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It is shown that the addition of positive mass-squared terms to asymptotically safe gauge-Yukawa
theories with perturbative UV fixed points leads to calculable radiative symmetry breaking in the IR. This
phenomenon, and the multiplicative running of the operators that lies behind it, is akin to the radiative
symmetry breaking that occurs in the supersymmetric standard model.
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I. INTRODUCTION

It is interesting to search for theories with interacting
fixed points that do not possess internal hierarchies, as they
may be useful starting points to develop an asymptotically
safe standard model. The purpose of this paper is to
examine in this context the perturbative example of such
a theory presented in Ref. [1], and developed in Refs. [2–5].
Our central point will be that these theories allow

radiative symmetry breaking driven by arbitrary mass-
squared operators. The couplings (i.e., the ensemble of
masses-squared) run multiplicatively from the UV fixed
point. In this sense their renormalization group (RG)
behavior is similar to, and as controllable as, that of the
soft-terms in supersymmetry (SUSY). Moreover we find
that, as in the minimal supersymmetric standard model
(MSSM), a positive mass-squared operator in the UV
induces negative mass-squared operators in the IR due
to large couplings.
The end result is a calculable radiatively induced

symmetry breaking, exactly analogous to that in the
MSSM [6], that is proportional to the explicit degree of
flavor breaking added to the mass-squared terms. It is a
very different and more complete paradigm for radiative
breaking than the one normally invoked in the context
of scale invariance, namely the Coleman-Weinberg (CW)
mechanism [7–47]. The latter sets the masses to zero at the
origin of field space, with some hopeful words that this
could well be a prediction of scale invariance. Here we
emphasize that UV scale invariance does not prefer any
value for mass-terms, since they are relevant operators, and
the fixed point is completely blind to them. Therefore one

may perfectly consistently choose a mass-squared param-
eter to be “small” (relative to the dimensional transmutation
scale, say) in which case the CW version of radiative
symmetry breaking can in principle still operate (although
not as it turns out perturbatively in the case we discuss),
or one may choose it to be large. Either possibility is
consistent with exact quantum UV scale invariance since
the “starting values” of the dimensionful (i.e. relevant)
parameters at some RG scale are free parameters, again
much like the quark masses in QCD. Furthermore both
cases should be thought of as radiative symmetry breaking,
just driven by different operators. This picture is entirely
different from flows governed by IR fixed points, in which
relevant operators do determine the fixed point.
We should explain why an interacting fixed point

increases the calculability and predictivity. Suppose for
example that one wished to compute perturbative correc-
tions to the dimensionless couplings of the effective theory.
Such corrections would have a UV “divergence” going as
1=γ where γ is the anomalous dimension of the operator
at the fixed point. If the fixed point is Gaussian then the
anomalous dimensions at the fixed point are zero and this
corresponds to a real divergence which tells us that
generically the couplings are simply given by their settings
at renormalization time −t ¼ logðμ0=μÞ ¼ 0.
By contrast, if the fixed point is interacting then

anomalous dimensions at the fixed point are nonzero,
and radiative corrections will simply be finite terms going
as 1=γ. In particular they are insensitive to μ0 which we may
as well take to be infinite. (These points were discussed in
some detail in Ref. [48].) If the fixed point is interacting and
strongly coupled, a perturbative treatment is impossible,
but nevertheless nonzero anomalous dimensions make the
corresponding couplings insensitive to the precise details
of the approach to the UV fixed point, thereby restoring
predictivity. Of course the anomalous dimensions may not
be large enough to regulate classically relevant operators:
as mentioned above, such operators simply experience
multiplicative RG running in the usual way from values
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chosen at some initial scale μ0 (much like quark masses),
but cannot disrupt the UV fixed point, so the asympotic
safety of the setup is immune to them.
The asymptotically safe theories of Ref. [1] that we will

be using here lie somewhere between these two extremes.
By choosing a theory with a weakly interacting UV fixed
point we recover the benefits of predictivity and control
over the effective potential, but at the same time keep the
theory under good perturbative control. This optimization
is reminiscent of the Banks-Zaks IR fixed point [49], which
can be made arbitrarily weakly interacting and hence
perturbatively tractable, in a particular (Veneziano) large-
color/large-flavor limit.
Of course this work follows on from a large body of

literature that has discussed asymptotic safety and more
generally the consequences of UV scale invariance both
with and without gravity: [48,50–59]). (For a review see
[60]). The object of this paper is to place radiative
symmetry breaking in such frameworks on the same
footing as it is in the MSSM.

II. THE THEORY, UV FIXED POINT,
AND CRITICAL CURVE

We begin by describing the behavior of the weakly
interacting gauge-Yukawa theories that we will be using,
and in particular their phase diagrams and RG flow.
Consider a theory with SUðNCÞ gauge fields Aa

μ and field
strength Fa

μν ða ¼ 1;…; NCÞ, NF flavors of fermions Qi

ði ¼ 1;…; NFÞ in the fundamental representation, and an
NF × NF complex matrix scalar field H uncharged under
the gauge group. At the fundamental level the Lagrangian is
given by the sum of the Yang-Mills term, the fermion and
scalar kinetic terms, the Yukawa interaction, and scalar
self-interaction terms,

L ¼ −
1

2
TrFμνFμν þ TrðQ̄iDQÞ þ Trð∂μH†∂μHÞ

þ yTrðQ̄LHQR þ Q̄RH†QLÞ − uTrðH†HÞ2
− vðTrH†HÞ2; ð1Þ

where the decomposition Q ¼ QL þQR with QL=R ¼
1
2
ð1� γ5ÞQ is understood. The trace Tr indicates the trace

over both color and flavor indices.
The model has four coupling constants given by the

gauge coupling, the Yukawa coupling y, and the quartic
scalar couplings u and the double-trace scalar coupling v:

αg¼
g2NC

ð4πÞ2 ; αy ¼
y2NC

ð4πÞ2 ; αh¼
uNF

ð4πÞ2 ; αvv¼
vN2

F

ð4πÞ2 :

ð2Þ

We have already rescaled the coupling constants by the
appropriate powers of NC and NF to work in the Veneziano

limit. When necessary we will use a shorthand notation αi
with i ¼ ðg; y; h; vÞ. As mentioned in the Introduction we
will be considering the large color and large flavor
Veneziano limit, in order to have an interacting fixed point
which is nevertheless arbitrarily weakly coupled. Therefore
it is convenient to introduce a control parameter which in
the Veneziano limit is a continuous and arbitrarily small
constant

