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Abstract

Two-dimensional hydromagnetic flow of an incompressible Jeffrey nanofluid over an exponentially stretching surface is
examined in the present article. Heat and mass transfer analysis is performed in the presence of thermal radiation, viscous
dissipation, and Brownian motion and thermophoresis effects. Mathematical modelling of considered flow problem is
developed under boundary layer and Rosseland’s approximations. The governing nonlinear partial differential equations are
converted into ordinary differential equations via transformations. Solution expressions of velocity, temperature and
concentration are presented in the series forms. Impacts of physical parameters on the dimensionless temperature and
concentration are shown and discussed. Skin-friction coefficients are analyzed numerically. A comparison in a limiting sense
is provided to validate the present series solutions.
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Introduction

Boundary layer flow over a stretched surface is a subject of

abundant studies now a days because of its existence in various

engineering and industrial processes like cooling of metallic sheets

in a cooling bath, annealing and thinning of copper wires,

aerodynamic extrusion of plastic and rubber sheets, drawing of

plastic films and sheets, glass fiber and paper production etc. It is

worthmentioning to point out here that the stretching velocity is

not linear necessarily in all the cases. The stretching velocity may

be nonlinear or exponential. For example in annealing and

thinning of copper wires, the desired quality product depends on

the continuous stretching of surface with exponential dependence

velocity distribution [1–6]. The magnetohydrodynamic flow is

quite interesting in engineering and industrial processes. El

Koumy et al. [7] investigated peristaltic flow of Maxwell fluid

through a porous medium in the presence of Hall effects. Hall

currents and heat transfer analysis in peristaltic flow is performed

by Abo-Eldahab et al. [8]. Effects of magnetic field and porous

space in peristaltic flow of Maxwell fluid are examined by

Mekheimer et al. [9]. Shehzad et al. [10] discussed the Joule

heating and thermophoresis effects in MHD flow of Jeffrey fluid

induced by a stretching sheet. An induced magnetic field and slip

effects in peristaltic flow through a porous medium are described

by Mekheimer et al. [11]. Recently, Hayat et al. [12] performed a

study to analyze the effects of Hall current and Ohmic heating in

peristaltic flow of non-Newtonian fluid.

A working fluid is involved in many engineering and industrial

applications that are in flowing or stagnant state. This working

fluid is used to transfer energy/heat from one position to the other.

The adequate heat transfer performance has been a major issue

for a long period. This issue can be resolved by using a new

working fluid that has better thermal performance than the

ordinary base liquids. Recently nanofluid is the best candidate to

take place of working fluid. Nanofluid is a fluid in which the

nanoparticles are submerged. The size of these nanoparticles is 1–

100 nm. The thermal conductivity of the nanofluids is higher than

that of base fluids. Further, the novel properties of Brownian

motion and thermophoresis of such fluids make them potentially

useful. Nanoparticles are used to enhance the thermal character-

istics of ordinary base fluids such as water, ethylene glycol or oil

[13]. In addition the magneto-nanofluid is a unique material that

has both liquid and magnetic properties. Such nanofluid has

superficial role in construction of loud speakers, blood analysis and

cancer therapy. Buongiorno [14] provided a mathematical model

of nanofluid which has the characteristics of thermophoresis and

Brownian motion. Later on, Makinde and Aziz [15] investigated

the boundary layer flow of viscous nanofluid with convective

thermal boundary condition. Here, the flow is induced due to

linear stretching of surface. Closed form solutions of MHD

nanofluid flow with heat and mass transfer analysis in the presence
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of slip condition were developed by Turkyilmazoglu [16]. Ibrahim

and Makinde [17] analyzed the effects of thermal and concentra-

tion stratifications in boundary layer nanofluid flow by a vertical

surface. Second law of thermodynamics in MHD steady flow of

nanofluid over a rotating disk was discussed by Rashidi et al. [18].

