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Radiative gravitational fields in general relativity
II. Asymptotic behaviour at future null infinity

By L. BLaNCHETY}

Theoretical Astrophysics, California Institute of Technology, Pasadena,
California 91125, U.S.A.

(Communicated by B. Carter, F.R.S. — Received 28 April 1986)

We prove that Penrose’s requirements for asymptotic simplicity are
formally satisfied by the general metric, (1), which admits both post-
Minkowskian and multipolar expansions, (2), which is stationary in the
past and asymptotically Minkowskian in the past, (3), which admits
harmonic coordinates, and (4), which is a solution of Kinstein’s vacuum
equations outside a spatially bounded region. The proof is based on the
setting up, by using the method of a previous work (L. Blanchet &
T. Damour (Phil. Trans. R. Soc. Lond. A 320, 379430 (1986))), of an
improved algorithm that generates a metric equivalent to the general
harmonic metric of that work but written in radiative coordinates, i.e.
admitting an expansion in powers of r* for 00 and {—+ fixed. The
arbitrary parameters of the construction are the radiative multipole
moments in the sense of K. S. Thorne (Rev. mod. Phys. 52, 299 (1980)).

1. INTRODUCTION

Penrose (1963, 1965) has introduced the concept of an asymptotically simple
space—time to geometrically formulate the asymptotic properties of radiative
space—times that were investigated by Bondi et al. (1962) and Sachs (1962).
Basically, an asymptotically simple space-time is a space—time sharing common
local and global asymptotic properties with Minkowski space—time. However, this
concept is only a definition of a class of space—times that we would like to associate
with isolated systems and it has not been proven to be consistent with Einstein’s
equations: it is not known whether sufficiently general Einstein’s space—times
(notably, non-stationary space-times) satisfy the definition for asymptotic
simplicity.

The purpose of this paper is to show that the definition is (formally) satisfied
by the general metric constructed in a previous work (Blanchet & Damour 1986,
hereafter referred to as paper I). This general metric is physically expected to be
associated with an isolated system (stationary in the past) lying in a region r < 7,.
The method of paper I is mainly an extension of the Bonnor-Thorne approach to
gravitational radiation theory that combines the nonlinearity (or post-
Minkowskian) expansions with multipolar expansions (Bonnor 1959; Bonnor &

1 Permanent address: Groupe d’Astrophysique Relativiste, C.N.R.S., Observatoire de
Paris—Meudon, 92195 Meudon Principal Cedex, France.
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384 L. Blanchet

Rotenberg 1966; Couch et al. 1968; Hunter & Rotenberg 1969; Thorne 1977, 1980,
1983). The advantage of this method is that it is valid in all the ‘weak-field’ region
outside an isolated system and thus, in particular, in all the ‘asymptotic’ region
far from the system (e.g. the distant wave zone in Thorne’s terminology). In
contrast, the Bondi—Sachs—Penrose method is valid only in the asymptotic region.

Let us first recall the basic assumptions of paper I. We consider the class of
metrics g = 1/gg*ft satisfying the following properties.

1. g% admits a multipolar post-Minkowskian expansion (MPM expansion), i.e.
a formal expansion in powers of G (Newton’s constant)

o0
g =f+ 3 Grh, (1.1)
n=1

such that each h%f admits a finite multipolar expansion

ma

heb(x, t) = Z LB, ¢) hh (v, t), (1.2)

where [, .. is some maximum value of / (depending on ).
2. g% is stationary in the past, i.e. there exists a time —7T such that

—T=>(0/3t)g*(x,t)=0 (1.3)
and g% is asymptotically Minkowskian in the past in the sense that
—T = lim g% = fob, (1.4)
r— o0

3. 4% satisfies Einstein’s vacuum equations in a domain of the type
D ={(x,t);r > ry} for some r, = 0 which means that the A,s satisfy in D the
equations

0,y = Hj, (1.5a)

Ok = 0H + N*# (h,,;m < n—1), (1.5b)

where []: = f*0,, = —0;+A is the flat d’Alembertian operator, N3/ is a ‘source
term’ depending on the k,,s (for m < n—1), and 0H*/ is a ‘gauge term’ given by

OHYf = o* Hf +of Hy, —f*# 0, HY,, (1.6a)
with &*:= f*0,. Note that we have
0,(QH) = (OHS, (1.6b)

In this paper we relax the last assumption of paper I, namely that 0, =0
(harmonic coordinates), and thus we leave unspecified the H%s in (1.5).
Let us employ, with Geroch & Horowitz (1978), a definition for asymptotic

1 We use the notation of paper I: signature — + + +; Greek indices = 0, 1, 2, 3; Latin
indices = 1, 2, 3; g: = —det ( (Gw)s [ = f,5 = flat metric = dlag( 1, +1, +1); N, R are
the usual sets of non-negatlve integers and real numbers; C?(U) is the set of p tlmes contlnuously
differentiable functions in the open set U (p <+0); r=(a2+al+22R; o = af/r; 8, = /s,
nt = nini,. 0% and 0, = 9;,9;,...0; where L = %,45...%; i8 & multi-index with [ indices; %~ is
the (symmetric) trace-free part (STF part) of n”; we use ¢ = 1 throughout the paper.
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simplicity that slightly differs from Penrose’s original definition by the following :
we require that manifolds, Lorentz metrics and the conformal factor are C* instead
of C%, C® and C2 respectively, and that infinity is topologically §2 x R with complete
‘Rs’ (so that the global asymptotic structure is the same as those of Minkowski
space—time). However, we keep the terminology ‘asymptotically simple’ instead
of ‘asymptotically flat’ to emphasize that the concept is only a definition. For
reviews of properties satisfied by an asymptotically simple space—time see Geroch
(1977), Schmidt (1979) and Ashtekar (1984).