ϵ ¼ NF

NC
−
11

2
: ð3Þ

Asymptotic freedom is lost for positive values of ϵ.
Reference [1] discovered a number of fixed points for

this model. However there is one fixed point that is unique
in that it has only one relevant direction with the other
three being irrelevant. Since every relevant direction loses
predictivity (as it is formally zero at the fixed point and
must be set by hand) this fixed point is of great interest.
To the maximum currently achievable order in perturbation
theory and properly respecting the Weyl consistency
conditions it is obtained for

α�g ¼ 0.4561ϵþ 0.7808ϵ2 þOðϵ3Þ
α�y ¼ 0.2105ϵþ 0.5082ϵ2 þOðϵ3Þ
α�h ¼ 0.1998ϵþ 0.5042ϵ2 þOðϵ3Þ; ð4Þ

with the leading coefficients of ϵ corresponding to

α�g ¼ 26
57
ϵþ � � �, α�y ¼ 4

19
ϵþ � � � and α�h ¼

ffiffiffiffi
23

p
−1

19
ϵþ � � �

respectively. Note that the quartic scalar self-coupling is
essential for this fixed point to exist. The remaining double-
trace scalar coupling v has two possible fixed points, one of
which is more perturbatively reliable and adds an irrelevant
scaling direction to the theory, found to be at

α�v1 ¼
−6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23þ 4ϵ

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23þ 4ϵ

p þ 20
p
4ϵþ 26

α�g

þOðα�2g Þ: ð5Þ

Numerically α�v1 ¼ −0.1373ϵ up to quadratic corrections
in ϵ.
Following [1] by performing the perturbative expansion

to high orders in ϵ one finds its radius of convergence to be

ϵ ≤ ϵmax ¼ 0.117 � � � ð6Þ

At ϵmax in (6), the NNLO equations display a bifurcation
and the UV fixed point ceases to exist through a merger
with a nonperturbative IR fixed point, and the relevant
eigenvalue disappears at ϵmax. The merger at ϵmax indicates
that our working perturbative assumption (ϵ ≪ 1) should
be replaced by 0 < ϵ < ϵmax.
In the presence of more than one relevant direction the

flow from the UV would be expected to emanate from a
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critical surface, however with only one relevant direction
the flow is along the critical curve shown in Fig. 1 toward
the IR stable Gaussian fixed point in the infrared, and is
therefore completely determined in terms of a single
parameter which could be taken to be the gauge coupling
itself. The arrows in the figure are at equal separation in
renormalization “time”, so it is clear that the flow to the
critical curve happens much more rapidly than flow along
it. In fact as discussed in Ref. [1] the relative rate of flow is
proportional to ϵ. Of course for the present discussion the
flow emanates precisely from the UV fixed point of Eq. (4)
marked in black, along the critical curve towards the
Gaussian IR fixed point.
In scalar field theories we must also determine if the

potential is stable. Ignoring the possible presence of
relevant operators for the moment, we see that this is
indeed the case at leading order since α�h þ α�v1 > 0, and
it also the case for loop corrections as well [1,3].
Therefore there is no Coleman-Weinberg type instability
in these models, as will be shown explicitly later in
certain directions in field space. Thus the α�v1 perturba-
tive fixed point is classically viable and becomes
increasingly flat in the Veneziano limit, and moreover
in the absence of relevant operators the flow never leaves
the critical curve.
Having identified all the critical coupling values and

the scaling dimensions it is possible to parametrize
the gauge coupling and hence the entire flow along the
critical curve for any values of the renormalization time
t ¼ ln μ=μ0 by [3,60]

αgðtÞ ¼ α�gð1þW½t�Þ−1; ð7aÞ

αyðtÞ ¼
6

13
αgðtÞ; ð7bÞ

αhðtÞ ¼ 3

ffiffiffiffiffi
23

p
− 1

26
αgðtÞ; ð7cÞ

αvðtÞ ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp
− 6

ffiffiffiffiffi
23

p

26
αgðtÞ; ð7dÞ

where W ¼ α�g
αg
− 1 is the Lambert W-function (a.k.a. the

product log defined by WðzÞeWðzÞ ¼ z). We refer to [3] for
the explicit relation between z and the RG time t.
Perturbation theory is valid for all values of t as long as
ϵ is small. We refer to [3] for further details.
Since we can access all scales through this set of

solutions, the initial gauge coupling αgð0Þ ¼ αgðμ0Þ is
the only free parameter distinguishing different physical
systems that flow from the UV fixed point, and must be set
by hand in accord with the measurement of the coupling at
some scale. However, as mentioned above one can simply
use the gauge coupling itself to parametrize the flow along
the critical curve linking the UV interacting fixed point to
the IR noninteracting one (also known as the separatrix): it
is a monotonically increasing function of μ.

III. SYMMETRY BREAKING

What happens when we add a classically relevant
operator to such a system, in particular of course a
mass-squared term for the scalar H? As described in the
Introduction, as long as the operator remains relevant at the
quantum level we do not expect it to affect the UV fixed
point, and its status will therefore be equivalent to that of
chiral symmetry breaking mass-terms in QCD, in the sense
that it is a parameter which is set at the initial RG scale by
physical measurement. There is no question of uncontrolled
UV sensitivity because we know that the theory is exactly
conformal precisely at the UV fixed point (this is of course
the central assumption which unlike the CW mechanism is
now motivated by a genuine symmetry). On the other hand
being a relevant operator it will divert the flow away from
the IR fixed point. In the current context this flow is
precisely the seed for radiative symmetry breaking.

A. A simple example

There are a number of different relevant operators that
one might consider adding to the theory that can contribute
to symmetry breaking. They are distinguished by whether
or not they explicitly break the SUðNFÞL × SUðNFÞR
flavor symmetry of the theory. To be concrete we will
first consider the mass term,

FIG. 1. The renormalization group flow of the marginal
couplings from the UV fixed point and around the critical curve,
towards the Gaussian IR fixed point.
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V ⊃
m2

ϕ

4NF
ðTrðH þH†ÞÞ2; ð8Þ

which explicitly breaks the flavor symmetry to the diago-
nal, UðNFÞL ×UðNFÞR → SUðNFÞdiag and picks out just
the scalar component of the trace.
Generally, the RG flow will be on a critical surface

whose dimensionality is given by the number of relevant
operators (plus one), but if this flavor breaking operator is
the dominant one, the flow and stability may be analyzed in
terms of the corresponding normalized Higgs along its
direction,

H ¼ ϕffiffiffiffiffiffiffiffiffi
2NF

p 1NF×NF
; ð9Þ

where ϕ is real. We will for the moment restrict our
attention to only this direction in field space and assume
that a negative m2

ϕ will ultimately be responsible for
symmetry breaking—in the next subsection we will focus
on the main point of the paper, which is that a positive m2