Moradi et al. [19] presented the series solutions of Jeffrey Hamel

flow by considering the different types of nanoparticles. Unsteady

natural convection flow of nanofluid with heat and mass transfer

over a vertical plate was examined by Turkyilmazoglu and Pop

[20]. Slip and Joule heating effects in MHD peristaltic flow of

nanofluid under thermal diffusion and diffusion thermo effects was

studied by Hayat et al. [21]. Sheikholeslami et al. [22] carried out

an analysis to discuss the effects of an applied magnetic field in

rotating flow of nanofluid with heat transfer.

The aim of present article is to study the flow analysis of Jeffrey

fluid [23–28] in the presence of thermophoresis, Brownian motion,

thermal radiation and viscous dissipation effects. The flow caused

is by an exponentially stretching sheet. Jeffrey fluid has ability to

exhibit the properties of ratio of stress relaxation to retardation

and retardation. Mathematical formulation is performed under

boundary layer and Rosseland’s assumptions. Homotopy analysis

method (HAM) [29–35] is utilized for solution expressions of

dimensionless velocity, temperature and concentration. Temper-

ature and concentration fields are shown and discussed for the

different values of arising parameters. Skin-friction coefficients are

computed and analyzed. Comparison of local Nusselt number in a

limiting sense is tabulated and analyzed.

Mathematical Model

We consider the two-dimensional hydromagnetic flow of Jeffrey

nanofluid over an exponentially stretching sheet. Heat and mass

transfer effects are taken into account. An applied magnetic field of

strength B0 is encountered normal to the flow direction. The

magnetic Reynolds number is chosen small and the Joule heating

effects are absent. Further the induced magnetic field is smaller in

comparison to the applied magnetic field and is negligible. In

addition, viscous dissipation effects are also taken into account.

The two-dimensional boundary layer equations of an incompress-

ible Jeffrey nanofluid with heat and mass transfer are given below:
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The boundary conditions for the considered flow analysis are

u~Uw(x)~U0 exp
x

l

� �
, v~0, T~Tw~T?zT0 exp

Ax

l

� �
,

C~Cw~C?zC0 exp
Bx

l

� �
at y~0,

ð5Þ

Table 1. Convergence of homotopy solution for different order of approximations when l 1~ 0:3, b ~ 0:2, M~ 0:5,
Pr ~ 0:7~ Le, Nt~ Nb~ 0:2, Ec~ 0:3~ Rd, A~ 0:1, B~ 0:2 and Bf ~ { 0:5~ Bh ~ Bw :

Order of
approximation { f ’’ ( 0) { h ’ ( 0) { w ’ ( 0)

1 1.2900 0.5316 0.5572

5 1.4310 0.2972 0.3806

11 1.4350 0.2433 0.3146

20 1.4350 0.2210 0.2692

30 1.4350 0.2124 0.2435

45 1.4350 0.2076 0.2225

50 1.4350 0.2076 0.2193

60 1.4350 0.2076 0.2193

doi:10.1371/journal.pone.0103719.t001

Figure 1. B { curves for functions f (g) , h(g) and w(g) at 21th
order of approximations when l 1~ 0:3, b ~ 0:2, M~ 0:5, Pr ~
0:7, Le~ 1:0, Nt~ 0:2~ Nb, Ec~ 0:3~ Rd, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g001
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u?0, T?T?, C?C?, when y?? ð6Þ

where u and v are the velocity components in the x { and

y { directions, n the kinematic viscosity, l1 the ratio of

relaxation to retardation times, l2 the relaxation time, r f the

density of fluid, s the Steffan-Boltzman constant, a the thermal

diffusivity, t ~
( rc) p

( rc) f

the ratio of nanoparticle heat capacity and

the base fluid heat capacity, DB the Brownian diffusion coefficient,

DT the thermophoretic diffusion coefficient, qr the radiative heat

flux, T? and C? are the ambient fluid temperature and

concentration far away from the sheet and A, B, T0, C0 are the

constants.