Definition 1.1. A space—time (M, g,4), i.e. a C* connected Hausdorff orientable
manifold M with a C* Lorentz metric g, ; on M, is said to be asymptotically simple
at null infinity if there exists a C*° manifold M with boundary .# (< M) together
with a C® Lorentz metric §,; on M and a C* scalar field 2 on M such that:

(@) in the interior // —.# we have 2 > 0 and § Jop = £2° *ap’

(b) at the boundaryfwe have Q =0,V Q #0,V*QV, .Q 0and V Vﬁ.Q 0,
where V= = 74V, is the covariant derivative operator associated with § Gups

(¢) # consists of two parts, £ ~ and £ *, each having topology 8% x R, with the
‘Rs’ being complete null generators.

In this paper we shall prove the following theorem.

THEOREM 1.1. The general metric g*f = f*4+3®_, Q" h28, which is a solution of
(1.1)(1.5) and which admits harmonic coordinates in the domain D, rewritten in
covariant form g5 = f 5+ 25_1 G" Gnp yields a sequence of space-times (M, §yp),)
Jor p = 1, where g0 = fop+ 28 _ | G* 9y 5, which all satisfy definition 1.1.

We require in theorem 1.1 that g admits, in the sense of power series in G,
harmonic coordinates in D to connect g to the harmonic metrics of paper I.
Theorem 1.1 gives us some confidence that an actual isolated system, stationary
before a time — 7" and non-stationary thereafter, generates a space—time solution
of Einstein’s equations that is asymptotically simple (definition 1.1). Note,
however, that the assumption of stationarity before the time —7 is essential for
theorem 1.1 to hold. Indeed, for a system that is always non-stationary (in
particular, non-stationary in the remote past) asymptotic simplicity probably
neither holds at .# ~ (see, for example, Bardeen & Press 1973 ; Walker & Will 1979)
nor even at £ * (Damour 1986).

To see precisely what to do for proving theorem 1.1, let us consider the general
mpM Einstein metric.g = f+%,, . ; G" ,, (stationary in the past and asymptotically
Minkowskian in the past) in harmonic coordinates (i.e. such that 9, ke =0 for
all n) that has been constructed and studied in paper I. This metric admits
(paper 1, theorem 7.2) the following asymptotic expansion at the infinity r— co
with ¢ —r = const.: VN > N, for N, large enough, we have

N n-1

b )= St 38 Ggnp ot B u-n+ Rt -nf, 0
120 k=1p=0

where the functions FL; (u) are C’°°(R) and constant when 4 < —7', and where the

remainders RE , (r, u) are O® (r—N)-functions (paper I, definition 7.1). Similarly, &,

admits an asymptotic expansion of the type h,, ~ L AL (Ig )2 r* Hy, ,(t)+ T, 5 in the

near zone r—0 with ¢ = const. (paper I, equation (5.4)).
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In the near zone, the logarithms are probably caused by backscattering effects
(Bonnor 1974 ; Thorne 1980) and thus they probably reflect physical properties of
gravitational waves. On the contrary, the logarithms of (1.7) (in the ‘outgoing’
far zone), that have been known to appear since the work of Fock (1959), might
be an artefact due to the use of harmonic coordinates (Isaacson & Winicour 1968;
Madore 1970; Anderson 1979). These logarithms are troublesome because at large
distances from the origin the nth post-Minkowskian approximation becomes larger
than the (r—1)th one. (With a source at the origin, this occurs typically for
r = AeVEM where A is the gravitational wavelength and M the mass of the source.)
Furthermore, trying to apply definition 1.1 with the most natural conformal factor
Q = 1/r, and by using coordinates #* = (2, u, 6, ¢) with v = t—r, we are faced
with powers of lg€ that prevent the conformal metric from being C* in a
neighbourhood of £ = 0. Therefore what is needed (and it is possible to do so) is
to construct a new (‘good’) coordinate system (distinct from the harmonic
coordinate system) such that the transformed %,s admit expansions at infinity in
powers of 1/r only (no lgr terms).

In fact, rather than exhibiting directly the coordinate transformation, we set
up (in §2), by using the tools and the algorithmic method of paper I, an improved
algorithm that constructs a particular metric (called g,,4) expressed in ‘good’
coordinates. In §3 we prove that the space—time (M, g,,4) is asymptotically simple
and we give some physical interpretations. Finally, in §4, we show that g, is
‘equivalent’ to the general metric of paper I. This will complete the proof of
theorem 1.1.

2. CONSTRUCTION OF A RADIATIVE FIELD

We wish to construct a (stationary in the past and asymptotically Minkowskian
in the past) MPM radiative field in the sense of Papapetrou (1969) and Madore
(1970), ice. an mpM field g, = f+X, 5 ; G" byaq, such that each k.4, admits,
when r—00, an asymptotic expansion in powers of 1/r along a family of forward
cones {—r = const. More precisely, by using the class of functions #° defined in
paper 1 (definition 7.2) we want, Vn > 1, ph,q, (the dynamic part, zero in the
past, of hy,q,,) to belong to £, that is that there exist some functions FZ, (u) that
are both C°(R) and zero in the past (¢ < —T'), and some functions RE (r, u) that
are 0% (r~) (paper I, definition 7.1) such that, YN > 0,

ma;

Imax N
plradn(X, £) = lgo AL {’z,l f’c FL (¢—r)+ RE\(r, t—r)}. (2.1)

The stationary part of %..q,, sraan (constant in time), is simply a finite sum of
terms A% r~% FL, with k& > n (as shown in Appendix A).