ϕ

operator radiatively causes instability in other directions.
First let us deal with the quartic part of the classical

potential of the theory, which along the ϕ direction reads

Vð4Þ
class ¼

4π2

N2
F
ðαh þ αvÞϕ4: ð10Þ

Hence we define the effective quartic coupling,

λ ¼ 32π2
3

N2
F
ðαh þ αvÞ: ð11Þ

It is also useful to define

κ ¼ 32π2
1

N2
F
ð3αh þ αvÞ: ð12Þ

In the absence of m2
ϕ the potential is stable at tree-level,

and one can also confirm the one-loop stability [3]. This
essentially rules out the CW form of radiative breaking,
because it is not possible perturbatively to take these
theories to a limit in which the crucial MðϕÞ4 logMðϕÞ2
terms are dominant. Indeed using the results of the
Appendix, the entire one-loop potential along the ϕ
direction is

V ¼ λ

4!
ϕ4 þm2

ϕ

2
ϕ2 þ 1

64π2

�
m2

ϕ þ
λ

2
ϕ2

�
2
�
log

m2
ϕ þ λ

2
ϕ2

μ2
−
3

2

�
−

ð4πÞ2
4NFNC

α2yϕ
4

�
log

ð4πÞ2αyϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
NFNC

p
μ2

−
3

2

�

þ ðN2
F − 1Þ
64π2

�
κ

2
ϕ2

�
2
�
log

κ
2
ϕ2

μ2
−
3

2

�
þ N2

F

64π2

�
λ

6
ϕ2

�
2
�
log

λ
6
ϕ2

μ2
−
3

2

�
: ð13Þ

The crucial aspect of this expression is that the last line,
which contains the contributions from all the orthogonal
Higgs scalars and pseudoscalars that get a mass, are
according to Eqs. (11) and (12), suppressed by order αv
and αh with respect to the leading term, despite the factor of
N2

F. From one point of view this is of course desirable since
it ensures that the theory remains perturbative, but it also
means that these terms are not able to play off against the
tree-level term in order to create a minimum (in contrast
with the original CW mechanism which without the
constraint of having to be on a renormalizable trajectory
could freely set λ ∼ α2e). It would of course be interesting
to find theories where one could (by varying a parameter
such as m2

ϕ) go continuously to CW radiative symmetry
breaking.
As promised therefore, symmetry breaking, if it occurs at

all, must be driven by the mass-squared. Its evolution may
be treated in the same way as for any other coupling in a
perturbative theory. It is useful for our later treatment of
more complicated flavor structure, to have the relevant
expressions to hand of the various contributions to the RG

flow. For this reason (and to be careful about signs and
establish conventions) let us summarize the general
framework for a theory of scalars ϕ with generic ϕn

couplings as

λðnÞ ¼ ∂nV
∂ϕn ; ð14Þ

where of course for the mass-squared we will take n ¼ 2,
so at the risk of confusion λð2Þ ≡m2

ϕ. The main equation to
solve is the Callan-Symanzik equation for the n-point
Green’s function,

�
−

∂
∂tþ β̄

∂
∂λðnÞ − nγ̄

�
λðnÞeff ¼ 0; ð15Þ

where t ¼ logðϕ=μ0Þ, corresponding to invariance under

changes in the cutoff μ0, of the coupling λ
ðnÞ
eff ðϕ=μ0Þ that one

calculates directly in the effective field theory.
The bars indicate division by 1þ γ: as we will work to

one-loop for the evolution of the mass-squareds, they will
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ultimately be dropped. For n ¼ 2 this gives the anomalous
dimension as

γ̄ ¼ −
1

2

∂ logZ
∂t ; ð16Þ

where the renormalized fields scale as ϕ →
ffiffiffiffiffiffiffiffiffi
ZðtÞp

ϕ,
hence Z ¼ expð−2 R γ̄dtÞ.
In order to solve (15) we identify β̄ as the t-derivative of a

running coupling λðtÞ which must be found by solving

β̄ ¼ dλðnÞðtÞ
dt

¼ ∂λðnÞeff

∂t þ nγ̄λðnÞ; ð17Þ

with the functional form of the right-hand side (RHS)
being determined by perturbation theory and Eq. (16). The

solution for λðnÞeff is then given in terms of this coupling, by

λðnÞeff ¼ λðnÞðtÞZn=2: ð18Þ

In SUSY for example the t-derivative of λðnÞeff is zero to
all orders due to the non-renormalization theorem, and
Eq. (18) simply says that λðnÞðtÞ ∝ Z−n=2: the renormaliza-
tion of any coupling including masses is multiplicative
(thereby solving the hierarchy problem) since it comes
entirely from absorbing wave-function renormalization. On
the other hand in pure λϕ4 theory one has γ ¼ 0 at one-loop
and the renormalization of λ is dominated by the effective
potential.
In the present context we require the anomalous

dimension of H to one-loop: it will be denoted by γ and
is simply [61]

γ ¼ αy: ð19Þ

In addition to the field renormalization piece, there is a
contribution to the running from the cross-term in the one-
loop potential, of the form

V ⊃
m2

ϕ

2
ϕ2

�
1þ λt

16π2

�
; ð20Þ

where λ≡ λð4Þ is the quartic coupling. (When we come to
discuss radiatively induced breaking later on, this will be
the crucial contribution.) As m2

ϕ is the only coupling with
classical dimension, there can be no other contributions to
the mass-squared terms at one-loop, as is indeed apparent
from Eq. (13). Thus to one-loop (and dropping the bars)

βm2
ϕ
¼ m2

ϕ

�
λ

16π2
þ 2γ

�
; ð21Þ

and inserting Eq. (11) gives

1

m2
ϕ

βm2
ϕ
¼ 2αy þ

6

N2
F
ðαv þ αhÞ: ð22Þ

One can conclude that in the Veneziano limit the mass-
squared renormalization is dominated by the anomalous
dimension of the fields and the individual cross-terms
die away as 1=N2

F. Moreover the beta function is always
positive indicating that the operator grows (in absolute
terms) in the UV but of course always remains relevant.1

Substituting the solutions in Eq. (7) we obtain

1

m2
ϕ

βm2
ϕ
¼ fαg; ð23Þ

where

f ¼ 12

13

�
1þ 3

4N2
F

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pq
− 1 −

ffiffiffiffiffi
23

p ��
: ð24Þ

In the Veneziano limit we find f ≈ 0.92, with the mass-
squared growing in the UV as

m2
ϕ⟶

UV
mϕð0Þ2

�
μ

μ0

�
fα�g

: ð25Þ

Of course the reason this does not disrupt the fixed point is
that for parametrically small α�g ∼ ϵ the m2