By employing Rosseland’s approximation, Eq. (3) has the form
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The dimensionless variables are defined as

u~U0 exp
x

l

� �
f ’(g), v~{

ffiffiffiffiffiffiffiffi
nU0

2l

r
exp

x

2l

� �
(f (g)zgf ’(g)),

g~y

ffiffiffiffiffiffiffi
U0

2nl

r
exp

x

2l

� �
, T~T?zT0 exp

Ax

2l

� �
h(g),

C~C?zC0 exp
Bx

2l

� �
w(g):

ð8Þ

The equations of linear momentum, energy, concentration and

their corresponding boundary conditions in dimensionless form

can be written as

f ’’’z(1zl1)ff ’’{2(1zl1)f ’2zb(
3

2
f ’’2{

1

2
ff ’’’’zf ’f ’’’)

{M(1zl1)f ’~0,

ð9Þ

(1zl1) 1z
4

3
Rd
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b

2
f ’’ 3f ’f ’’{ff ’’’ð Þ

� �
~0, ð10Þ

w’’z Pr Le(f w’{Bf ’w)z Nt=Nbð Þ h’’~0, ð11Þ

f ~0, f ’~1, h’~1, w’~1 at g~0,

f ’?0, h?0, w?0 as g??, ð12Þ

where b ~
l2U0 exp

x

l

� �
l

is the Deborah number,

M~
sB2

0Uw

rf c
is the magnetic parameter, Pr ~

n

a
is the Prandtl

number, Ec~
U2

0

cpT0

Uw

U0

� � 4 { A

2

� �
is the Eckert number,

Figure 2. Variation in dimensionless temperature h(g) vs g for
different values of l1 when b ~ 0:2, M~ 0:5, Pr ~ 0:7,
Le~ 1:0, Nt~ 0:2~ Nb, Ec~ 0:3~ Rd, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g002

Figure 3. Variation in dimensionless temperature h(g) vs g for
different values of M when l1~ 0:3, b ~ 0:2, Pr ~ 0:7,
Le~ 1:0, Nt~ 0:2~ Nb, Ec~ 0:3~ Rd, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g003

Figure 4. Variation in dimensionless temperature h(g) vs g for
different values of Pr when l1~ 0:3, b ~ 0:2, M~ 0:5,
Le~ 1:0, Nt~ 0:2~ Nb, Ec~ 0:3~ Rd, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g004

Figure 5. Variation in dimensionless temperature h(g) vs g for
different values of Nt when l1~ 0:3, b ~ 0:2, M~ 0:5, Pr ~ 0:7,
Le~ 1:0, Nb~ 0:2, Ec~ 0:3~ Rd, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g005
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Le~
a

DB

is the Lewis number, Nb~

( rc)pDBC0 exp
Bx

2l

� �
( rc)f n

is the Brownian motion parameter,

Nt~

( rc)pDT T0 exp
Ax

2l

� �
( rc)f nT?

is the thermophoresis parame-

ter,

The skin friction coefficient, the local Nusselt and Sherwood

numbers are defined below.

Cf ~
tw

rf U2
w(x)

, Nux~
xqw

k(Tw{T?)
, Shx~

xqm

DB(Cw{C?)
, ð13Þ

where t w is the shear stress along the stretching surface, qw is the

surface heat flux and qm is the surface mass flux. The local skin-

friction coefficient, local Nusselt and Sherwood numbers in

dimensionless forms can be written as

ffiffiffiffiffiffiffiffiffiffiffi
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p
Cfx~

1

1zl1
(f ’’(0)zbf ’’(0)), Nux=Re1=2

x ~

{

ffiffiffiffi
x

2l

r
1z

4

3
Rd

� �
h’(0),

Shx=Re1=2
x ~{

ffiffiffiffi
x

2l

r
w’(0),

ð14Þ

where Rex~ Uw(x)x=n is the local Reynolds number.