2.1. A linearized radiative field

Our first problem is to find a convenient ‘linearized radiative field’, h,4,, i.e.
a solution of Kinstein’s linearized vacuum equations generating at further
approximation steps a MpM radiative field. Consider the most general solution,
satisfying the conditions (1.1)-(1.4), of the linearized vacuum equations in
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harmonic coordinates ([JA* = Og h* = 0), which has been dealt with by Sachs &
Bergmann (1958); Sachs (1961); Pirani (1964); Thorne (1980) (for a careful
derivation of this general solution see paper I, §2). This solution can be written,
modulo an infinitesimal coordinate transformation, as the following ‘canonical’
multipolar expansion kg, [# ], depending on a finite set of C®(R) sTF tensors
(multipole moments) # = {M,(t), S, (t)}, all constant in the past with M, M,; and
S, constant for all times. (We employ the notations of paper I, equations (2.32),
except for the script letter .# we use here to avoid confusion with the mass
monopole M):

Wi ) =—4 = ) )

lz0

O [r M (E—r)], (2.2a)

ML [M]=+4 3 )aLl[r—ImM (=]

121
(=)
+4l§1(l+1)' mbaaL 1[/,- SbL 1(t ’/')] (22b)
W 1= —4 5 Zlo, g 0n,, i)
i>2 U
-8 2 =)t )l [r ey, VS (t—r)] (2.2¢)
l>2 l+1) aL-—2 ab (i 7 bL—2 . .

This linearized field is the canonical linearized field used in Thorne (1980, equations
(8.12)). Expanding the derivatives 0, we see that h,,, is a finite sum of terms
AL r* FE(¢—r) (with k > 1) and thus it is a finite expansion in powers of 1/r along
the cones {—r = const. (hence pheyn,€-L°). However, these cones are not null
hypersurfaces for the metric f**+Gh%£, | since the equations for these null
hypersurfaces are easily seen to be (neglecting terms of order O(G?)):

t—r—2GMlgr+G Y % C.alr * &R M, (t—r) = const., (2.3)
Iz1k2>1

where the CLs are some constant coefficients, nl' = nfin’: ... n% and @ M(u) =
(d/du)? M(u). Thus the cones {—r = const. diverge (in harmonic coordinates) when
r— 00 as 2G M Ig r from a family of null hypersurfaces of f+ Gh,,,. Madore (1970)
has proved that the cones t—r = const. along which a radiative field admits a
1/r-expansion must be, on the contrary, asymptotically tangent to a family of null
hypersurfaces of the metric. He therefore concluded that a linearized harmonic
metric, such as A, ,, cannot be the linearized approximation of a radiative field:

hean1 18 NOt & convenient ‘linearized radiative field’.
We can easily find a convenient k4, such that the cones ¢—r = const. are
asymptotically tangent to null hypersurfaces of f+ Gh, ,4,. The simplest choice is

oy [M] = By [M]+0* 8P +OF £*— 240, £, (2.40)
where the vector £ is

£ =2Mf% 1gr =(—2Mlgr, 0), (2.4b)
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M being the mass monopole associated with #. h 4, defined by (2.4) can be
thought of as being the transformation of A,,,,; by the infinitesimal coordinate
change (¢, x)— (t—2G'M Ig r, x) so that it is clear from (2.3) that, after transform-
ation, the new cones {—r = const. are up to order O(G?) asymptotically tangent
to null hypersurfaces of f+Gh,,4,- The (new) coordinates are not harmonic
coordinates for k.., because we have

Ophihy, = AE* = 2My2f02 £ 0 2.5)

(with A = 8,;0,0;). hyaq, is, like heyy 4, a finite sum of terms AL r~% FL(t—r) with
k> 1. In the following we will need to consider the dominant part of k4, for
r->00 with t—r = const., namely 7! F,(t—r, n) = X, 4L v FL(t—r). From (2.2)
and (2.4) we find

Feb(t—r, n) = 2M(Fo% kP + fo8 k) + 2P (t—r, n), (2.6)

where & is the Minkowski null vector &* = (1, n) (k, = f,, % = (—1, n)), and 2*
is given by

2t —r, n) = —412 %nL OM, (t—r), (2.7a)
>2b’
Dit—7r, n) = _412 %nL_l OM,,_,t—7)
>20:
l
+4 Ez T+ 1)1 Siad Moz D8y (t—1), (2.70)
M(t—r, n) = _412 %nL—z DMy ot—1)
220
)
+8l§ (l—+f)—'na,;_2 eab(i (Z)Sj) bL_z(t—r). (276)
22 :
Note that 2## is zero for t—r < —T. Contractions with k* are
kﬂF‘fﬁ = 2 Mk* (2.8a)
and
k, IcﬁF‘fﬁ =0. (2.8b)

2.2. A quadratic radiative field

With %,,4, in hand, the next step is to consider N, 4, = N,y(hnq,), hamely the
quadratic source of Einstein’s equations (1.5) computed with A.4,. The exact
expression of N,(h) is:

NEb(h) = —0,,(h*8 1)+ 2h2.3 , W)+, kP D, b
— 0% 1 O B+ 30 B, DI — 200 B, 1 ROV 40, ko O Bl
+0,h 3, B+ fo [10, B oM W —10, B, 4 P+ 30, B, & ], (2.9)

with h,, = f,. M =f,, f,, " and T = (1% +TF*). Then we choose, following
the method of paper I, a particular solution np*,, that is zero in the past of the
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d’Alembertian equation [p* = pN%,, (where pN,.q, is the dynamic part of
N,aq2) by using the operator FPI3! (‘finite part’ of the retarded integral), which
has been defined in paper I (definition 3.3) by means of analytic continuation:

nggdz = FPg DN%gd 2 (2.10)

It is possible to do this because we check that N, 4,(x, ) belongs to the class of
functions L° (paper I, definition 3.2) and thus, by paper I, theorem 3.1, we have
OpPrage = pVraq2 a0d pPrag € L. Now by exactly the same reasoning as used in
proceeding from (4.10) to (4.13) in paper I, we can associate to pp*;, a tensor
2?4, that is zero in the past and satisfies [1p¢%;, = 0 (hence pgyaq, belongs to
L® and #£°), and furthermore is such that

aﬂnﬁgdz = ’aﬂDP?gdz- (2.11)

Then the sum ppr.q0+ pdraae+ sPraqes Where the stationary g¢h,.., is given in
Appendix A, is a particular divergence-free solution of Einstein’s quadratic
equations (1.5) with source N?4,,. However, we will see just below that this
particular quadratic solution, although coming from a ‘good’ radiative linearized
hraq1, does not admit an asymptotic expansion in powers of 1/r only along the
cones {—r = const. (i.e. the dynamic part does not belong to £?).

Let us recall a result of paper I (lemma 7.4) according to which the (finite part
of the) retarded integral of a source of the type r~/ F(¢—r, n), where F is zero in
the past, belongs, for j = 3, to £°, and belongs, for j = 2, to £* (i.e. admits an
expansion that contains either zero or one power of lgr; see definition 7.2 of
paper I). The source N,,q,, which is precisely a finite sum of terms r~7 4,(t—r, n)
with j > 2, will therefore generate far-zone logarithms in p .4, if 4, (which is zero
in the past) is not always zero. It turns out that 4,, which can be computed by
replacing the ‘r~l-part’ of k4, in (2.9), is not zero (hence pp, ,q4,€ %) but has
the particular form of the stress-energy tensor for a ‘swarm of gravitons’. We find

AP = kP Vg, 102 ) 212)

where Mz, is the time-derivative of z,, = f,, 2 = f,,f,, #°. It will be convenient
to introduce the following integral &(t—r, n)

—T
E(t—r,n) = f_m du(FOz Wz, — W02 V2) (u, n), (2.13a)
the interpretation of which will be given in §3. Note that &(t—r, n) is zero for
t—r < —T. With this notation we have

AB(t—r, n) = 4k* P VEE—7, n). (2.13b)

Now the point is that, because of the particular form of 4%, we can find a vector
A* such that the ‘gauge term’ A% = & Af+0f A*—f*#9 A*, when added to the
Z'-expansion of the retarded integral of r~24%f, exactly cancels the logarithms in
this expansion so that the result belongs to #°. We prove the following lemma
in Appendix B.

Lemma 2.1. Let A* be given by
A* = FPg[2r 2k &(t—r, m)]. (2.140)
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Then we have
FPOR 4r2k* kP V&t —r, n)]+ AP e £°. (2.14b)

Therefore, because r24% = 472 k*k# V& alone produces logarithms in pp%,,,
we find
pPas+AFe P, (2.15)
so the tensor u2£,, defined by

u%gd 2 Dpra,d 2 + D rad 2 + rad 2 + aAaﬂ (2- 16)

is a solution of Einstein’s quadratic equations (1.5a, b) (with » = 2 and non-zero
divergence: H? = [JA* # 0) that admits an asymptotic expansion in powers of 1/r
(‘beginning’ at »~1) along the cones {—r = const. (indeed pu 4, € £° by (2.15) and
sPraq 2 has the structure (A 3)).

It would be possible to define the quadratic A4, to be simply u,,q4,, and then
to continue the algorithm exactly in the same manner (cancelling at each step
n = 3 the ‘new’ logarithms that appear by some 0A%); see Blanchet (1986) for this
way of proceeding. But it is convenient, and physically meaningful, to define a
hyeq o the expansion of which at infinity ‘begins’ at »~2 instead of r~* for u,,4 ,. Then
we will see that no new logarithms appear at the cubic step, and, continuing in
this manner, at higher steps.

Let —r~' Z*#(t—r, n), where the minus sign is chosen for later convenience, be the
(dominant) ‘r~'-term’ at infinity in u®,,

whyy = —r7 2 (t—1, m)+ O(r2). (2.17)

Because the stationary gh,.q, is at least of order 0(7“2) (by (A 3)), this —r1Z*# is
equal to the 7 -term in the #°-expansion of pu,,. Thus Z* is zero in the past.
Now consider the divergence 04 uly, of u2,,; on one hand we have, at infinity,

Opushy, = 171 ky(0/01) Z#F(t—r, n)+O(r72) (2.184a)
and, on the other hand (from (2.16)),
dputby, = OA* = 2r 2 k= E(t—1, n). (2.18b)

From (2.18a, b) we conclude that k Z"‘/’(t—-r, n) must be a constant in time. But
Z*#(t—r, n) is zero in the past, therefore the constant is necessarily zero and we have

lcﬂZ"‘ﬂ(t—r, ny=0. (2.19)
With this property we can prove (in Appendix B) the following lemma (adapted
from §2 of paper I).