ϕ coupling grows
much more slowly than μ2 itself. On the other hand the
physical mass shrinks in the IR since αgðtÞ → 0 there.
Indeed integrating Eq. (23) gives the solution

m2
ϕðtÞ ¼ m2

ϕð0Þ exp
�
f
Z

t

0

αgdt

�

¼ m2
ϕð0Þω−3f

4ϵ; ð26Þ

where

ω ¼ α�g=αgðtÞ − 1

α�g=αgð0Þ − 1
: ð27Þ

Note that the inverse power of ϵ in (26) does not signal a
divergence as ϵ, in fact the opposite is the case, and smaller
ϵ means better perturbativity. Indeed

logω ≈ −
4

3
ϵα�gt ∼ −ϵ2t; ð28Þ

so that by the above m2
ϕðtÞ ∼m2

ϕð0Þefα
�
gt, and the flow gets

smoother as ϵ → 0 as expected. This is shown explicitly
in Fig. 2.

1in the technical sense, and hence not relevant in the colloquial
sense.
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We arrive at a purely perturbative description of the
evolution of the mass-squared:

m2
ϕðtÞ ¼ m2�

�
α�g
αg

− 1

�
−3f

4ϵ

⟶
IR

m2�

�
αg
α�g

�3f
4ϵ

; ð29Þ

where the invariant mass-squared parameter is

m2� ¼ m2
ϕð0Þðα�g=αgð0Þ − 1Þ3f4ϵ: ð30Þ

Note thatm2� is independent of the arbitrary energy scale μ0
corresponding to t ¼ 0 at which the flow started. Therefore
each m2� parameter defines a unique trajectory for m2

ϕðtÞ,
and the totality of possible flows defines a two-dimensional
critical surface in ðg; y; u; v;m2

ϕÞ-space. The importance of
Eq. (29) is that (in accord with the whole philosophy of the
renormalisation group) one may now dispense with μ0 and
describe the flow entirely in terms of the RG invariants m�,
α�g, and the running coupling αgðtÞ. As was the case for the
classically dimensionless couplings, its RG flow is faster by
a factor of 1=ϵ than that of the gauge coupling. Moreover
this expression makes transparent the multiplicative nature
of the mass renormalization, with the conclusion that in
order to have spontaneous symmetry breaking along this
direction the parameterm2� has to be negative, implying that
m2

ϕ is negative for all RG scales.
One should of course stop the running around the scale

of the Higgs mass which fixes the relevant values of αgðtÞ
and m� for the desired masses and gauge coupling, both of
which would in principle be determined by measurement.
Note that λ also keeps running until the scale of sponta-
neous symmetry breaking. Therefore the minimum of the
tree-level improved potential gives a VEV determined as
λhϕðtÞi2 ¼ −6m2

ϕðtÞ evaluated with the t parameter corre-
sponding to the value of jmϕj itself, which in practice
means simply using the appropriate value of αg measured at
the scale of the physical Higgs mass.

As one would expect, the spectrum, including that of
the quarks, scales as the invariant m� and is otherwise a
function only of αg:

m2
higgs=jm2�j ¼ 2

�
α�g
αg

− 1

�
−3f

4ϵ

m2
Q=jm2�j ¼

2NF=NCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
63

pp
− ð1þ ffiffiffiffiffi

23
p Þ

�
α�g
αg

− 1

�
−3f

4ϵ

;

ð31Þ

where the first of these is simply the usual m2
higgs ¼

2jm2
ϕj relation one has for the Higgs mass of the standard

model. There is no color breaking here because the
Higgs is a singlet under color, so the gluons remain
massless. However one could imagine also gauging the
flavor in which case the flavor gauge boson masses
would also scale as m�, although of course one has to be
careful to preserve the asymptotic safety of the whole
construct. In summary, m� provides a tunable parameter
that, much like the quark masses, encompasses the
breaking of both scale invariance and flavor symmetry
in the entire flow.
Aswe hinted above, we are in the above analysis implicitly

assuming that a negative m2� leads to instability in the ϕ
direction alone, and not along any of the other directions. The
treatment was also naive in that we have neglected the
contribution to the potential of the orthogonal scalars.
Their masses are all initially explicitly zero so they do not
contribute at leading order, but they will start to contribute
loop-suppressed terms proportional to 1=N2

F upon resum-
ming the logs. We will see this in a more complete treat-
ment below.

B. Radiative symmetry breaking

We now begin to extend the discussion to general
flavor breaking and first demonstrate that the gauge-
Yukawa model in Eq. (1) has an in-built mechanism for
radiatively induced spontaneous symmetry breaking,
analogous to the familiar mechanism of the MSSM.
That is, even if a positive parameter such as m2

ϕ is
introduced into the theory at a high renormalization
scale, the couplings generically lead to radiative insta-
bility in orthogonal directions in field space, and hence to
spontaneous breaking of flavor [6]. Moreover we shall
see various quite striking similarities with radiative
symmetry breaking in the MSSM.
Consider adding to the previous theory a second dimen-

sionful operator that breaks the flavor further as
SUðNFÞdiag → SUðNF=2Þdiag × SUðNF=2Þdiag. We shall
discuss the stability for the VEVs of the corresponding
(in terms of symmetry breaking) directions in fields space,
namely

FIG. 2. The behavior of the mass-squared for decreasing ϵ.
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H ¼ ϕffiffiffiffiffiffiffiffiffi
2NF

p 1NF×NF
þ hffiffiffiffiffiffiffiffiffi

2NF
p σ1 ⊗ 1NF=2×NF=2; ð32Þ

where σ1 is the usual Pauli matrix. Again the fields ϕ and h
are the real components of complex fields normalized as for
example 1ffiffi