Homotopy Analysis Solutions
To proceed the homotopic solutions, the initial guesses and

auxiliary linear operators are chosen as follows:

f0(g)~1{ exp ({g), h0(g)~ exp ({g), w0(g)~ exp ({g), ð15Þ

L(f )~f ’’’{f ’, L(h)~h’’{h, L(w)~w’’{w: ð16Þ

The above initial guesses and auxiliary linear operators satisfies

the below mentioned properties

L(f )(C1zC2egzC3e{g)~0,

L(h)(C4egzC5e{g)~0,

L(w)(C6egzC7e{g)~0,

ð17Þ

where Ci( i~ 1 { 7) are the arbitrary constants.

The zeroth order problems can be written as

1{qð ÞL(f ) �ff (g; q){f0(g)
� �

~qBf Nf
�ff (g; q)
� �

, ð18Þ

1{qð ÞL(h) �hh(g; q){h0(g)
� �

~qBhNh
�ff (g; q), �hh(g, q), �ww(g, q)
� �

,ð19Þ

1{qð ÞL(w) �ww(g; q){h0(g)
� �

~qBhNh
�ff (g; q), �hh(g, q), �ww(g, q)
� �

,ð20Þ

Figure 7. Variation in dimensionless temperature h(g) vs g for
different values of Ec when l 1~ 0:3, b ~ 0:2, M~ 0:5,
Pr ~ 0:7, Le~ 1:0, Nt~ 0:2~ Nb, Rd~ 0:3, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g007

Figure 8. Variation in dimensionless temperature h(g) vs g for
different values of Rd when l1~ 0:3, b ~ 0:2, M~ 0:5,
Pr ~ 0:7, Le~ 1:0, Nt~ 0:2~ Nb, Ec~ 0:3, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g008

Figure 9. Variation in dimensionless concentration w(g) vs g
for different values of l 1 when b ~ 0:2, M~ 0:5, Pr ~ 0:7,
Le~ 1:0, Nt~ 0:2~ Nb, Rd~ 0:3~ Ec, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g009

Figure 6. Variation in dimensionless temperature h(g) vs g for
different values of Nb when l1~ 0:3, b ~ 0:2, M~ 0:5,
Pr ~ 0:7, Le~ 1:0, Nt~ 0:2, Ec~ 0:3~ Rd, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g006
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�ff (0; q)~0, �ff ’(0; q)~1, �hh’(0, q)
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where Bf , Bh and Bw are the non-zero auxiliary parameters,

q [ ½0, 1� is an embedding parameter and Nf , Nh and Nw are

the nonlinear operators. Putting q~ 0 and q~ 1 one has

�ff (g; 0)~f0(g), �hh(g, 0)~h0(g), �ww(g, 0)~w0(g) and �ff (g; 1)~f (g),

�hh(g, 1)~h(g), �ww(g, 1)~w(g):
ð25Þ

When we increase the values of q from 0 to 1 then f ( g , q) ,
h ( g , q) and w ( g , q) vary from f0(g), h0(g), w0(g) to

f ( g ) , h( g ) and w ( g ) : By adopting Taylor series expansion,

we have [28–30]:

f (g, q)~f0(g)z
X?
m~1

fm(g)qm, ð26Þ

h(g, q)~ h0(g) z
X?
m~1

hm(g)qm, (27)

w(g, q)~w0(g)z
X?
m~1

wm(g)qm, ð28Þ

Figure 10. Variation in dimensionless concentration w(g) vs g
for different values of Pr when l1~ 0:3, b ~ 0:2, M~ 0:5,
Le~ 1:0, Nt~ 0:2~ Nb, Rd~ 0:3~ Ec, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g010

Figure 11. Variation in dimensionless concentration w(g) vs g
for different values of Le when l1~ 0:3, b ~ 0:2, M~ 0:5,
Pr ~ 0:7, Nt~ 0:2~ Nb, Rd~ 0:3~ Ec, A~ 0:1o and B~ 0:2:
doi:10.1371/journal.pone.0103719.g011

Figure 12. Variation in dimensionless concentration w(g) vs g
for different values of Nt when l1~ 0:3, b ~ 0:2, M~ 0:5,
Pr ~ 0:7, Le~ 1:0, Nb~ 0:2, Rd~ 0:3~ Ec, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g012
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fm(g)~
1

m!