Lemma 2.2. For Z* zero in the past and satisfying (2.19), there exist a set of
multipole moments M, and a d’ Alembertion-free vector @3 (1P = 0), with M, and
@5 both zero in the past, such that, for r— oo and t—r = const.,

BB, | [ M)+ 0D = 71 228 4 O(r72). (2.20)

In other words, 7' Z* can be regarded as the r -term in h’radl [M,]+0D%. Note
that because .#, is zero in the past we have A 4, [#,] = hcan,y [./ill] So, if we add
to u®,, the hnearlzed (harmonic) h#f,, [#,]+0P%, which is a solution of
Oh* = ;% = 0, that is a solution of 'the ‘homogeneous’ problem, we obtain a
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solution of Einstein’s quadratic equations that admits, like u%,,, a radiative
expansion at infinity in powers of 1/r and furthermore this expansion ‘begins’ at
r~2. This is exactly what we wanted so we pose

k:-‘ad2['/ﬂ] _Dprad2+DQrad2+Sh d2+h dl[‘/ﬂ]+a¢aﬂ+a’\aﬂ (2-21)

and we are assured that ph.,,€%° and hq, = O(r7?) (in the sense of the
Fexpansions and of the known structure (A 3) of ¢hq,)-

2.3. Post-quadratic radiative fields

The following steps of the algorithm are straightforward. Given = > 3 we
recursively assume that some A4, for 2 < m < n—1 have been constructed from
hraa1 to satisfy Einstein’s equations and such that ph, .4, belongs both to L™~* and
t0 L0 phraa m € L™ 1 N F°, with a radiative expansion at infinity beginning at r~2:
hraam = O(r"2%). Then we compute the source N, with the %48 and find, by
lemmas 3.4 and 7.3 of paper I, that N 4,€L"*n#° Furthermore, because
hraam = O(r72) at infinity for m > 2 and N4, (with » > 3) is at least a quadratic
product of k.4, and kg, (m = 2) or a cubic product of three A, 4,, we find that
Nyparn = O(r7®) at infinity: terms of order »~2, which produce logarithms, are
absent. Therefore, by theorem 7.1 and lemma 7.4 of paper I, the retarded integral
of p N4, 18 & F%-expansion; we have

pP%i, = FPOR p Ny, € Z° for n =3, (2.22)

(and also pp,q,€L" ") in contrast with pp.,.,€#*. As announced, no new
logarithms appear at the post-quadratic steps. Thus the desired A, 4, is obtained
by adding t0 pPraq, itS associated pgp.q, (S0 Einstein’s equations are satisfied),
the stationary gh,,q, given in Appendix A, and the convenient homogeneous
solution h,q,[#,_,]1+0D,_, that cancels, by lemma 2.2, the r'-part of

DPradn + Diradn Shrad n’

ra.dn['/ﬂ] - Dpradn+D radn radn+ha dl[ 1]+a¢ for n > 3. (2-23)

This completes the construction of an MPM radiative field. We thus state the
following.

ProposITION 2.1. Given the linearized metric hp,q,[ M ] of (2.4), there exists
an algorithm that constructs a formal metric solution of (1.1)—(1.4),
Fraa ) = [+ 51 G" hrgq n [ M ] (the hpyq 8 being given by (2.4), (2.21) and (2.23)),
solving Einstein’s vacuwm equations (in D), and such that each h.yq , [ ] admats the
Jollowing asymptotic expansion (VN = N,, where N, is chosen large enough so that
REL . is zero in the past):

N
radn (x’ t) = Z ﬁL{ 2 ,,.—Ic Fﬁk(t_r)'*'RﬁN(r’ t—-—’l‘)} ’ (2-24)
Iz0 k=1
where the functions FL (u) are C*(R) and constant when u < —1T, and where the

RL (7, w) are O°(r V).

This ‘good’ expansion at infinity is to be contrasted with the ‘bad’ logarithmic
expansion of the 4,s in harmonic coordinates (paper I, equation (7.13), or (1.7)
above).
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3. PROPERTIES OF THE RADIATIVE FIELD
3.1. Asymptotic simplicity
Let us prove, as a first step in the proof of theorem 1.1, that the MmpM radiative
field g, = f#+3X®_, G" k¥, ,, rewritten in covariant form Tradap = Jap T Zo-1

G" Grad nap yields a formal space—time that is asymptotically simple in the following
sense.

ProrosiTioNn 3.1. For any p =1, the space—time (M, Graqipiag), where
Iraaiplap = Japt Zh =1 G Grad nap Satisfies definition 1.1 for asymptotic simplicity.

Proof. Let us deal first with £+, We introduce a conformal factor Q = r1,
a retarded time w=1¢—r and, for any p=>1, the conformal metric
dsty = 22 Graq [p)ap 42° def. In the coordinates # = (2, u,0,$) we have
A&y, = grad[p] wd% d&. Then it can be checked, thanks to the asymptotic
expansions (2.24) of the k. ,4,8 (and by using the properties of the .#? class) that
each §aq1p,, 2dmits the following expansion (VN = N,)

N+1
Gain@ 66,8 = S 96, T O+ Sh@w), @)

1>0
where the functions G%.(u) are C*(R) and constant when u <—7, and the
8L n+1(L2, u) are of the type (skipping the letters L and p)

SN+1(Q5 u) = RN+1(Q—1’ u)’ (32)

where By, (7, w)is a O® (¥~ 1)-function. The only problem we find in proving (3.1)
is caused by the coefficient of dQ2:J,,q 0100 = X5-1 272 k*k# O” graq nap Which is
not apparently of ‘order O(£2°)’. But, in fact, it is because of (2.8b) and our choice
hraan = O(r~2) for n = 2. (Note, however, that in the other radiative algorithm we
mentioned in §2, in which A 4, = %.,4, given by (2.16) and where we subtract at
each step n > 3 the ‘new’ logarithms, we would have as well find §i,q 5100 = 0(£2°),
so the proof of the proposition 3.1 would be exactly the same.)

