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Abstract

This exploration addresses MHD stagnation point Powell Eyring nanofluid flow with double

stratification. The effects of thermal radiation and chemical reaction are added in tempera-

ture and nanoparticle concentration fields respectively. Furthermore, appropriate transfor-

mations are betrothed to obtain nonlinear differential equations from the system of partial

differential equations and an analytical solution of system of coupled differential equations is

obtained by means of the renowned Homotopy Analysis method. Through graphical illustra-

tions, momentum, energy and concentration distributions are conversed for different promi-

nent parameters. Comparison in limiting case is also part of present study to validate the

obtained results. It is witnessed that nanoparticle concentration is diminishing function of

chemical reaction parameter. Moreover, mounting values of thermal and solutal stratification

lowers the temperature and concentration fields respectively.

1 Introduction

Interest of scientists and researchers towards non-Newtonian fluids has immensely increased

during the last few decades due to extensive role of these fluids in industrial and engineering

applications. Examples of non-Newtonian fluids may include sugar solution, soaps, emulsions,

shampoos, apple sauce, paints, cheese, muds, different cosmetic products, asphalt and ice

cream etc. Since many non-Newtonian fluids with numerous characteristics are present in

nature, subsequently different mathematical models are proposed to represent these fluids.

The equations of different non-Newtonian fluid models are more complex and challenging in

comparison to Navier-Stokes equations. That is why mathematical modelling and solutions of

these fluids’ equations are of great importance. The development in mathematical modelling

of non-Newtonian fluids is of great interest even today [1–6]. Eyring Powell’s model has a key

role in many chemical engineering processes and has advantages over other non-Newtonian

fluid models due its simplicity and ease in computations. This fluid model is obtained from
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Kinetic theory of liquids instead of empirical equation. Moreover, for high and low shear

stresses, it decorously converts to Newtonian fluids [7]. A reasonable number of communica-

tions can be quoted highlighting Eyring–Powell fluid model in the existing literature. Akbar

et al. [8] examined Eyring Powell magneto fluid flow numerically past a stretching sheet using

finite difference method. Hayat et al. [9] discussed Eyring Powell fluid flow past a stretched

cylinder in attendance of magneto hydrodynamic and Newtonian heating. Hayat et al. [10]

investigated mixed convective stagnation point Powell Eyring fluid flow with the impact of

heat generation/absorption, thermal radiation and Newtonian heating. Hayat et al. [11] stud-

ied mixed convective Eyring Powell flow with effects of Soret and Dufour. The whole scenario

is deliberated in attendance of convective heat and mass boundary conditions over an expo-

nential stretched surface. Khan et al. [12] presented numerical and analytical solution of MHD

Powell Eyring fluid flow with effects of joule heating, thermophoresis and chemical reaction.

The problem of low thermal conductivity of fluids like ethylene glycol, engine oil or water is

solved by the introduction of nanofluids. Excellent heat transfer features of Nanofluids as com-

pared to ordinary base fluids have made themmore beneficial to many engineering and tech-

nological processes. Applications of nanofluids include heat exchangers, cancer therapy,

thermal engineering, bio medicine and thermal engineering etc. Furthermore, in physics,

medicine and engineering, abundant applications related to magnetic field may be found.

Magnetic field with electrically conducting fluid has many applications, e.g., boundary layer

control, pumps, bearings and MHD generators. Flow behavior highly depends on intensity of

applied magnetic field and orientation of fluid molecules. Moreover, suspended particles of

the fluid are rearranged by the applied magnetic field. This will ultimately change the concen-

tration of the fluid with heat transfer characteristics. A fluid possessing characteristics of liquid

and magnetic properties is known as magnetic nanofluid. Abundant applications of magnetic

nanofluids, e. g., optical switches, nonlinear optical materials, magneto-optical wavelength fil-

ters and optical modulators etc. can be cited in this regard. All such interesting applications

have motivated scientists and researchers to look for more avenues in the field of nanofluid

flows and magnetic properties [13–20].