Lmf (g; q)

Lgm

				
q~0

, hm(g)~
1

m!

Lmh(g; q)

Lgm

				
q~0

,

wm(g)~
1

m!

Lmw(g; q)

Lgm

				
q~0

:

ð29Þ

The convergence of above series highly depends upon the

suitable values of B f , B h and B q : Considering that B f , B h

and B q are selected properly such that (26)–(28) converge at

q~ 1 and then we have

f (g)~f0(g)z
X?
m~1

fm(g), ð30Þ

h(g)~h0(g)z
X?
m~1

hm(g), ð31Þ

w(g)~w0(g)z
X?
m~1

wm(g): ð32Þ

The general solutions can be written as

fm(g)~f �m(g)zC1zC2egzC3e{g, ð33Þ

hm(g)~h�m(g)zC4egzC5e{g, ð34Þ

wm(g)~w�m(g)zC6egzC7e{g, ð35Þ

where f �m(g), h�m(g) and w�m(g) are the special solutions.

Convergence Analysis and Discussion

The auxiliary parameters B f , B h and B q are encountered

when homotopy analysis method has been utilized to compute the

series solutions. These parameters have essential importance for

adjusting and controlling the convergence of series solutions. The

appropriate values of these parameters are required for the

convergent solutions. To obtain the proper values of these

auxiliary parameters, we drawn the B { curves at 21th -order of

HAM approximations. These B { curves are presented

in Fig. 1. From this Fig. we examined that the suitable values of

B f , Bh and Bq are {0:65ƒ Bf ƒ{0:10, {0:70ƒ Bhƒ{0:30,

{ 65ƒ Bw ƒ { 0:30: The series converges in the whole region

of g when Bf ~ { 0:5~ Bh ~ Bw (see Table 1).

Figs. 2–8 are drawn to examine the variations in dimensionless

temperature profile h ( g ) for different values of ratio of

relaxation to retardation times l1, magnetic parameter M,
Prandtl number Pr , thermophoresis parameter Nt, Brownian

motion parameter Nb, Eckert number Ec and radiation

parameter Rd: Fig. 2 shows that an increase in ratio of relaxation

to retardation times gives rise to the temperature and thermal

boundary layer thickness. Minimum temperature and thinnest

thermal boundary layer thickness is noticed when l 1~ 0: An

increase in l 1 implies to an increase in relaxation time and

decrease in retardation time. This change in relaxation and

retardation times elucidates the higher temperature and thicker

thermal boundary layer thickness. Change in temperature profile

for different values of magnetic parameter is noticed in Fig. 3.

Here we examined that both temperature and thermal boundary

layer thickness are enhanced for larger magnetic parameter. It is

also seen that for M~ 0, hydrodynamic flow situation is

recovered. Magnetic parameter involves the Lorentz force. Higher

magnetic parameter implies to stronger Lorentz force and lower

magnetic parameter has weaker Lorentz force. Here the stronger

Lorentz force leads to an increase in the temperature and thermal

boundary layer thickness. Fig. 4 depicts the impact of Prandtl

number on the temperature field. It is observed that lower

temperature and thinner thermal boundary layer thickness appear

corresponding to the increasing values of Prandtl number. Prandtl

number is the ratio of viscous to thermal diffusivities. Larger

Prandtl number fluids have higher viscous diffusivity and weaker

thermal diffusivity. Such change in viscous and thermal diffusiv-

ities leads to a decrease in thermal boundary layer thickness.