The first and main task is to prove that the functions (2, u, 6, ¢)~>Jraqp)
(22, u, 6, ¢), which are initially defined in ]0, + o[ x R?, can be extended for 2 = 0
to functions belonging to C*([0, + co[ x R?), i.e. belonging to C¥ ([0, + oo[ x R?) for
any NeN, where [0, + oo x R? is endowed with the induced topology of R%. For
doing this we will prove the equivalent requirement (see, for example, Schwartz
1966, p. 313) that, V Ne N (or rather VN = N,), we can find extensions (which will
depend on N) of these functions for all values of Q € R belonging to OV (R?). Since
each function (R, u, 6, §) > (0, ¢) Q¥ GL,(u) in (3.1), considered as a function
on R%, belongs to C*(R?) it is sufficient’ to prove that, VN = N,, we can extend
Sy +1(L2, ) to a function on R? belonging to CV(R?). We pose, for 2 # 0,

S8, u):= Sy (1], u) = By, (127, ) (3.3)

(say). First we have %, (2, u) € C®(R* x R) where R* = R—{0}. Indeed we know
that the function (x, t) — AL Ry, (r, w) belongs to LP~! (because each ph g, € L")
therefore we have #% Ry ,,(r, u) € C® [(R®—{0}) x R] (as a function of the variables
x and ¢), which implies % ,,(22, u)e C*(R* x R). Second, to prove that in fact
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SR, u) € CV(R?), we use lemma E1 of paper I (Appendix E), which requires
that the derivatives with respect to 2 of #,, be uniformly (in ) bounded by
adequate powers of |Q]. Let m < N and 2 # 0, then we have (from the properties
of the O®(r~N)-functions, lemma 7.1 of paper I), V& > 0,

(d/dR)™d/du)* Hy,1(2, u) = By m(1Q, w), (34)

where Ry, . is a O®(r"N=14™).function. Thus, by definition of the O®(rV)-
functions we find V(u,, u,)€R?, there exist M >0 and A >0 such that

[uy S u < u, and 0 < |Q] < 47 imply
I(d/dQ2)™(d/du)* Fpy 1 (L2, u)] < M|QN+1-m, (3.5)

So the hypotheses of lemma E1 are satisfied (with K = N) and therefore S,,,,(R2, u)
can be extended to ¥,,(2, u) e OV (R?).

The other requirements for asymptotic simplicity at 4+ are easy to prove.
Indeed we have VaQ =(1,0,0,0) # 0, VZ VﬂQ =0 and [V QVM.Q]IQ=0 equals
[Q*(A+E8_,G"mmyghan)l,., =0 And, at =0, d&#, is equal to
0-du®+d6?+sin®*6 dg? so that S+ is topologically S2 x R. The completeness is a
consequence of our assumption according to which the construetion is valid in the
whole of the ‘exterior’ region D = {(x, £), r > r, = 0}.

Finally, the same reasoning applies to .# ~ with the simplification that, because
the metric is stationary in the past (and has the structure (A 3)), it is an easy matter
to prove that the conformal metric in coordinates (2, t+7, 8, ¢) is C°. W

3.2. Interpretation of # and &

We found it convenient to define A, ,, for n > 2 in such a way that its expansion
at infinity ‘begins’ at the order r~2. Thus the dominant, or radiative, part at
infinity (the r~'-part) of the full non-linear g, = f+3%, 5 ; G" hypq , cOomes exclus-
ively from the linearized hy,q,. In other words, only the linearized h,,4, ‘radiates’
at infinity and the nonlinear A4 ,s for n > 2 ‘do not radiate’. This means that
the functions # = {M,(t), 8.(t)} that serve as unknown parameters in g4 are in
fact exactly the radiative, or far-zone, multipole moments in the sense of Thorne

(1980, p. 331), My () = MP(t); Sp(t) = SP4(e). (3.6)

We expect these moments to be measured on a detector far from the system.
In other algorithms, such as the harmonic algorithms in paper I or the second
radiative algorithm mentioned in §2 (in which %4, = %.5q,), the functions M (t)
and S, (t) do not have this interpretation.

Finally, let us compute the energy—momentum vector P*(u), at £+, associated
with g.,4 by the following method (see, for example, Streubel 1978; Porrill &
Stewart 1979): we integrate by using Gauss’s theorem the usual Landau—Lifschitz
(1971) energy—momentum pseudo-tensor over a sphere r = const., { = const. and
then take the limit r— 0o with {—r = const. The result is

Pr(u) = (GTM)—Gz J%% k*&(u, n), (3.7)

(with dQ = sinf# dfd¢). Thus we can interpret G&(u, n) as being 41 times the
energy per steradian carried off by the radiation field before the time u and in the
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direction n. Note that & is positive as easily deduced from the algebraic properties
of 2% (equations (2.7)),

u
&(u, n) =J du/’ [%6(101'1’7 (l)zij_%% (1)2 ) +1(p; (I; w) 1, (3.8)
where p; = On;/00 and g, sin § = dn,;/0¢. It can be recovered by integration of £*&
over angles equations (4.16') and (4.20") of Thorne (1980) giving the energy and
linear momentum carried off at infinity by the waves as infinite formal multipolar
geries (the dominant energy contribution agreeing with the usual Einstein
quadrupole formula).

