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I. Introduction In burning ITER plasmas, the number and type of excited Alfvén in-

stabilities, and their properties at high plasma pressure, will be an important factor for

alpha particle transport. In particular, core localized modes (CLMs) are of major con-

cern, since extended regions of low shear may be present in sawtoothing plasmas or hybrid

regimes [1, 2]. In contrast to the conventional toroidal Alfvén eigenmode (TAE), with

its single eigenfrequency per Alfvén gap, low shear toroidal Alfvén eigenmodes (LSTAEs)

exhibit a multiple spectrum, and they can exist at considerably higher plasma pressure

than ordinary TAEs [3, 4, 5].

In fact, the very development of the CLM concept was prompted by DT experiments

on TFTR, where Alfvénic instabilities were present at surprisingly high plasma pressures.

More recently, CLMs were recognized as important features of sawtoothing tokamaks.

On the Joint European Torus (JET), core localized ”tornado” modes were found to pre-

cede monster sawtooth crashes [6], and on Alcator C-Mod, frequency sweeping modes

associated with very low shear were observed during the sawtooth cycle [7].

In this contribution, we investigate radiative damping of CLMs due to wave tunnel-

ing, by incoorporating non-ideal effects such as finite electron inertia and ion Larmor

gyroradius into the ideal MHD framework.

II. Ideal MHD Modes In finite-β, ideal MHD theory, the ordering ǫ ≪ s2 ≪ 1,

with ǫ = r/R the inverse aspect ratio and s = r/q dq/dr the magnetic shear, admits a

downshifted TAE with frequency
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Here, ω0 = vA/2qR is the frequency at the center of the toroidicity induced Alfvén

gap, ǫ̂ = 2 (ǫ+∆′) (with ∆′ the radial derivative of the Shafranov shift ∆), and α =

−(2Rq2/B2) dp/dr is the normalized pressure gradient. This solution is valid only for

α < s2/(1 + s), so the mode only exists at moderate plasma pressures.

In the plasma core however, observations suggest that s2 ≪ ǫ ≪ 1 might hold. With

the ordering s ∼ ǫ ≪ 1, ideal MHD theory predicts two core-localized modes (CLMs)

in the Alfvén gap – one downshifted and one upshifted (see Figure 1). Their respective
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Figure 1: Toroidicity induced Alfvén gap with down- and upshifted CLMs
residing close to the upper and lower Alfvén continua.

frequencies are given by
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with δ = ǫ + 2∆′. The downshifted mode exists for α < δ + s2, and the upshifted mode

exists for α < δ − s2.

III. Radiative Damping of CLMs Adding first order finite ion Larmor gyroradius

effects to the ideal MHD theory introduces new terms in the mode equations. The prob-

lem is solved by asymptotic matching, with the following Fourier space Shrödinger-type

eigenvalue problem in the non-ideal region:

d2ψ

dk2
+ [E − V (k)]ψ = 0

with E = − (1− g2), and

V (k) = 2gλ2k2 − λ4k4 .

Here, k = ǫ̂
4s

kr
kθ
, with kθ =

m
r
the poloidal wave number, and
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16s2

ǫ̂3

[
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2 ≪ ǫ ,

with τ = Te/Ti, 0 < δ ≪ 1, and ρi the ion Larmor gyroradius. Finally, g is a measure of

37th EPS Conference on Plasma Physics P4.152



the mode frequency deviation from ω0 given by

g =
ω2/ω2

0 − 1

ǫ̂
.

Note that the Alfvén gap in Figure 1 extends from ω2 = ω2
0 (1− ǫ̂) to ω2 = ω2

0 (1 + ǫ̂),

corresponding to g = ±1. The potential V (k) is plotted for g ≈ ±1 in Figure 2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

λ k

V

g ≈ − 1

g ≈ 1

Figure 2: Schrödinger potentials for g ≈ ±1.

For modes with frequencies in the Alfvén gap, |g| is smaller than 1, so that 1− g2 >

0. Hence, E < 0, and the problem at hand is of the tunneling type (see Figure 3).

The transmitted wave propagates into the k ≫ 1 region, where it develops rapid radial

oscillations. In real space this corresponds to parts of the wave propagating away from the

gap location towards regions of small k‖. We assume that the tunneled wave amplitude

is lost, and that this mechanism accounts for the radiative damping of the CLMs.

To get all numerical factors right, we formulate the problem in balloning space, and

match the solution in the kinetic region asymptotically with ideal MHD solutions [8]. The

resulting damping rates are
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for the downshifted mode, and
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for the upshifted mode. Hence, the upper mode is seen to be much less radiatively damped

than the lower mode, especially in regions of very low shear.
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Figure 3: Illustration of the tunneling. The wave amplitude is attenuated
until it reaches the turning points, where V (k) = E. From there it propagates
outwards, only slightly damped due to δ > 0.

Finally, we note that the non-ideal effects included here also give rise to kinetic modes

with frequencies above the upper continuum. These modes have g & 1, so that E > 0.

Hence, V (k) acts as a local potential well with a finite barrier width, providing boundary

conditions for a discrete mode spectrum and once again permitting wave tunneling into

the k ≫ 1 region. Also, in the ideal MHD limit λ2 = 0, where the effects of finite

electron inertia and ion Larmor radius are completely neglected, the potential is given by

V (k) = 0, and it extends out to infinity. Hence, there is no wave tunneling present in

ideal MHD theory, and therefore no radiative damping.
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