Figs. 5 and 6 illustrate that both temperature and thermal

boundary layer thickness are enhanced when the larger values of

thermophoresis and Brownian motion parameters are taken into

account. From Fig. 7 we noticed that temperature is an increasing

function of Eckert number. Further Ec~ 0 corresponds to the

analysis when viscous dissipation effects are absent. Effects of

radiative parameter on the temperature field are analyzed in

Fig. 8. We observed that an increase in radiative parameter leads

Figure 14. Variation in Nusselt and Sherwood numbers for
different values of Nb vs Nt when l1~ 0:3, b ~ 0:2, M~ 0:5,
Pr ~ 0:7, Le~ 1:0, Rd~ 0:3~ Ec, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g014

Figure 15. Variation in Nusselt and Sherwood numbers for
different values of Nb vs Nt when l1~ 0:3, b ~ 0:2, M~ 0:5,
Pr ~ 0:7, Le~ 1:0, Nt~ 0:2, Rd~ 0:3~ Ec, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g015

Figure 13. Variation in dimensionless concentration w(g) vs g
for different values of Nt when l1~ 0:3, b ~ 0:2, M~ 0:5,
Pr ~ 0:7, Le~ 1:0, Nt~ 0:2, Rd~ 0:3~ Ec, A~ 0:1 and B~ 0:2:
doi:10.1371/journal.pone.0103719.g013
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to an enhancement in the temperature field. In fact an increase in

radiative parameter provides more heat to fluid that corresponds

to higher temperature.

Change in concentration distribution function w(g) for various

values of ratio of relaxation to retardation times l1, Prandtl

number Pr , Lewis number Le, thermophoresis parameter Nt
and Brownian motion parameter Nb is examined through the

Figs. 9–13. Fig. 9 clearly indicates that concentration and its

related boundary layer thickness are increasing functions of ratio

of relaxation to retardation times. In addition a comparison of the

Figs. 2 and 9 shows that the impacts of ratio of relaxation to

retardation times on the temperature and concentration are quite

reverse. Fig. 10 depicts that concentration boundary layer

thickness become thinner for larger Prandtl number. Form

Fig. 11 we noticed that an increase in Lewis number shows lower

concentration field. Lewis number is inversely proportional to the

Brownian diffusion coefficient. This Brownian diffusion coefficient

becomes smaller corresponding to the larger values of Lewis

number. This smaller Brownian diffusion coefficient shows a

reduction in the concentration and associated boundary layer

thickness. Fig. 12 presents that the larger values of thermophoresis

parameter give rise to the concentration and its related boundary

layer thickness. It is also seen that concentration is at the peak

when Nt~ 1:5 and g ~ 2:0: Fig. 13 is drawn to see the variations

in concentration profile when Nb~ 0:1, 0:5, 0:8, 1:2 and 1:5:
We have seen that the concentration and its related boundary

layer thickness is decreased by increasing the Brownian motion

parameter. It is also observed that the concentration profile

decreases rapidly when Nt~ 0:1 but after Nt~ 0:5 this reduction

is very small (see Fig. 13). Figs. 14 and 15 are drawn to examine

Table 2. Numerical values of skin friction coefficient
ffiffiffiffiffiffiffiffi
2Re
p

Cfx for different values of l 1, M and b in case of exponential and linear
stretching.

l 1 M b {
ffiffiffiffiffiffiffiffi
2Re
p

Cfx {
ffiffiffiffiffiffiffiffi
2Re
p

Cfx

Exponential
stretching case

Linear
stretching case

0.0 0.5 0.2 1.63612 1.34164

0.4 1.38278 1.13389

0.7 1.25485 1.02899

1.0 1.15689 0.94868

0.3 0.0 0.2 1.25661 0.96077

0.7 1.50007 1.25269

1.0 1.59258 1.35873

1.4 1.70796 1.48842

0.3 0.5 0.0 1.28616 1.07417

0.3 1.50353 1.22474

0.5 1.63159 1.31559

0.8 1.80611 1.44115

doi:10.1371/journal.pone.0103719.t002

Table 3. Comparison values of { h ’ ( 0) with Bidin and Nazar [3] for different values of Ec, Pr and Rd when b ~ 0, l1~ 0,
M~ 0, Nt~ Nb~ 0, A~ 1:0 and Bh ~ { 0:5:.