4. COORDINATE TRANSFORMATION BETWEEN THE CANONICAL AND
THE RADIATIVE METRICS

Up to now we have proven asymptotic simplicity only for a particular MpM
metric, namely the radiative metric g ., [.# ] constructed in §2. To prove theorem
1.1, we need to show that the general metric g,., satisfying our assumptions
((1.1)~(1.5) and existence of harmonic coordinates) can be connected to some
#raa [# ] by a coordinate transformation.

In paper I (theorem 4.5) this has been shown for a particular ‘canonical’ MPM
metric geon[#] in harmonic coordinates whose linearized approximation is
Poany [# 1 ((2.2)); given any g,.,, there exist # and a coordinate transformation

T such that
Tggen = ean [ 1. (4.1)

We will prove in this section that we can also connect g,,, and g,.4; given ./, there
exist ' and a coordinate transformation 7' such that

T/?ca,n [A]= Zrad [(A']. 4.2)

Equation (4.2), combined with (4.1), is the needed result that completes the proof
of theorem 1.1. Note that in (4.2) the coordinate transformation must be done
conjointly with a change # —.#’ of multipole moments (T. Damour, personal
communication, 1984).

So let # be given. We first consider the coordinate transformation

&' = a* +GEe, (4.3)

where £* is the vector defined by (2.4b): £ = 2Mf* lgr in which M is the mass
monopole associated with #. This coordinate transformation transforms the
harmonic g,,,, [# ] into a non-harmonic g,,, [.# ] whose linearized approximation
is equal t0 hpq,[#] (because k.4, given by (2.4a) differs from h,,, by the

“gauge’ 0f¥): Fean [ M1 = [+Chygq, [M1+0(C). (4.4)

Consider now the quadratic approximation of g,,,, namely k., ,. This h,, ,, whose
divergence is g, n, 0, £, satisfies Einstein’s quadratic equations (1.5) with source

Nenas = Mallraa)’ Chho = Moo OHehns, (4.50)
a/5’hca,n2 Hcanz canl /wg (45b)
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(with OH* = 3*HP +0f H*—f*# 3, H"). To relate the unknown hgy,, t0 hyyq, We
define, by means of the operator FP[]z?!, the vector

= FPDR canl /wg (46)

This is possible because A%, ,3,,£* is zero in the past (because gh%,,, = 0) and
belongs to L°. Thus w*€ L'. Then we easily check that the quantity ,p®,,+
pLLy 2+ hE s o+ 0w Where pPrad 2r Dlraas 0 shpaq » are pieces of the construction
of hypqs (2.21) is a solution of the same equations as those that are satisfied by
hoans (4.5). Therefore the difference between this quantity and A, , is equal to
a solution of the (harmonic) homogeneous problem to which we know the general
solution, i.e. this difference is equal to a linearized harmonic metric
B (M) +3¥#, where M is some set of multipole moments and % a
d’Alembertian-free vector. Moreover, because the stationary ghy,q, and gho,, , are
both of order O(r2) when r— o0 (Appendix A), we find that the mass monopole
M; associated with ] is zero, so that we can write Aygp ) [ 1] = hppq, [ 1] Now
we have

DPiha st peihas +hihas +00 P —hh , = Ky, [M1]+PY, 4.7)
and thus, by using definition (2.21) of A4,
h;‘;/flz d2 ['/”] a,dl [J” +=’”1]_6Va‘ﬂ, (4-8)

where V* is the vector
Ve = A*—w*+ D} + P5. 4.9)
Now we perform the coordinate transformation

x" = 4 G2V, (4.10)

Then g, is transformed into g¢,, whose linearized and quadratic approximations
are precisely h.,q, and k4, being computed not with the original .# but with a
“corrected’ M —G(M,+ M),

fgan ['/”] =f+ Ghra,dl [‘/”_G('/”l""/”i)]+G2hrad2[‘/”_a(*/”1+‘/”1)]+0(G3)-
(4.11)

The same reasoning can easily be extended to any order G"*.1 The final multipole
moment 4’ is a complicated functional of #: M’ = M — QM+ M)+.... B

ApPENDIX A. THE STATIONARY METRIC
We wish to construct a stationary MmpM metric f+X,, 5 ; G" ghpaq , Such that gh. 4,
is the stationary part of k.4, (2.44)
Shrad 1= Shcan 1t agaﬂ. (A 1)

A possible choice is simply to define this metric as the transformed of the stationary
canonical metric of paper I by the coordinate transformation x'* = a*+ GE*
(T. Damour, personal communication 1985). However, we prefer for practical

1 For » 2 3, it is necessary to study separately the stationary part of w* (4.6) in the manner
of Appendix C, §C2, in paper I.
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reasons to define the stationary gh,.q, for n 2> 2 ‘similarly’ to ply,q , i-. by using
the operator FPA™! (paper I, Appendix C) on the stationary source yN 34,

Shggdn:= FPA_ISN%gdn' (A 2)

By the reasoning of paper I (Appendix C), ghppq, solves Einstein’s stationary
equations with zero divergence (Agh®,, = den and 0, h#fy , = 0) and has the
gtructure