2
p ðϕþ iηÞ. For the one-loop potential one has to

of course include the mass-squareds of both the scalar and
pseudoscalar fields.
We then add the two mass-squareds for the scalar

components into the theory as

Vð2Þ
class ¼

m2
ϕ

2
ϕ2 þm2

h

2
h2; ð33Þ

with superscript (2) indicating quadratic terms. As in the
previous example, the pseudoscalars (and indeed any of
the other fields) cannot—initially at least—contribute to the
running of these terms, as they do not themselves have
an explicit mass-squared and therefore do not have the
requisite cross-term in the one-loop potential. On the other
hand, as we are about to see for h, the converse is not
true: even if a mass-squared such as m2

h is zero, it gets
renormalized by a nonzero m2

ϕ.
Substituting the explicit form of the fields in Eq. (32)

into Eq. (1), the quartic terms for ϕ and h are

Vð4Þ
class ¼

λ

4!
ðϕ4 þ h4Þ þ κ

4
ϕ2h2; ð34Þ

where λ and κ are as defined in Eqs. (11), (12) and the
Appendix. One can alternatively use the expressions in
the Appendix to derive the above, noting that, if we call
the particular h generator we have chosen here T1, then
d11b ¼ 0 (where dabc is the totally symmetric SUðNFÞ
tensor).
To proceed it is useful to define a set of parameters scaled

in terms of αg that will encompass the various contributions
to the running:

fγ¼def2γ
1

αg
¼ 12=13;

fλ¼def
λ

16π2
1

αg
¼ 9

13N2
F

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pq
− 1 −

ffiffiffiffiffi
23

p �
;

fκ¼def
κ

16π2
1

αg
¼ 3

13N2
F

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pq
− 3þ

ffiffiffiffiffi
23

p �
; ð35Þ

where f ¼ fγ þ fλ. These ratios (which are all positive)
hold along the entire flow (regardless of the presence or
otherwise of m2

ϕ and m2
h). Note that γ is dominant in the

large NF limit. While the running here is not entirely driven
by field renormalization it is as we mentioned earlier
certainly dominated by it in the Veneziano limit.

Following the procedure outlined above and applying
Eq. (17) for this case we derive two beta functions;

βmh2
¼ αgðfm2

h þ fκm2
ϕÞ

βm
ϕ2
¼ αgðfm2

ϕ þ fκm2
hÞ: ð36Þ

These can be diagonalized and solved (using also
αg ¼ d

dt logw
−3=4ϵ) to give

m2
hðtÞ¼

w−3f
4ϵ

2

h
m2

hð0Þ
�
w

3fκ
4ϵ þw−3fκ

4ϵ

�
−m2

ϕð0Þ
�
w

3fκ
4ϵ −w−3fκ

4ϵ

�i

m2
ϕðtÞ¼

w−3f
4ϵ

2

h
m2

ϕð0Þ
�
w

3fκ
4ϵ þw−3fκ

4ϵ

�
−m2

hð0Þ
�
w

3fκ
4ϵ −w−3fκ

4ϵ

�i
:

ð37Þ

Note that the previous result is obtained for fκ ¼ 0 as
expected (although we should emphasize that for any
given set of operators the κ cross-terms and hence fκ is
completely determined as above).
More importantly however, a large positive value of m2

ϕ

generates a negative m2
h and instability in the h direction at

low scales (where w > 1) even if all mass-squareds are
positive in the UV. By the same token a large positive m2

h
generates a negative m2

ϕ and instability in the ϕ direction.
This phenomenon is purely an effect of the one-loop

potential and is precisely what happens in the MSSM,
where thanks to supersymmetry, the large (s)top Yukawa
generates an effective κ driving the soft mass-squared term
for the associated Higgs negative [6].
The effect can be made more explicit by noting that

in the large NF limit, ϵ ∼ 1=NF whereas fκ ∼ 1=N2
F.

Therefore we can expand as follows;

m2
hðtÞ ¼ w−3f

4ϵ

�
m2

hð0Þ −m2
ϕð0Þ

3fκ
4ϵ

logwþ…

�

m2
ϕðtÞ ¼ w−3f

4ϵ

�
m2

ϕð0Þ −m2
hð0Þ

3fκ
4ϵ

logwþ…

�
: ð38Þ

Since the prefactor scales as 3fκ
4ϵ ∼ 1=NF one must in this

simple example ensure that m2
hð0Þ ≲m2

ϕð0Þ=NF in order
for the symmetry breaking to be driven radiatively by m2

ϕ,
so at the moment it appears that the breaking requires an
internal hierarchy. This is really a function of the domi-
nance of the field renormalization in the running. Of course
a vanishingly small m2

hð0Þ could always be invoked by
flavor symmetry arguments, however in the following
section we shall present an example that does not require
such an assumption. Once the discussion is correctly
organized in terms of the SUðNFÞ flavor structure the
radiative breaking is found to occur when the system does
not have any internal hierarchies.

RADIATIVE SYMMETRY BREAKING FROM INTERACTING … PHYSICAL REVIEW D 96, 056028 (2017)

056028-7



We should emphasize at this point that the solutions above
should be considered to be accurate to one loop and leading
log. In principle, and as is about to become clear in the
following subsection, all of them2

h pick up a mass-squared in
a similar fashion and these then feed back into m2

ϕ when the
logs are resummed during the running. In other words the
beta functions for the mass-squareds in all of the orthogonal
directions also get contributions from m2

ϕ. It is reasonable to
consider only the leading contributions above in particular
restricted directions in field space, first because these
secondary contributions would be suppressed by more
factors of 1=N2

F, but also because the mass-squareds do
not themselves contribute to the fixed point behavior, but
simply accumulate contributions perturbatively during the
running. Nevertheless we now proceed to improve on the
situation with a proper treatment of the flavor structure.

C. General solutions and the role of flavor

We conclude from Eq. (37) that adding a large positive
mass-squared operator in the UV could generically lead to
a further spontaneous radiative breaking of flavor sym-
metry in a multitude of orthogonal directions. However
the value of m2

hð0Þ had to be vanishingly small in the
Veneziano limit.
In this subsection we show that in fact the phenomenon

occurs generically once one takes into account the large
(order N2

F) number of orthogonal degrees of freedom in the
Higgs. Indeed as mentioned, there was nothing particularly
special about the direction h in the above analysis,
compared to any of the other flavor breaking directions
that we could have chosen. Therefore in order to identify
the correct vacuum one should in principle consider the
entire complement of Higgses in the theory.
Let us therefore define the general direction in terms of

the generators of flavor (replacing the previous ϕ and η
with h0 and p0 for convenience),

