S −Q2 −
√
λ0
X

(32)

λ0
X = (S −Q2)2 − 4m2M2 (33)

a =
1

2M2
(S(S −Q2)− 2M2(Q2 − 2m2)) (34)

b =
1
M2

(Q2(S(S −Q2)−M2Q2) (35)

−m2Q2(Q2 + 4M2))

The function Sφ(s, λ, a, b) is given by:

Sφ(s, λ, a, b) =
s

2
√
λ

2∑
i=1

(−1)i
4∑
j=1

δj

2∑
k=1

[
Φ

(
γi − γ
γi − γjk

)

+Φ

(
γ + (−1)i

γjk + (−1)i

)] ∣∣∣∣∣
γu

γ1

(36)

where:

aj = s− δj
√
λ, D = (s+ a)(λa− sb) +

1
4

(λ+ b)2

δj = (1, 1,−1,−1), γ1,2 = ∓
√
b∓
√
λ

b− λ

γj1,2 = −
aj
√
b±

√
ba2
j + τ2

j

τj
, γu

√
b+ λ−

√
b√

λ

τj = −a
√
λ+

1
2
δj(b− λ) + (−1)j

√
D

The function Φ(x) is the Spence function. To cancel the
infrared divergence we need to add the standard vertex
correction contribution δvert. Beyond the URA it is given
by:

δvert = 2
(
Q2
mLm − 1

)
ln
λ

m
+
(

3
2
Q2 + 4m2

)
Lm − 2

− Q2
m√
λm

(
1
2
λmL

2
m + 2Φ

(
2
√
λm

Q2 +
√
λm

)
− π2

2

)
(37)

The correction must vanish in the limit Q2 → 0 because
of the charge renormalization. Indeed, the δvert is propor-
tional to Q2 in this limit:

δvert =
Q2

12m2

(
3 + 8 log

λ

m

)
(38)

Adding the different contributions, we clearly see that
the infrared divergence cancels out explicitly. The contri-
bution of the anomalous magnetic moment reads:

σAMM =
α3m2Lm(12M2F0

1 − (Q2 + 4M2)F0
2 )

2M2Q2λS
(39)

The final expression for the cross section beyond the URA
is given by:

σ = σ0(1 +
α

π
(δV R + δvac − δinf ))e

α
π δinf

+σAMM + σF (40)

with:

δV R = 2
(
Q2
mLm − 1

)
ln
(vmax
mM

)
+

1
2

(SLS + (S −Q2)L0
X) + Sφ(Q2

m, λm, a, b)

+
(

3
2
Q2 + 4m2

)
Lm − 2− Q2

m√
λm

×
(

1
2
λmL

2
m + 2Φ

(
2
√
λm

Q2 +
√
λm

)
− π2

2

)
(41)

δvac =
∑

i=e,µ,τ

[
2
3

(Q2 + 2m2
i )L

i
m −

10
9

+
8m2

i

3Q2
(1− 2m2

iL
i
m)
]

(42)

δinf =
(
Q2
mLm − 1

)
ln
(

v2
max

S(S −Q2)

)
(43)

σF = − α3

2λS

vmax∫
0

dv

τmax∫
τmin

dτ

1 + τ

2π∫
0

dφ

×
∑
i,j

(
Rj−2θij

Fi
(Q2 +Rτ)2

− 4FIRθBi
F0
i

RQ4

)
(44)

The δinf term is to account for multi-photon emission
when Q2 → 0. More detail about this exponentiation pro-
cedure can by found in [40]. δvac is the vacuum polariza-
tion correction, which includes the vacuum polarization by
e, µ and τ charged leptons. The correction is small in the
region of small Q2 because it is exactly zero for Q2 → 0
due to the mass renormalization. The first non-vanishing
term is

δvac =
2Q2

15

∑
i=e,µ,τ

1
m2
i

. (45)