Many researchers are attracted to Stratification because of its important role in heat and

mass transfer. Stratification occurs with fluids having varied densities and in flow fields with

concentration variances and differences in temperature. Practically, it is imperative to examine

the impact of double stratification whenever heat and mass transfer arise collectively. In the

case of lakes and ponds, stratification is imperative to keep balance in the ratio of hydrogen and

oxygen so that the growth rate of species is not disturbed. Moreover, in Solar engineering too,

stratification plays a vital role in obtaining enhanced energy efficiency. Many researches have

been conducted in this area. To name a few, Hayat et al. [21] examined series solution of time

dependent nanofluid flow with viscous dissipation, double stratification and thermal radiation

effects. Abbasi et al. [22] studied Maxwell nanofluid flow with effects of mixed convection, dou-

ble stratification and magnetohydrodynamic. Hayat et al. [23] explored Jeffrey fluid flow under

the influence of double stratification, heat generation/absorption and mixed convection past an

inclined stretched cylinder. Hayat et al. [24] found series solution of Oldroyd-B fluid flow with

double stratification and chemical reaction. Kaladhar et al. [25] investigated flow of couple

stress fluid with mixed convection and double stratification using Keller box method.

Motivation from the above discussion, it is of paramount interest in this article to inspect

the impact of double stratification, thermal radiation and magnetohydrodynamic on Powell-

Eyring nanofluid flow past a stretched cylinder. None of the above quoted references simulta-

neously analyzed all such effects even in viscous fluid past a stretching cylinder near a stagna-

tion point. Homotopy Analysis method [26–30] is engaged in order to find the analytical

solution of the problem.
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2 Mathematical formulation

We assume a situation in which Eyring Powell nanofluid flows past a stretching cylinder with

impact of double stratification, thermal radiation and magnetohydrodynamic. This study also

considers chemical reaction near a stagnation point. Moreover, cylindrical coordinates with z–

axis are along the stretched cylinder whereas r–axis upright to it as shown in Fig 1 Ref. [31]. In

an Eyring Powell fluid [32], we have

tij ¼ m
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Fig 1. Flow diagram.

doi:10.1371/journal.pone.0170790.g001

Radiative Flow of Powell-Eyring Magneto-Nanofluid

PLOSONE | DOI:10.1371/journal.pone.0170790 January 27, 2017 3 / 19



with the boundary conditions
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where u, w are velocity components in r and z directions respectively. Moreover, β and c, b and

d, U0, l, ν, ρ, cp, k, T, T1, we, DB and DT are fluid parameters, dimensionless constants, refer-

ence velocity, characteristic length, kinematic viscosity, density, specific heat, thermal conduc-

tivity, fluid temperature, ambient temperature, stretching velocity, Brownian diffusion

coefficient and thermophoretic diffusion coefficient respectively.

Here, qr is Rosseland radiative heat flux and is given by

qr ¼ �
4s�

3k�

@T4

@z
; ð7Þ

using value of qr in Eq (4), we get
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Using the transformations of the form [33]
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Requirement of Eq (2), is automatically fulfilled, however, Eqs (3), (5), (6) and (8) take the

form given below
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Here, γ, M, and λ, Le, Pr, Ha, Q0, Nb, P0 and Nt are curvature parameter, fluid parameters,

Lewis number, Prandtl number, Hartmann number, chemical reaction parameter, Brownian

motion, velocity ratio and thermophoresis parameter respectively and are given by followings:
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The relations of Skin friction, local Nusselt and Sherwood numbers are as follows:
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where Rez = we z/ν is the Reynolds number.

3 Homotopic solutions

Homotopy analysis method necessitates initial guesstimates (f0, θ0, ϕ0) with auxiliary linear

operators ðLf ;Ly;L�Þ in the forms
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The auxiliary linear operators have the following properties
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where Ai (i = 1 − 7) are the arbitrary constants. Through boundary conditions, the values of
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these constants are given by the equations

A
2

¼ A
4
¼ A

6
¼ 0; A

3
¼

@f ?m Zð Þ

@Z

�

�

�

�

Z¼0

; A
1
¼ �A

3
� f ?m 0ð Þ;

A
5

¼ �y
�

m 0ð Þ; A
7
¼ ���

m 0ð Þ:

ð22Þ

3.1 Convergence analysis

HAM provides us with an opening to comfortably regulate and control the series solutions’

convergence. The selection of auxiliary parameters, ℏf, ℏθ and ℏϕ are central in regulating the

convergence of desired solutions. To select suitable values of these auxiliary parameters, ℏ–
curves are drawn to 14th order of estimates. Fig 2 depicts the endurable values of these parame-

ters −1.6� ℏf � −0.3, −1.1� ℏθ � −0.3 and −1.3� ℏϕ � −0.4. To validate our results obtained

in Fig 2, numerical approximations to 25th order of estimates as given in Table 1, are also cal-

culated and found in good agreement.

