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ABSTRACT

Aims. We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative
magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decom-
position, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the
surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmo-
spheric structure.
Methods. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We
use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The
effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical at-
mosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering.
Results. We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like
the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350 K below log10 τ5000 <∼ −4.
The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong
LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high
atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.
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1. Introduction

The atmospheres of late-type stars form the transition from the
opaque convective envelope to the interstellar medium. Hot ris-
ing plasma transports heat to the surface, becomes transparent
and looses its entropy through radiative cooling. Gravity accel-
erates the cooled gas back into the star, carrying kinetic energy
inward and forcing the convective flow. By taking over heat
transport and removing entropy, the radiation field therefore in-
directly drives convection (Stein & Nordlund 1998), making ra-
diative and hydrodynamical processes equally important at the
surface. Magnetic fields have strong impact on the higher atmo-
sphere and cause local phenomena in the surface granulation,
such as spots and pores.

The classical numerical models of cool stellar atmospheres
in 1D focused on a detailed description of radiative transfer,
with two prominent examples being the MARCS code (Gustafsson
et al. 1975) and the ATLAS code (Kurucz 1979). Assuming a
plane-parallel or spherical-symmetric stratification, they include
only a rudimentary treatment of convective energy transport in

cool stellar atmospheres. Subsequent updates of these models
(e.g., Kurucz 1996; Gustafsson et al. 2008) benefit from the
largely increased computational power, refining the treatment of
the strongly wavelength-dependent line opacities. Newer codes,
such as PHOENIX (Hauschildt et al. 1999) can also include de-
partures from local thermodynamic equilibrium (LTE) in the ra-
diative transfer computation and the absorber populations. The
1D models have not only provided growing insight into the phys-
ical environment at the surface of cool stars, but have also be-
come a standard tool for chemical abundance analyses. The wide
variety of applications includes studies of galactic chemical evo-
lution and of the origin of the elements.

The advent of fully dynamic 3D surface convection sim-
ulations has enabled a much more realistic treatment of the
hydrodynamical plasma flow, deepening our understanding of
convection and eliminating the need for microturbulent and
macroturbulent broadening in line formation computations (see,
e.g., Nordlund et al. 2009). The 3D models are capable of
accurately reproducing the surface structure of the observed
solar granulation with their strongly inhomogeneous surface
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intensities (Stein & Nordlund 1998). The velocity fields pre-
dicted by the 3D simulations lead to a close match with both
the observed spectral line bisectors and the broadening of their
profiles in the atmospheres of different stars (e.g., Dravins &
Nordlund 1990; Asplund et al. 2000; Allende Prieto et al. 2002;
Ramírez et al. 2009). Recently, impressive agreement between
a new synthetic 3D model and solar observations has been
found in a detailed comparison of spectral line shifts, equivalent
widths and center-to-limb variations for normalized line profiles
(Pereira et al. 2009a,b). In essentially all cases, this 3D model
reproduced the observations with an accuracy that is compara-
ble to the semi-empirical model of Holweger & Mueller (1974),
which is traditionally used in spectroscopy of the solar photo-
sphere.

The accuracy of the treatment of radiation in 3D, however,
is still strongly limited by the available computational power.
Radiative transfer easily becomes the most computationally ex-
pensive part of a simulation, since the equations must be solved
for a considerably larger set of transport directions compared to
hydrodynamics, and non-grey opacities must be accounted for
in realistic simulations. Most of the currently existing 3D ra-
diative (M)HD codes therefore assume LTE and capture the at-
mospheric height dependence of continuum and line opacities
using the opacity binning method (e.g., Nordlund 1982; Ludwig
1992): the problem of computing the monochromatic radiation
field for a larger number of wavelengths is reduced to the nu-
merical solution of the radiative transfer equation for typically
5 opacity bins. Skartlien (2000) extended the opacity binning
method to include coherent scattering, and showed its impor-
tance in the solar chromosphere using a 3D radiative transfer
solver for parallel shared-memory architectures.

Modern large-scale computer clusters use distributed mem-
ory architectures to handle the growing complexity of scien-
tific simulations, allowing, e.g., self-consistent MHD models of
the solar chromosphere, transition region and corona (Hansteen
2004; Hansteen et al. 2007) or detailed hydrodynamical models
of giant stars (Collet et al. 2007). We present a new fully MPI-
parallelized radiative transfer solver with coherent scattering for
the new BIFROST code for time-dependent 3D MHD simulations
of cool stellar atmospheres (Gudiksen et al., in preparation).

In Sects. 2 and 3, we discuss the physics of the radia-
tive transfer model and its implementation in the MHD code.
Section 4 describes the most important continuous and line opac-
ity sources that we include in our simulations. Section 5 de-
scribes the application of the BIFROST code to model the atmo-
sphere of a solar-type star using radiative transfer calculations
with scattering, and discusses the effects on the temperature
structure.