The vacuum polarization by hadrons can be considered in
the same way. Note that the approach traditionally used
for the vacuum polarization by hadrons involving the data
on process e+e− → hadrons via dispersion relations is
not used here because respective parameterization of [42]
(δhvac ∼= A + B ln(1 + C|t|)) does not provide the correct
behavior for small Q2 = |t|.
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3 Radiative Corrections to Møller scattering

We consider the unpolarized Møller scattering:

e(k1) + e(p1) −→ e(k2) + e(p2) (46)

with k1 (p1) and k2 (p2) the initial and final 4-momenta of
the beam (target) electron of mass m. The Mandelstam
variables associated with this process can be written in
the standard way:

s = (k1 + p1)2, t = (k1 − k2)2 = −Q2, u0 = (k2 − p1)2

(47)

and s + t + u0 = 4m2. It is also usefull to define the
variables:

ξs =
√
s− 4m2

√
s

, ξt =
√

4m2 − t√
−t

, ξu0 =
√

4m2 − u0√
−u0

(48)

The Born cross section (figs. 2a, 2b) of the Møller pro-
cess beyond the URA is represented as a sum of the con-
tributions of the t and u channels,

σ0 = σt0 + σu0
0 (49)

where

σt0 =
2πα2

st2

[
u2

0

4sξ2s

(
4ξ4u0 − (1− ξ2u0)2

(
2 +

t

u0

))
−s

2ξ4s
u0

]
(50)

and the contribution of the u channel, σu0
0 , is obtained

from σt0 by the substitution t ←→ u0. The cross section
in t channel contains the contribution of the square of t-
channel Feynman graph shown in fig. 2a and the half of
the interference between graphs a) and b). The u channel
cross section includes the contributions of the remaining
part of the interference term (i.e., the second half) and the
square of the u-channel graph b). Note that 1 > ξs > 0
while ξt,u0 > 1 and in URA, where ξs,t,u0 → 1, we retrieve
the expression (3) of ref. [35].

All other graphs shown in fig. 2 (i.e., graphs c-k) repre-
sent radiative corrections due to loop effects and emission
of the real photon. Only t-channel graphs are shown but
respective u-channel diagrams are also included in the cal-
culation. Similarly to the Born cross section, the contribu-
tion of each graph can be split into t and u channel cross
sections. These cross sections contain the convolution of
respective graphs (e.g., t-channel of vacuum polarization
includes the convolution of graphs a) and c) and a half
of interference between graphs of different channels. The
interference is always symmetric with respect to t←→ u0,
so the t, u channels can be obtained from each other by
this substitution.

The cross section of vacuum polarization (fig. 2c) is
factorized in front of the respective Born cross section:

σS =
α

π

(
δtvacσ

t
0 + δuvacσ

u
0

)
(51)

k1	  

p1	  

k2	  

p2	  

(a)	   (c)	  (b)	  

(e)	  (d)	  

(f)	   (g)	  

k	  

(h)	   (i)	  

(j)	   (k)	  

Fig. 2: Feynman diagrams contributing to the Born ((a)
t- and (b) u- channels) and radiative correction (only t-
channel is shown) cross sections for Møller scattering.

The correction δtvac is defined as in Sec. 2 with the sub-
stitution Q2 → −t and δuvac is obtained from δtvac by
t←→ u0.

The contribution of the vertex corrections (figs. 2d,
2e) has both factorized and non-factorized parts. The fac-
torized part is also known as the electron form factor.
This contribution is large because of the large logarith-
mic contributions, which contains the infrared divergence
term (i.e., the dependence on the photon mass). The non-
factorized part is known as the anomalous magnetic mo-
ment (AMM). The cross section of AMM is proportional
to m2 and therefore it vanishes in the URA. The contri-
butions of the vertex function are expressed as:

σvert =
2α
π

(
δtvertσ

t
0 + δuvertσ

u
0 ) + σtAMM + σuAMM (52)

The correction δtvert and δuvert are defined by the same
formula as in eq.(37) but with Q2 → −t and Q2 → −u0,
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respectively. The contribution of t-part of the anomalous
magnetic moment is given by:

σtAMM = − 4α3

st2ξt
m2 log

(
ξt + 1
ξt − 1

)[
3
s− 2m2

u0

+
10m2 − 3u0

s− 4m2

]
(53)

and σuAMM = σtAMM (t←→ u0).
The contributions of the box diagrams (figs. 2f, 2g)

contain also factorized and non-factorized parts. The in-
frared divergence is contained in the factorized part only.