Sh’radn" Z Ar 2 'r_ank’ (A 3)
120 kzn

(where the FL, are constant) provided that ‘critical terms’ in the quadratic
V%40, sN9 4, and the cubic (N¥ ;.. which produce logarithms, are absent (as it
is the case for N% ., N9 ., and  N¥ . in paper I). We now prove that
these ‘critical terms’ are absent. Indeed, under the coordinate transformation
2% = 2%+ GE*, ghogn, 18 transformed into ghl,n, = shraqr (b (A1), sheans is
transformed into

sheans = shiany +4M°r 72, (A da)
sheans = sheane (A 4b)
shcdns = shéans, (A 4¢)
and gh,,, 5 is transformed into
shcans = sheans+2shlan2 8 %, (A 5a)
sk;?fn 3= Shcan st Shcan 2 aj &, (A 5b)
sheins = shéins- (A5c)

Now ghi.n, must satisfy Einstein’s equations with source g¢N,,q, (because
sPoan1 = sPraa1) 1-€- Aghoans = sNraaz- BY using the values (A 4) for gh ., we find

SNggdz Noan2+A(4M2"'_2) (A 6“)
sNVtha2 = sNian e (A 6b)
Madz Nicja,nm (A 6¢)

8o no ‘ critical terms’ occur in gN% ; , and N",,bd2 because they do not occur in JN% ,
and gN¥ .. We thus pose ghyaqs = FPAT1 N, . q,, and find ghy,q, = shoans (A 4).
Now gho,ns must satisfy Einstein’s equatlons with source N,.., (because

Shca.nl = glraq: and Shcanz = ghraq2), i€

Ashcana -8 rada+a( hcanzaij g) (A 7)
From (A 5) we then find

SNga,ds SNgana+A(2 hgfm2a £, (A 8a)
s V% s = sN0un s+ Alsh¥n 0 £°) — 0 (hlkn , 05 £°), (A 8b)
Mws = SM&nS' (A 8c)

Therefore no ‘critical’ terms appear in N9 .. W
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ArPENDIX B, PROOFS OF LEMMAS 2.1 AND 2.2
B 1. Proof of lemma 2.1

Let us first recall the following result of paper I (equation (7.11)): for any
function F that is zero in the past, we have
FPOIR [k k% ... k2 r 2 F(t—7)|+3(— ) lgrdm o, . oa [ L CED Rt — 1) ] e 20,
B1)
where k* = (1, nt), 0% = (—0,, 0;) and """V Fis the (I + 1)th anti-derivative of F that
is zero, together with all its derivatives, in the past. Now consider the unique
decomposition of &(f—r, n) into symmetric trace-free (STF) tensors &, (t—r):

E@—r,n)= 2 n, & (t—7). (B 2)
1>0
Then, applying equation (B 1), we readily find for A* given by (2.14a)
NP —21gr X (=)o r I, (t—1)]e L0, (B 3)
and also 10 v
FPOIR 4r 2k P OE (=7, m)]+21gr 5 (=) 02080, [r 11D, (1—r)]e L.
1>0 (B 4)

The sum of (B 3) and (B 4) is exactly the equation to be proved (2.14b). W
Note that the choice we have made for A* (2.144) is not unique. For instance,
another choice as valid as A* but less elegant would have been

No=lgr 5 (= )ord, [rri D8, (t—r)]. (B 5)
lz0

B 2. Proof of lemma 2.2

Consider the unique decomposition of Z*/(t—r,n) into ten STF tensors
Ap(t=7), ..., J (E=7), all zero for ¢t < —T"

7% = Z nLAL’ (B 6“)
120
2% = l‘éo i, B+ l§1 {ny,—1 Cir—1+€iap Mar—1 Dor—1} (B 6b)

ZY = l§0 {ny, Br+0yn, Fr i+ l§>:1 {nr—1 Gy L-1F€ap My ar—1 Hpr—1}

+ 2 g o Lyr o+ Mar s €apidpypr—s}- (B 6C)

122

By the four constraints k, Z** = 0 we find

A=B=E+F, (B7a)
A;—2B;+E;+F,=2D,—H, =0, (B 7b)
Co=A4;,—B; for 121, (B7c¢)
G,=2(B,—E, —F;) for 1>1, (B174d)
I,=A4,-2B,+E,+F, for 1>2, (B7e)

J,=2D,—H, for 1>2. (B17f)
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From (B 7c)-(B7f) we see that Z*/ is completely characterized by the set
{4;, By, Dy, E,, F;, H;} with the constraints (B 7a, b). We now define a new set
{M,,S,, W, X;, Y, Z;} by the equations

M,:=—[P4,—29B, +DE, +VF ] for 120, (B 8a)
Spi= 0+ DYUPDL—§PH,] for 1>1, (B 85)
Wy:= (=)} [-CF VB, +1CDE,] for 120, (B 8¢)
X :=4—-)C2E, for 120, (B 8d)
Y= (=) [PB,—VE, —PF] for 1>1, (B 8e)
Z,:=Y—)yHCE0H for 1321 (B 8f)

(Apart from simple substitutions, these equations are the same as (2.26) of
paper 1.) Then, the constraints (B 7a, b) become

and, by a straightforward calculation, we find that »1Z* (B 6) is exactly the
r~L-term in A%, | [M,]+0D (i.e. (2.20) holds), where .#, is the set of multipole
moments 4, = (M (u), S (u)) given by equations (B 8a, b), where A4, [ ]is the
functional given by (2.4), i.e. since M = 0, also by (2.2), and where the vector @%

18
D= 3 9, [ WL (t—1)], (B 104)
1z0

D = X 8y, [ Xy (t—1)]
1z0
+ l§1 0p 1 [r Y1 (0= 1)1+ €400 Oar—1 [P 22 (=)} (B 100)
This completes the proof of lemma 2.2. W
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