4 Results and Discussion

The results obtained for velocity, temperature and concentration distributions are presented

graphically for prominent arising physical parameters. A comparison of flow behavior past a

stretched cylinder versus a flat plat is also portrayed. Moreover, graphical illustrations

Fig 2. ℏ curves of f @(0), θ 0(0), ϕ0(0).

doi:10.1371/journal.pone.0170790.g002
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depicting impact of prominent parameters on skin friction, local Nusselt and Sherwood num-

bers are also added to the present exploration. From Fig 3, it is perceived that the velocity pro-

file is diminishing function of Hartmann number Ha. This upsurge in Hartmann number

results in increase in Lorentz force. Lorentz force is a resistive force therefore attenuation in

velocity profile is perceived. Furthermore, it is observed that impact of magnetic parameter is

weaker in plate as compared to cylinder. Fig 4 illustrates that velocity distribution results in the

mounting function of stagnation point parameter P0 in both cases when P0 < 1 and P0 > 1.

This is because of the fact that cylinder’s stretching velocity is much smaller in comparison to

free stream velocity. It is also noted that there is no boundary layer for P0 = 1 due to the fact

that both fluid and cylinder are moving with similar velocity. Fig 5 portrays the concentration

field for varied values of chemical reaction parameter Q0. Reduction in solute nanoparticle

concentration and its allied boundary layer thickness is seen because of heavy disturbance in

fluid’s molecules. The influence of radiation parameter Rd on temperature profile is examined

in Fig 6. It shows that an increase in radiative parameter enhances the temperature distribu-

tion. Actually, more heat is transferred to the fluid due to higher values of radiation parameter.

Moreover, it is observed that radiation effects are stronger in case of the cylinder as compared

to the plate. Figs 7 and 8 depict the impact of Lewis number Le on temperature and nanoparti-

cle concentration fields respectively and show that both profiles are decreasing functions of Le.

Eventually, in the examination, a thin concentration boundary layer with frail molecular

Table 1. Convergence of series solutions for different order of approximations when,M = 0.2, γ = 0.3,Ha = 0.2, P0 = 0.2,Q0 = 0.2,Rd = 0.3, λ = 0.2,
J = 0.3, e = 0.3,Nt = 0.4,Nb = 0.6, Le = 1.0, and Pr = 1.0.

Order of approximations −f @(0) −θ0(0) −ϕ0(0)

1 0.86392 0.70881 0.76889

5 0.89486 0.70474 0.87450

10 0.92546 0.70257 0.90333

15 0.92925 0.70104 0.91300

20 0.93900 0.70152 0.91448

25 0.93903 0.70156 0.91563

30 0.93903 0.70156 0.91563

doi:10.1371/journal.pone.0170790.t001

Fig 3. Influence ofHa on f 0(η).

doi:10.1371/journal.pone.0170790.g003
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Fig 4. Influence of P0 on f 0(η).

doi:10.1371/journal.pone.0170790.g004

Fig 5. Influence ofQ0 on ϕ(η).

doi:10.1371/journal.pone.0170790.g005

Radiative Flow of Powell-Eyring Magneto-Nanofluid

PLOSONE | DOI:10.1371/journal.pone.0170790 January 27, 2017 8 / 19



Fig 6. Influence ofRd on θ(η).

doi:10.1371/journal.pone.0170790.g006

Fig 7. Influence of Le on θ(η).