H ¼ ðh0 þ ip0Þffiffiffiffiffiffiffiffiffi
2NF

p 1NF×NF
þ ðha þ ipaÞTa; ð39Þ

where Ta with a ¼ 1…N2
F − 1 labels the adjoint generators

of SUðNFÞdiag and by convention TrðTaTaÞ ¼ 1
2
. The scalar

components in the potential are effectively the Hermitian
component of H whereas the pseudoscalars are the anti-
Hermitian component.
What is the influence of a positive m2

h0h0
operator in the

other ha directions? The crucial cross-terms in the poten-
tial, V ⊃ κah20h

2
a, arise from the TrðH†HH†HÞ operator in

Eq. (1) and as is clear from Eq. (A9) they are all similar
in magnitude, and in fact any generators Ta that also have
daab ¼ 0 receive degenerate mass-squareds. Therefore if
for example m2

haha
ð0Þ ¼ 0 for all the high scale starting

values, then all of these directions receive mass-squareds

m2
haha

≈ −
m2

0ð0Þ
2

�
w

3ðfκ−fÞ
4ϵ − w−3ðfκþfÞ

4ϵ

�
∀ a; ð40Þ

where fκ is as before, and where the approximation is
that we are neglecting cross-terms between the h2a’s
which give contributions that are suppressed by powers
of w. Nevertheless we can conclude that every flavor
breaking scalar orthogonal to h0 receives a negative
mass-squared.
It is interesting to turn the question around and ask

when is there guaranteed to be no instability. From Eq. (37),
degenerate values of mass-squareds remain degenerate
at all scales. This suggests that for all the possible
directions to remain stable requires complete degeneracy,
m2

h0h0
≡m2

0 ¼ m2
haha

∀a, which is satisfied if one adds the
only mass-squared operator that breaks no flavor symmetry
at all, namely TrðH†HÞ.
Therefore in order to find a genuine solution to the

RG equations that one can legitimately resum, one should
begin with the RG equations for the most general set of
flavor-breaking operators, and seek a deviation from flavor
universality that is isomorphic under renormalization: it
turns out that a simple suitable structure is generator
diagonal and universal except for a flavor deviation in
only the trace components; namely

Vð2Þ
class ¼ m2

0TrðH†HÞ þ 2Δ2
X
a

TrðTaH†ÞTrðTaHÞ; ð41Þ

which gives

m2
hahb

¼ m2
papb

¼ ðm2
0 þ Δ2Þδab; ð42Þ

for all the scalar and pseudoscalar SUðNFÞ directions,
and degenerate trace pseudoscalar and scalar mass-
squareds, m2

h0h0
¼ m2

p0p0
¼ m2

0.
The renormalization of the mass-squared couplings

can be determined as before (at the cost of considerably
more tedium). The detailed expressions required to
build the one-loop potential for the most general case
are given in Eq. (A8). Inserting the structure chosen in
(41), we find

βm2
0
¼ αgðfm0

m2
0 þ fΔκ Δ2Þ;

βΔ2 ¼ αgfΔΔ2; ð43Þ

where using the results from Eq. (A21) and inserting
the solutions from Eq. (7) we have
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fm0
¼ 6

13

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pq �
1þ 1

N2
F

�
−
2

ffiffiffiffiffi
23

p

N2
F

#
;

fΔκ ¼ 6

13

�
1 −

1

N2
F

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pq
− 2

�
;

fΔ ¼ 6

13

"
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp
− 2

ffiffiffiffiffi
23

p

N2
F

#
: ð44Þ

Note that fΔ is dominated by the field renormalization,
and that fm0

− fΔ ≈ fΔκ up to corrections of order 1=N2
F.

The crucial aspect of these beta functions is that no
degrees of freedom were neglected in their derivation,
and this flavor structure remains intact throughout the
running. In addition note that β2Δ is zero in the limit of
vanishing Δ; as anticipated, totally flavor symmetric
mass-squareds do not lead to radiative symmetry break-
ing as there can be no preferred direction in field space.
Finally, in contrast with the simplistic example above,
the cross-term in the beta function coefficients does not
vanish in the Veneziano limit.
Equation (43) can be solved for Δ2 and the combination

~m2 ¼ m2
0 þ νΔ2; ð45Þ

where we define

ν ¼ fΔκ
fm0

− fΔ
¼ 1 −

1

N2
F
: ð46Þ

Since fΔκ > 0 then fm0
> fΔ. They have the following

solutions;

~m2 ¼ ~m2ð0Þw−
3fm0
4ϵ ; Δ2 ¼ Δ2ð0Þw−3fΔ

4ϵ : ð47Þ

As for the simple case, it is now possible to describe the
entire flow in terms of RG invariants; that is defining

~m2� ¼ ~m2ð0Þðα�g=αgð0Þ − 1Þ3fm0
4ϵ

Δ2� ¼ Δ2ð0Þðα�g=αgð0Þ − 1Þ3fΔ4ϵ ; ð48Þ

one can write

~m2 ¼ ~m2�

�
α�g
αg

− 1

�
−
3fm0
4ϵ

Δ2 ¼ Δ2�

�
α�g
αg

− 1

�
−3fΔ

4ϵ

: ð49Þ

With this solution in hand, it is now possible to see how
the flavor structure drives radiative symmetry breaking.
Consider the case of a slightly positive Δ2�, that is, the
SUðNFÞ flavor breaking directions are given a slightly

larger mass-squared than the trace h0 direction. According

to Eq. (47) ~m2 shrinks very rapidly in the IR as w−
3fm0
4ϵ →

w−2.4=ϵ (recalling that w grows in the IR). On the other
hand the deviation Δ2 also shrinks, but much more slowly,

as w−3fΔ
4ϵ → w−0.7=ϵ. Because fm0

is greater than fΔ, the
dominance of Δ2 in the IR is inevitable. Indeed the mass-
squareds for the different components are

m2
0 ¼ ~m2�

�
α�g
αg

− 1

�
−
3fm0
4ϵ

−Δ2�ν
�
α�g
αg

− 1

�
−3fΔ

4ϵ

;

m2
a¼1…N2

F−1
¼ ~m2�

�
α�g
αg

− 1

�
−
3fm0
4ϵ þΔ2�ð1− νÞ

�
α�g
αg

− 1

�
−3fΔ

4ϵ

;

ð50Þ

with the Δ2 piece eventually coming to dominate in the IR.
Note that since 1 − ν ¼ 1=N2

F, in the large N2
F limit light

ha directions are collectively driving a much larger
negative mass-squared for the single h0 direction. (The
sum of the mass-squareds is approximately zero). We
conclude that a positive m2

0 is driven entirely negative in
the IR if we begin with a preponderance of orthogonal
slightly heavier directions in the UV. An example flow is
shown in Fig. 3. As is evident from the figure a minimum
appears where the deviation Δ2 overcomes the running
average mass-squared.
Regardless of the size of flavor breaking, this happens

very quickly, and the potential itself develops a minimum at
the transmutation scale corresponding to the minimum
value of m2

0; defining

R� ¼
Δ2�
~m2�

; ð51Þ

FIG. 3. A trace mass-squared which is smaller than the average
by 35% in the deep UV (i.e. Δ2� ¼ 0.35) being driven negative
radiatively. Note that for referencewe take μ0 to be the dynamical
scale (i.e., the apparent Landau pole scale) of the low energy
theory: it does not indicate the presence of any physical modes at
that scale, and the system has no hierarchies. We take ϵ ¼ 0.1 in
the Veneziano limit (NF → ∞).
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the mass-squared (and hence the potential) forms a mini-
mum at