σB =
α

2π
(
δtBoxσ

t
0 + δuBoxσ

u
0

)
+σtB1 + σtB2 + σuB1 + σuB2, (54)

where

δtBox =
1 + ξ2s
ξs

(
−4 log

[
1 + ξs
1− ξs

]
log

λ

m
+ log2

[
1 + ξs
1− ξs

]

−2π2 + 4Li2

[
2ξs

1 + ξs

])

+
1 + ξ2u0

ξu0

(
4 log

[
1 + ξu0

ξu0 − 1

]
log

λ

m
− log2

[
1 + ξu0

ξu0 − 1

]

+2 log2

[
1 + ξu0

2ξu0

]
− π2

3
+ 4Li2

[
ξu0 + 1

2ξu0

])
(55)

and the explicit expressions for σtB1 and σtB2 can be found
in Appendix. Note that σtB1 and σtB2 do not have mass
singularity terms log(m2). As usual the contributions in
u-channel are obtained using t←→ u0.

All contributions to radiative corrections in Møller scat-
tering discussed above agree exactly with the respective
terms presented in eq. (2) of ref. [36]. The lowest order
(Born) cross section given by the first term in ⊗ (i.e.,
the term with the product symbol in the first line of eq.
(2)) corresponds to our eq. (49). The vertex functions and
vacuum polarization corrections represented by the terms
including I and II classes are exactly the same as the
contributions given by eqs. (52) and (51) of our paper.
Finally, the sum of classes with direct and crossed two-
photon exchange diagrams (III and IV ) corresponds to
our result in eq. (54) in this section.

The real photon emission process (fig. 2h-k):

e(k1) + e(p1) −→ e(k2) + e(p2) + γ(k) (56)

requires three additional kinematical variables to describe
its cross section. They are chosen as two photon angles
and the inelasticity v = (k1 +p1−k2)2−m2. The relation
between the Mandelstam variables is generalized:

s+ u+ t = v + 4m2, (57)

i.e., the sum of s, t and u is not fixed by the electron mass.
The cross section of the process (56) contains the in-

frared divergence, therefore a procedure for its extraction

and cancellation is required. We follow the approach sug-
gested by Bardin and Shumeiko [39] based on the following
transformation:

σR = σR − σIR + σIR = σF + σIR (58)

The infrared divergence is then only contained in σIR,
which has a simple analytical form. The finite part of the
cross section has to be integrated over the photonic angles
and the inelasticity. Two-dimensional integration over the
photonic angles is performed analytically while the inte-
gration over v is carried out numerically.

σF = − α3

πs(s− 4m2)

vmax∫
0

dv

10∑
i=1

Si, (59)

The upper integration limit vmax is defined by the kine-
matic restrictions or, more often, by the experimental cuts,
because v can also be reconstructed using the momenta of
the final particles. The integrand is defined by ten terms
Si, that are polynomial functions of s, t, u, m2, and v. The
infrared divergence is cancelled using the aforementioned
procedure in eq. (58), therefore the terms Si are finite
for v = 0. The explicit expressions of Si are cumbersome
and not presented here. The expressions calculated within
URA can be found in Appendix of [35] while their exact
expressions (beyond URA) can be found in the source code
of the Monte-Carlo generator MERADGEN 1.0 [43]. Note
that all parts of the cross section describing the process
(56) are not separated into t- and u-parts.
The infrared divergent contribution of bremsstrahlung in-
tegrated over the real photon phase space is represented
as a sum of three factorized corrections:

σIR =
α

π
(J0 log

vmax
mλ

+ δH1 + δS1 )σ0 (60)

where

J0 = −2

(
ξ2s + 1
ξs

log
ξs + 1
1− ξs

− ξ2t + 1
ξt

log
ξt + 1
ξt − 1

−ξ
2
u0 + 1
ξu0

log
ξu0 + 1
ξu0 − 1

+ 2

)
(61)

The explicit expressions for δH1 and δS1 obtained with-
out any approximation are given in Appendix. Within the
URA they are reduced to the expressions (B.10) of [43]:

δH1 = log(− t

m2
)(log(

t2(s+ t)2(s− vmax)
svmax(vmax − t)(s+ t− vmax)2

) + 1)

−1
2

log2(− t

m2
) + 2(−Li2(

vmax
s+ t

) + Li2(
vmax
s

)

−Li2(
vmax
t

)) + Li2(
s− vmax

s
)− Li2(

t− vmax
t

)

+ log(
s+ t

s+ t− vmax
) log(

(s+ t)(s+ t− vmax)
t2

)

+ log(
s− vmax

s
) log(

vmax − s
t

)− 1
2

log2(−vmax
t

)

− log2(1− vmax
t

) + log(−vmax
t

)− π2

6
(62)
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and

δS1 = 1−
(

log
(
− t

m2

)
− 1
)

log
(
s(s+ t)
t2

)
+ log

(
− t

m2

)(
3− 2 log

(
s+ t

s

))
−5

2
log2

(
− t

m2

)
− 1

2
log2

(
s+ t

s

)
− π2

3
(63)

while

JURA0 = −4

(
1 + log

m2s

tu0

)
(64)

The radiatively corrected cross section for Møller scat-
tering is obtained as the sum of all the aforementioned
contributions.

σee = (1 +
α

π
(J0 log

vmax
m2

+ δH1 + δS1 ))σ0 + σS

+σFvert + σFB + σF (65)

where upper index F in vertex and box contributions
means that terms containing log(λ/m) are extracted from
these expressions, ii.e., they are obtained from σV ert and
σB by the formal substitution λ→ m. Indeed, one can see
that infrared divergence is cancelled in the sum of terms
proportional to log λ in δt,uvert (see (37) and (52)), and δt,uBox
(see (54)), and (60).

The corrections δt,uvert, δH1 , δS1 as well as δinf1 contain
the double logarithmic terms (log2(m2)). However, they
also cancel each other. Therefore, the largest correction
for the cross section σee contains large logarithmic terms
only.

In the limit of small Q2, the upper limit of vmax goes
to zero. As usual this divergence is cancelled by the ex-
ponentiation procedure, which effectively accounts for the
multiple soft photon emission thus resulting in:

σee = (1 +
α

π
(δH1 + δS1 ))e

α
π δ

inf
1 σ0 + σS

+σFvert + σFB + σF (66)

where

δinf1 = J0 log
vmax
m2

(67)

4 Numerical Results

Figure 3 shows the ep radiative correction δep = σep/σep0 −
1 (top) and Møller radiative correction δee = σee/σee0 − 1
(bottom) as a function of Q2 for different values of in-
elasticity cut vcut (0≤ vcut ≤ vmax) with vmax given by
eq.12 and eq.73 for the ep and Møller case, respectively.
The results are shown for the two incident electron beam
energies of the PRad experiment: 1.1 GeV (solid lines)
and 2.2 GeV (dashed lines). We see that the corrections
are strongly vcut dependent and approach asymptotically