doi:10.1371/journal.pone.0170790.g007
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diffusivity is observed. Fig 9 shows that with gradual growth in thermal stratification e, temper-

ature distribution also show a tendency to decline. This is because of temperature differences

between sheet and ambient fluid which lowers the temperature field. The same fact holds in

case of solutal stratification j and can be observed in Fig 10 where concentration profile is also

the decreasing function of solutal stratification. The effects of thermophoresis parameter Nt on

temperature and nanoparticle concentration are illustrated in Figs 11 and 12 respectively and

it is perceived that both distributions are mounting functions of Nt. Due to increasing values

of Nt, more nanoparticles are pulled towards the cold surface from the hot one which ulti-

mately results in increasing the temperature and concentration distributions. Higher values of

Brownian motion parameter Nb results in an upsurge in the temperature field but a decrease

in the nanoparticle concentration profile. Both the effects are depicted in Figs 13 and 14

respectively. In fact, gradual growth in Nb increases the randommotion and collision among

nanoparticles of the fluid which produces more heat and eventually results in an increase in

temperature distribution and decrease in concentration field. Figs 15 and 16 are drawn to bear

witness to the variation in temperature and solutal concentration distributions for the mount-

ing values of Prandtl number Pr. From these illustrations it can be seen that increasing values

of Pr results in reducing the temperature and concentration profiles. As Prandtl number is the

quotient of momentum diffusivity to thermal diffusivity. Therefore, larger values of Pr result

because of smaller thermal diffusivity which ultimately lowers both temperature and concen-

tration fields. Fig 17 represent the influence of Hartmann number Ha and fluid parameter M

on skin friction coefficient. It is clear from the figure that skin friction coefficient is increasing

function of both Ha and M. The effects of thermophoresis Nt and Brownian motion Nb

parameters on local Nusselt number are displayed in Fig 18. It is detected that increasing the

values of Nt and Nb, results in lowering local Nusselt number. Fig 19 is plotted to show the

Fig 8. Influence of Le on ϕ(η).

doi:10.1371/journal.pone.0170790.g008
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Fig 10. Influence of j on ϕ(η).

doi:10.1371/journal.pone.0170790.g010

Fig 9. Influence of e on θ(η).

doi:10.1371/journal.pone.0170790.g009
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Fig 11. Influence ofNt on θ(η).

doi:10.1371/journal.pone.0170790.g011

Fig 12. Influence ofNt on ϕ(η).

doi:10.1371/journal.pone.0170790.g012
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Fig 13. Influence ofNb on θ(η).

doi:10.1371/journal.pone.0170790.g013

Fig 14. Influence ofNb on ϕ(η).

doi:10.1371/journal.pone.0170790.g014
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Fig 15. Influence of Pr on θ(η).

doi:10.1371/journal.pone.0170790.g015

Fig 16. Influence of Pr on ϕ(η).

doi:10.1371/journal.pone.0170790.g016
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impact of Prandtl Pr and Lewis Le numbers on Sherwood number. Here, it is noted that Sher-

wood number is mounting function of both Pr and Le. However, from Fig 20, it is clear that

Sherwood number is increasing and decreasing function of Nb and Nt respectively.

In Table 2, a comparison to the previous exploration in the limiting case for the Sherwood

number is presented. All obtained results are found in excellent agreement.

5 Final remarks

The present study explores the effects of double stratification and magnetohydrodynamic flow

of Eyring Powell nanofluid past a stretched cylinder near stagnation point. The analysis is

done in the presence of chemical reaction and thermal radiation. Homotopy analysis method

Fig 17. Influence ofHa andM on Cf Re
1/2.

doi:10.1371/journal.pone.0170790.g017

Fig 18. Influence ofNt andNb on −θ 0(0).

doi:10.1371/journal.pone.0170790.g018
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is used in order to obtain the series solutions of the said problem. The salient features of the

present study are as following.

• Increasing the values of chemical reaction parameter results in reducing the solute nanopar-

ticle concentration.

• Velocity profile decreases when radiation parameter increases.

• Sherwood number is increasing and decreasing function of Nb and Nt respectively.

• Gradual growth in thermal and solutal stratification results in decline in the temperature

and concentration distributions respectively.

• Higher values of Brownian motion parameter Nb increase the temperature field but decrease

the nanoparticle concentration profile.

Fig 19. Influence of Pr and Le on −ϕ 0(0).

doi:10.1371/journal.pone.0170790.g019

Fig 20. Influence ofNt andNb on −ϕ 0(0).

doi:10.1371/journal.pone.0170790.g020
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