α�g
αg;min

− 1 ≈
�
fΔ
fm0

νR�

�
− 4ϵ
3ðfm0

−fΔÞ
;

m2
0;min ≈ − ~m2�

fm0
− fΔ
fΔ

�
R�ν

fΔ
fm0

� fm0
fm0

−fΔ : ð52Þ

For the example in Fig. 3, where R� ¼ 0.35 and ϵ ¼ 0.1,
the above approximations give αg;min ¼ 0.47α�g and
m2

0;min ≈ −0.1m2�, in accord with the numerical plots.
Note that for small ϵ in the Veneziano limit one has

αg;min⟶
ϵ→0 1

2
α�g: ð53Þ

In other words the minimum forms at precisely the scale
where the theory is passing from the UV fixed point, and
assuming more standard Gaussian IR fixed point behavior.
Finally note that if we had chosen negative Δ2 the reversed
pattern of breaking would have occurred, with the trace h0
direction being the only stable and very heavy direction,
with a mass-squared balancing order N2

F very small
negative mass-squareds for all the orthogonal directions.

IV. CONCLUSIONS

We have studied the stability properties of the class of
perturbative UV fixed point theories introduced in Ref. [1],
in the presence of additional scalar mass-squared terms.
It is important to realize that such terms, being relevant
operators, may take any value in a scenario of asymptotic
safety without disrupting the fixed point. As such their
status is similar to that of the quark masses in QCD: they
are simply set by hand at some scale and are fully
controlled and multiplicatively renormalized along the
entire RG trajectory. Indeed the value of all the relevant
operators everywhere along the flow is completely deter-
mined by a set of corresponding RG invariants.
This general picture, in which the trajectories of relevant

operators (for example m2� in our case) are determined by
a set of tunable RG invariants that defines a particular
model, while the marginal operators are all (except for one)
determined by a UV fixed point, is a familiar one in the
context of the exact renormalization group. However it is
certainly novel to be able to treat it perturbatively.
Such a treatment reveals that these theories exhibit an

interesting form of calculable radiatively induced sym-
metry breaking, that is analogous to that in the MSSM [6],
in the sense that it is driven by large Yukawa couplings.
It was found that a generic set of positive but flavor
violating mass-squared terms automatically induce a mini-
mum radiatively, whose depth is determined by the
absolute value of the flavor violation. Moreover the
minimum inevitably appears at the precise scale where

the UV fixed point first loses control over the running,
and the theory comes under the more familiar influence of
the Gaussian IR fixed point. This is a novel radiative
symmetry breaking phenomenon that we believe deserves
further study.
There are several issues that require careful treatment in

order to embed the standard model in such a scenario. First,
there are many gauge bosons that need to be made massive,
and moreover once those gauge bosons are made massive
they must not then go on to reintroduce a hierarchy
problem. Many of these questions are addressed in a
companion paper [62]. A rather minimal direct implemen-
tation of the radiative symmetry breaking mechanism we
have discussed here is to embed the structure into an
extended Pati-Salam theory, with a breaking scale some-
what above the weak scale, and with a gauging of the
SUð2ÞL × SUð2ÞR subgroup of the flavor symmetry. We
should add that in principle the explicit breaking of global
flavor symmetries in the scalar mass-squareds is multipli-
catively renormalized, so that it may also be possible to
realize the Higgs as the Goldstone mode of an approximate
global flavor symmetry in such a scenario.
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APPENDIX: RESULTS FOR POTENTIAL

We collect the results required for the computation of
the beta functions. The fields contributing to the one-loop
potential are decomposed into real and pseudoscalar flavor
breaking directions as

H ¼ h0 þ ip0ffiffiffiffiffiffiffiffiffi
2NF

p þ ðha þ ipaÞTa: ðA1Þ

For convenience we use hA ≡ fh0; h1…N2−1g with

T0 ¼ 1ffiffiffiffiffiffiffiffiffi
2NF

p ; ðA2Þ

and with small letters running as a ¼ 1…N2
F − 1 and

capitals as A ¼ 1…N2
F − 1. In principle to determine the

correct vacuum one should consider the beta functions of
the most general mass-squared terms, are,

Vð2Þ
class ¼

1

2
m2

hAhB
hAhB þ 1

2
m2

pApB
pApB þm2

pAhB
pAhB:

ðA3Þ

Therefore we examine the potential in the background of
all the scalars hA and pseudoscalars pA. Using the identity
TaTb ¼ 1

2
ðδabNF

þ ðdabk þ ifabkÞTkÞ, the relevant pieces are
extracted from the tree-level potential which is
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Vclass ¼
1

2
m2

hAhB
hAhBþ

1

2
m2

pApB
pApBþm2

pAhB
pAhBþ

ðvþu=NFÞ
4

ðh2Aþp2
AÞ2

þu
8

�
ðhahbþpapbÞdabkþ 2pahbfabkþ

4ðh0hkþp0pkÞffiffiffiffiffiffiffiffiffi
2NF

p
��

ðhchdþpcpdÞdcdkþ 2pchdfcdkþ
4ðh0hkþp0pkÞffiffiffiffiffiffiffiffiffi

2NF
p

�
;

ðA4Þ

where dabc and fabc are the usual totally symmetric tensor
and antisymmetric structure constants respectively of
SUðNFÞ. Note that repeated indices are summed.
The u-terms can be significantly simplified by defining

d̂ABC ¼
(
dABC A; B; C ≠ 0ffiffiffiffiffi

2
NF

q
δBC A ¼ 0:

ðA5Þ

f̂ABC ¼
(
fABC A; B; C ≠ 0

0 A or B or C ¼ 0:
ðA6Þ

The full tree-level potential then becomes

Vclass ¼
1

2
m2

hAhB
hAhB þ 1

2
m2

pApB
pApB þm2

pAhB
pAhB

þ v
4
ðh2A þ p2

AÞ2 þ
u
8
ððhAhB þ pApBÞd̂ABK

þ 2pAhBf̂ABKÞððhChD þ pCpDÞd̂CDK

þ 2pChDf̂CDKÞ; ðA7Þ

The field dependent mass-squareds derived from Eq. (A7)
are

M2
hAhB

¼ m2
hAhB

þ vðδABðh2C þ p2
CÞ þ 2hAhBÞ

þ u
2
d̂ABKððhChD þ pCpDÞd̂CDK þ 2pChDf̂CDKÞ

þ uðhCd̂ACK − pCf̂ACKÞðhDd̂BDK − pDf̂BDKÞ;
M2

pApB
¼ m2

pApB
þ vðδABðh2C þ p2

CÞ þ 2pApBÞ
þ u

2
d̂ABKððhChD þ pCpDÞd̂CDK þ 2pChDf̂CDKÞ

þ uðpCd̂ACK þ hCf̂ACKÞðpDd̂BDK þ hDf̂BDKÞ;
M2

pAhB
¼ m2

pAhB
þ 2vpAhB

þ u
2
f̂ABKððhChD þ pCpDÞd̂CDK þ 2pChDf̂CDKÞ

þ uðpCd̂ACK þ hCf̂ACKÞðhDd̂BDK − pDf̂BDKÞ:
ðA8Þ

Note that when it comes to the renormalization of the mass-
squareds, only those terms with a direct mass-squared can
contribute, although of course all terms contribute to the