Fig. 3: ep (top) and Møller (bottom) radiative correction
as a function of Q2 for different values of inelasticity cut
and for Ebeam=1.1 GeV (solid lines) and Ebeam=2.2 GeV
(dashed lines). (color online)

towards 0 when Q2 decreases 0. Furthermore, we see that
the larger the inelasticity cut is, the smaller the total cor-
rections are. Indeed for a large vcut value, we cut more of
the positively definite cross section of hard photon emis-
sion resulting in a decrease of the observed cross section
and hence of the total radiative correction. For the kine-
matical settings of the PRad experiment, vcut is expected
to be 0.05 GeV2 and 10−5 GeV2 for ep and Møller
scatterings, respectively. In the PRad experiment, the un-
polarized ep elastic cross sections will be measured for
2× 10−4GeV2 ≤ Q2 ≤ 2× 10−2GeV2, equivalent to scat-
tering angle in the laboratory frame 0.8◦ ≤ θ ≤ 3.8◦ and
will be normalized to the Møller cross sections within the
same angular range. The radiative corrections: δep and δee
are strongly dominated by the loop effects and soft photon
emission, responsible for the strong vcut dependence as ex-
pected. All the other virtual corrections and the emission
of hard photon are negligible. For both processes, the total
correction presents a linear behavior (with respect to the
logarithmic scale of the figures) due to the leading order

term log
(
Q2

m2

)
.
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Uncertainties in the calculation come, on one hand,
from the relative accuracy of the numerical integration
used to evaluate the hard photon emission σF for both
processes. However, it has been tuned to meet and exceed
the precision of the PRad experiment. On the other hand,
there is a model dependence of the ep radiative corrections
since the electromagnetic form factors are obtained from a
fit. Nevertheless, all the different models agrees in the low
Q2 region making this dependence below the sensitivity
of the PRad experiment.

5 Discussion and Conclusion

In this paper, a complete set of analytical expressions
for electromagnetic radiative corrections to ep and Møller
scattering obtained within a covariant formalism and be-
yond the ultra relativistic approximation is presented for
the first time. The calculated radiative corrections are re-
quired for the proton charge radius measurements that
need to be performed at very low Q2 and therefore the
URA is not appropriate. Several research groups calcu-
lated the radiative corrections to these processes but the
analytical expressions presented by all of them had certain
limitations preventing their direct usage for the proton ra-
dius measurement, e.g., i) Akushevich et al. [33] presented
the factorized part of radiative corrections to ep-scattering
in URA, ii) Kaiser [36] and Maximon and Tjon [37] did
not consider hard bremstrahlung for Møller and ep scat-
tering, respectively, and iii) Shumeiko and Suarez [38] did
not implement the cut-off parameter for the missing mass
used in all data analyses for elastic measurements.

For the ep process, we presented the expressions for
the so-called model independent radiative corrections in-
cluding corrections due to lepton vertex functions, vacuum
polarization, and emission of real photon from the leptonic
line. What have not been included in the radiative correc-
tion calculations are the hadronic bremsstrahlung and the
box (or two-photon exchange) diagrams. One reason is
due to the fact that M � m resulting in the hard photon
emission probability from the proton to be very low. An-
other reason, which might be more important, is that the
electromagnetic form factors are obtained from data that
had not been corrected for two-photon exchange. Thus
this effect is still present in the fit of form factors used
for our calculation. Because of a possible double counting,
it would then not be rigorous to use such form factors to
perform the calculations of box diagrams and hard pho-
ton emission. Upcoming results from experiments [44–46]
will provide important information about two-photon ex-
change effects in e±p elastic scattering, which could be
used to calculate the box diagrams in the future.

For the Møller process, we presented the exact expres-
sions of the radiative corrections including all loops and
emission of additional real photon from each electron line.
We find an exact agreement between our analytical ex-
pressions for the Born and one loop contributions and the
ones given in [36]. However, a full comparison is not possi-
ble because the expression for cross section of soft photon
emissions is not completely integrated analytically and the

contribution of the hard bremsstrahlung is not considered
in [36]. Our results for soft and hard photon emission in
the Møller scattering are in agreement with [43].