Rd Bidin and Nazar [3] Present HAM solutions

Ec = 0.0 Ec = 0.0

Pr = 1.0 Pr = 2.0 Pr = 3.0 Pr = 1.0 Pr = 2.0 Pr = 3.0

0.0 0.955 1.471 1.869 0.9548 1.4715 1.8693

0.5 0.677 1.074 1.381 0.6775 1.0734 1.3807

1.0 0.532 0.863 1.121 0.5337 0.8627 1.1213

Rd Ec = 0.2 Ec = 0.2

0.862 1.306 1.688 0.8624 1.3055 1.6384

0.618 0.965 1.229 0.6183 0.9653 1.2286

0.488 0.782 1.007 0.4889 0.7818 1.0067

Rd Ec = 0.9 Ec = 0.9

0.539 0.725 0.830 0.5387 0.7248 0.8302

0.410 0.587 0.696 0.4111 0.5870 0.6963

0.334 0.498 0.606 0.3355 0.4984 0.6055

doi:10.1371/journal.pone.0103719.t003
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the variations in Nusselt and Sherwood numbers for different

values Nb vs Nt for both linear and exponential stretching cases.

Here we noticed that heat and mass transfer rates at wall are

higher for linear stretching case in comparison to exponential case.

Table 1 is computed to examine the values of {f ’’( 0), {h’(0)
and {w’(0) when l1~0:3, b~0:2, M~ 0:5, Pr ~0:7~Le,
Nt~ 0:2~ Nb, Ec~ 0:3~ Rd, A~ 0:1, B~ 0:2 and

Bf ~ 0:5~Bh~Bw: From this Table, we analyzed that the values

of {f ’’(0) converge from 11th order of HAM approximations

whereas the values of {h’(0) and {w’(0) converge from 45th and

50th order of HAM deformations, respectively. Numerical values

of skin-friction coefficient
ffiffiffiffiffiffiffiffi
2Re
p

Cfx for different values of l1, M

and b of both exponential stretching and linear stretching cases

are presented in Table 2. Here we examined that the values of

skin-friction coefficient are smaller for larger l1 while these values

are increased when larger values of M and b are encountered.

Further, it is noticed that the values of skin-friction coefficient are

larger for exponential stretching case in comparison to the linear

stretching case. Table 3 provides a comparison study with the

existing solutions for different values of Rd, Ec and Pr when

A~ B~ 1:0, l1~ b ~ M~ 0: From this Table one can see

that our present results have an excellent agreement with the

results of Bidin and Nazar [3].

Conclusions

Radiative hydromagnetic flow of Jeffrey nanofluid over an

exponentially stretching sheet is studied. Heat and mass transfer

phenomena are discussed in the presence of viscous dissipation.

The main observations of present investigation are written below:

N Temperature and concentration profiles are enhanced with an

increase in the ratio of relaxation to retardation times.

N Larger values of Deborah number b correspond to a

reduction in the temperature and concentration fields.

N Thermophoresis and Brownian motion parameters give rise to

the temperature and thermal boundary layer thickness.

N Temperature and thermal boundary layer thickness are

increasing functions of radiative parameter Rd and Eckert

number Ec:

N Brownian motion parameter has reverse effects on tempera-

ture and concentration.

N Values of skin-friction coefficient are increased by increasing

M and b but it decreases when we increase the values of l1:
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