quartic coupling renormalization in the usual way regard-
less of the flavor breaking.
It is worth highlighting the generator independence of

the above relations: in a background of only real scalars, the
terms for M2

haha
and M2

h0h0
can be rewritten

M2
haha

¼ m2
a þ

λ

2
h2a þ

κ

2
h2C≠a þ cross-terms involvingdabc;

M2
h0h0

¼ m2
h0
þ λ

2
h20 þ

κ

2
h2a; ðA9Þ

where as in the text, the coefficients are

λ=2 ¼ 3

�
u
NF

þ v

�
¼ 3ð4πÞ2

N2
F

ðαh þ αvÞ;

κ=2 ¼
�
3

u
NF

þ v

�
¼ ð4πÞ2

N2
F

ð3αh þ αvÞ: ðA10Þ

1. The degenerate example

Now let us specialize to the specific generator-diagonal
structure considered in the text,

Vð2Þ
class¼m2

0TrðHH†Þþ2Δ2δabTrðHTaÞTrðH†TbÞ: ðA11Þ

We will derive fm2
0
and fΔ2 in the beta function for m2

0 and

Δ2, defined as

βm2
0
¼ αgðfm0

m2
0 þ fΔκ Δ2Þ; βΔ2 ¼ αgfΔΔ2: ðA12Þ

Note that we do not expect to find a term proportional tom2
0

in βΔ2 because the completely flavor-symmetric system
should be stable against radiative corrections to Δ, so its
beta function should vanish when Δ ¼ 0. Note also that
fm0

αg ≡ γŜ can be identified as the anomalous dimensions
of the operator Ŝ ¼ TrðHH†Þ. This will give us a useful
cross-check with the results of Ref. [61].
Inserting Eq. (A11) into Eq. (A8), we find the following

cross-terms contributing to the mass-squareds in the one-
loop potential;
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∂tV
ðm2

haha
Þ ¼ ðm2

0 þ Δ2Þ
16π2

X
a

�
v

�
2h2a þ

X
C

ðh2C þ p2
CÞ
�

þ u
NF

�X
C

ðh2C þ p2
CÞ þ 2h2a þ 2h20

��

þ ðm2
0 þ Δ2Þ
16π2

X
a

u½hchddackdadk

þ pcpdfackfadk�; ðA13Þ

∂tVðm2
papa Þ ¼ ðm2

0 þ Δ2Þ
16π2

X
a

�
v

�
2p2

a þ
X
C

ðh2C þ p2
CÞ
�

þ u
NF

�X
C

ðh2C þ p2
CÞ þ 2p2

a þ 2p2
0

��

þ ðm2
0 þ Δ2Þ
16π2

X
a

u½pcpddackdadk

þ hchdfackfadk�; ðA14Þ

∂tV
ðm2

h0h0
Þ ¼ m2

0

16π2

�
v
�
2h20 þ

X
C

ðh2C þ p2
CÞ
�

þ u
NF

�X
C

ð3h2C þ p2
CÞ
��

; ðA15Þ

∂tV
ðm2

p0p0
Þ ¼ m2

0

16π2

�
v

�
2p2

0 þ
X
C

ðh2C þ p2
CÞ
�

þ u
NF

�X
C

ðh2C þ 3p2
CÞ
��

; ðA16Þ

where for example ∂tV
ðm2

haha
Þ denotes the terms coming

from cross-products with m2
haha

. Using the standard
SUðNFÞ identities (repeated indiced summed),

daak ¼ 0; dackdadk ¼
N2

F − 4

NF
δcd;

fackdadk ¼ 0; fackfadk ¼ NFδcd; ðA17Þ

and summing we find,

∂tV
ðm2

haha
Þ þ ∂tVðm2

papa Þ

¼ ðm2
0 þ Δ2Þ
16π2

�
2v

X
ðh2a þ p2

aÞ

þ 2

�
vþ 2u

NF

�
ðN2

F − 1Þ
X

ðh2C þ p2
CÞ
�
; ðA18Þ

where there are some notable cancellations of the structure
constant terms, and

∂tV
ðm2

h0h0
Þ þ ∂tV

ðm2
p0p0

Þ

¼ m2
0

16π2

�
4

�
vþ u

NF

��X
C

ðh2C þ p2
CÞ
�

− 2v
X
a

ðh2a þ p2
aÞ
�
: ðA19Þ

In total then, the contributions can be divided into pieces
proportional to

P
Cðh2C þ p2

CÞ that contribute to βm2
0
, and

proportional to
P

aðh2a þ p2
aÞ that contribute to the running

of Δ2:

∂tV ¼ m2
0

16π2
½2vðN2

F þ 1Þ þ 4uNF�
X
C

ðh2C þ p2
CÞ

þ Δ2

16π2

�
2

�
vþ 2u

NF

�
ðN2

F − 1Þ
�X

C

ðh2C þ p2
CÞ

þ Δ2

16π2
2v

X
a

ðh2a þ p2
aÞ: ðA20Þ

As expected the terms proportional to m2
0

P
aðh2a þ p2

aÞ
cancel in a nontrivial manner.
The beta function coefficients are found (as in the main

body of the text) by reading off (twice) the coefficient of the
corresponding term in ∂tV, and adding 2γ ¼ 2αy to the
diagonal pieces for the anomalous dimension of the fields.
We find

fm0
αg ¼ 2αy þ 4αv

�
1þ 1

N2
F

�
þ 8αh;

fΔκ αg ¼ ð4αv þ 8αhÞ
�
1 −

1

N2
F

�
;

fΔαg ¼ 2αy þ
4

N2
F
αv: ðA21Þ

As a check we can confirm that the first of these is the
anomalous dimension γŜ of the singlet composite operator,
calculated in [61]. For use in the text note that

ν ¼ fΔκ
fm0

− fΔ
¼ 1 −

1

N2
F
: ðA22Þ
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