Numerical results show that radiative corrections in
ep and the Møller scattering could reach several dozens of
percents. The radiative corrections for both processes are
found strongly dependent on the inelasticity cut. Although
we conclude that the radiative corrections are under con-
trol for the PRad kinematical settings, a careful analysis
of systematic uncertainty due to radiative corrections will
need to be performed for proton charge radius measure-
ments.

The authors want to thank Ashot Gasparian, Mahbub Kan-
danker and Dipangkar Dutta for their encouragement and help-
ful discussions. This work was supported in part by the U. S.
Department of Energy under Contract No. DE-FG02-03ER41231.

Appendix

The infrared free part of two-photon exchange contribu-
tions reads:

σFB1 =
α3

ξ2ss
2tu0

[
1

12ξst
((ξ2s + 1)(ξ4s − 6ξ2s − 3)s2t

−2ξ2s (ξ2s + 1)3s3 − 12ξ2sst
2 − 4t3)(4π2

+3 log2(
ξs + 1
1− ξs

)− 6 log2(
ξs + 1

2ξs
)

−12Li2(
ξs − 1

2ξs
)− 6 log(

ξs + 1
1− ξs

) log(−ξ
2
ss

t
))

+
1

12ξ3t t
(ξ2t (ξ2t − 3)(3ξ2t + 1)t3 − 2(3ξ6t + 2ξ4t

+10ξ2t − 1)t2u0 − 4(5ξ4t + 4ξ2t − 1)tu2
0

−16ξ2t u
3
0)(4π2 − 6 log2(

ξt + 1
2

)

+3 log2(
ξt + 1
ξt − 1

)− 12Li2(
1− ξt

2
))

+
1
ξs

log(
ξs + 1
1− ξs

)(ξ2ss+ t)(ξ2s (ξ2s + 1)s

−2(ξ2s − 2)t) + log
(

1
4

(ξ2t − 1)
)(

2t2

−(ξ4s + ξ2s )s2 +(3ξ2s − 1)st− 2s(t+ 2u0)
ξ2t

)]
(68)
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σFB2 =
α3

ξ2ss
2tu0

[
1

12ξu0t
(4t3 − 2(ξ4u0

− 6ξ2u0
− 1)t2u0

+(−ξ6u0
+ ξ4u0

+ 9ξ2u0
+ 7)tu2

0 + 2(ξ2u0
+ 1)3u3

0)

+(3 log2(
ξu0 + 1
ξu0 − 1

)(−6 log2(
ξu0 − 1

2ξu0

)

−12Li2(
ξu0 + 1

2ξu0

) + 6 log(
ξu0 + 1
ξu0 − 1

) log(
ξ2u0

u0

t
)

+π2)
1

12ξ3t t
(ξ2t (−ξ4t + 2ξ2t + 3)t3 + 2(ξ6t − 4ξ4t

+8ξ2t + 1)t2u0 + 4(3ξ4t + 1)tu2
0 + 16ξ2t u

3)

×(−6 log2(
ξt + 1

2
) + 3 log2(

ξt + 1
ξt − 1

)

−12Li2(
1− ξt

2
) + 4π2) + log(

1
4

(ξ2t − 1))

×(
2u0(ξ2t t+ t+ 2u0)

ξ2t
+ (t− u0)(2t

+ξ2u0
u0 + u0))

− 1
ξu0

log(
ξu0 + 1
ξu0 − 1

)(ξ2u0
(t− u0)− 2t)

(2t+ ξ2u0
u0 + u0)

]
(69)

The explicit expressions for δH1 and δS1 reads:

δH1 = log
(

1 +
vmax
m2

)
+H(s)−H(t) +

ξ2u0 + 1
2ξu0

×

[
Li2

(
4ξu0

(ξu0 + 1)2

)
− Li2

(
− 4ξu0

(ξu0 − 1)2

)
−2Li2

(
2ξu0

ξu0 − 1

)
+ 2Li2

(
2ξu0

ξu0 + 1

)
+Li2

(
2(zu1 − 1)ξu0

(ξu0 − 1)2

)
+ Li2

(
−2(zu1 + 1)ξu0

(ξu0 − 1)2

)
−Li2

(
−2(zu1 − 1)ξu0

(ξu0 + 1)2

)
− Li2

(
2(zu1 + 1)ξu0

(ξu0 + 1)2

)
+2Li2

(
− (zu2 − 1)ξu0

ξu0 − 1

)
+ 2Li2

(
(zu2 + 1)ξu0

ξu0 − 1

)
−2Li2

(
(zu2 + 1)ξu0

ξu0 + 1

)
− 2Li2

(
(1− zu2)ξu0

ξu0 + 1

)
+2 log

(
ξu0 + 1
ξu0 − 1

)
log
(
ξ2u0z

2
u2 − 1

ξ2u0 − 1

)]
(70)

δS1 =

(
ξ2s + 1

)
2ξs

[
log2

(
ξs + 1
1− ξs

)
+ log

(
ξs + 1
1− ξs

)
+Li2

(
4ξs

(ξs + 1)2

)]
−
(
ξ2t + 1

)
2ξt

[
log2

(
ξt + 1
ξt − 1

)
− log

(
ξt + 1
ξt − 1

)
+ Li2

(
4ξt

(ξt + 1)2

)]
−
(
ξ2u0

+ 1
)

2ξu0

[
log2

(
ξu0 + 1
ξu0 − 1

)
− log

(
ξu0 + 1
ξu0 − 1

)
+ Li2

(
4ξu0

(ξu0 + 1)2

)]
−Sφ(−(ξ2u0 + 1)u0, (ξ2s + 1)s,−(ξ2t + 1)t)

+Sφ(−(ξ2u0 + 1)u0,−(ξ2t + 1)t, (ξ2s + 1)s)

−Sφ(−(ξ2t + 1)t, (ξ2s + 1)s,−(ξ2u0 + 1)u0) + 1 (71)

with

H(s) =
ξ2s + 1

2ξs

[
Li2

(
zs
z1

)
+ Li2

(
zs
z2

)
−Li2

(
zs
z3

)
− Li2

(
zs
z4

)
− log

(
(ξs + 1)2

(ξs − 1)2

)
log
(

(zs − 1)2 − ξ2s
1− ξ2s

)]
(72)

vmax =
st+

√
s(s− 4m2)t(t− 4m2)

2m2
(73)

zu1 =

√
vmax − ξ2u0(vmax + u0)

ξu0
√
−u0

(74)

zu2 =
1
ξ u0

√
vmax + ξ2u0u0

vmax + u0
(75)

zs =
ξs(
√
ξ2ss

2 − 2svmax + v2
max − ξss)

vmax
+ 1 (76)

z1 = 1 + ξs (77)

z2 =
(1 + ξs)2

1− ξs
(78)

z3 = 1− ξs (79)

z4 =
(1− ξs)2

1 + ξs
(80)

The Sφ function is defined as:

Sφ(s1, s2, s3) =
s3

2
√
λ3

{
log

s2 −
√
λ2

s2 +
√
λ2

log
(z − z1)(z − z3)
(z − z2)(z − z4)

+
4∑
i,j

Sj(−1)i+1

(
1
2
δij log(z − zi)2

+(1− δij)
[
log(z − zi) log(zi − zj)

−Li2
z − zi
zj − zi

])}∣∣∣∣∣
z=zu

z=zd

(81)
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where

z1,2 =
1√
λ2

(
4m2(s3 ∓

√
λ3)

s2 −
√
λ2

− s1 −
√
λ2

)

z3,4 =
1√
λ2

(
s1 −

√
λ2 −

4m2(s3 ±
√
λ3)

s2 +
√
λ2

)

zu =
√
λ1√
λ2

− 1

zd =
s1s2 − 4m2s3

λ2
− 1

λi = s2i − 16m4

sj = (1, 1,−1,−1) (82)

Note that Sφ(s1, s2, s3) ≡ Sφ(s2, s1, s3)
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