2. Radiative transfer with scattering
and the radiative flux divergence

2.1. The radiative transfer equation

Hydrodynamical simulations of cool stellar atmospheres need to
cover several pressure scale heights above and below the optical
surface to minimize the effect of the boundaries on the granu-
lation flow. The exponential density stratification causes the op-
tical depth of the plasma to span about 15 orders of magnitude
from the highest to the lowest layers of the simulation. The ra-
diative transfer problem must therefore be solved in very differ-
ent physical environments: in the extremely optically thick dif-
fusion region at the bottom of the simulation box, all photons
are thermalized. At the top, the atmosphere is mostly optically

thin and mainly photons in the strongest lines interact with the
gas. For the bulk of the photons, the transition between these
two domains is rapid; it is confined to a thin layer which ap-
pears corrugated due to the different geometrical depth variation
of opacities in upflows and downflows (Stein & Nordlund 1998).

Radiative transfer is, in general, a time-dependent process,
which needs to be treated simultaneously with the hydrodynam-
ics. However, the timescale of photon propagation over a mean
free path length, tλ = (cχλ)−1, where χλ is the monochromatic
opacity and c is the speed of light, is orders of magnitude shorter
than any hydrodynamical timescale. Radiative transfer therefore
decouples from the hydrodynamics and is well approximated by
a time-independent problem, described by a radiative transfer
equation for the monochromatic specific intensity Iλ(x, n̂) in di-
rection n̂:

n̂ · ∇Iλ(x, n̂) = −χλ(x)Iλ(x, n̂) + jλ(x, n̂), (1)

where jλ denotes the local emission at wavelength λ (see, e.g.,
Mihalas 1978; Rutten 2003). The left-hand side of Eq. (1) is de-
fined in the rest frame of the model atmosphere. The source and
sink terms of the right-hand side are naturally described in the
co-moving frame of the flowing gas. The consequent Doppler
shifts are difficult to treat in 3D time-dependent simulations due
to restrictions in computational power, requiring us to compute
wavelength-integrated quantities in the opacity binning approx-
imation (see below). We therefore assume a static medium, ne-
glecting possible influences of the velocity field.

The extinction of photons is described, as customary,
through the absorption coefficient κλ and the scattering coeffi-
cient σλ, which combine to the gas opacity,

χλ(x) = κλ(x) + σλ(x), (2)

and give rise to the definition of the photon destruction
probability

ελ(x) =
κλ(x)

κλ(x) + σλ(x)
· (3)

Recasting the optical path ds = n̂ · dx along a ray in direction n̂
into the optical depth dτλ = χλds along that direction, gives
Eq. (1) the form

dIλ
dτλ

(τλ) = −Iλ(τλ) + S λ(τλ), (4)

with the source function S λ ≡ jλ/χλ. For the numerical compu-
tation, we employ the formal solution

Iλ(τλ) = Iλ(τu,λ)e−(τλ−τu,λ) +

∫ τλ

τu,λ

S λ(t)et−τλdt, (5)

where Iλ(τu,λ) is the incident intensity at the upwind end of the
ray at optical depth τu,λ < τλ.

The source function S λ at optical depth τλ in direction n̂ in-
cludes local thermal radiation from the gas and coherent scatter-
ing of photons:

S λ=
σλ

4πχλ

∫
S 2
φ(n̂, n̂′)Iλ,n̂′dΩ′ +

κλ

χλ
Bλ = (1 − ελ) Jλ + ελBλ, (6)

where scattered radiation from direction n̂′ contributes with
weight φ in the integral over the unit sphere S 2, Bλ denotes the
Planck function, and Jλ is the mean intensity. The second equal-
ity holds for isotropic angular redistribution of radiation (φ = 1).
For ελ < 1, the source function depends on Jλ and thus, through
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the non-locality of radiative transfer, on radiation processes in
the entire simulation domain. This turns Eq. (4) from an ordi-
nary differential equation into an integro-differential equation.

Current limitations of available computing resources require
the assumption of isotropic coherent scattering. Continuum
processes in cool stellar atmospheres and very strong lines
fulfill this restriction in very good or reasonable approxima-
tion, respectively, due to their weak wavelength dependence.
Intermediate and weak lines are more accurately treated in com-
plete spectral redistribution.

2.2. The radiative flux divergence and the wavelength
integral

Absorption and thermal emission of radiation couples the stel-
lar plasma with the radiation field through the transfer of heat.
Photon energies in cool stars are too small to exert a signifi-
cant force on the fluid compared to the gas pressure and grav-
ity; the coupling is therefore sufficiently described by adding a
radiative heating term Qrad to the energy equation.

Evaluating the first moment of Eq. (1) and using the above
definitions yields

− ∇ · Fλ = 4πχλ (Jλ − S λ) = 4πελχλ (Jλ − Bλ) , (7)

where ∇ · Fλ is the local monochromatic radiative flux diver-
gence. The second equality holds in the case of the coherent
scattering source function (Eq. (6)). The scattering term does
not contribute to heat exchange by definition, reducing radia-
tive heating and cooling by a factor of ελ compared to the case
where S λ = Bλ.

Integrating the monochromatic flux divergence in Eq. (7)
over the whole wavelength spectrum of the star yields the local
heating rate Qrad:

Qrad = −
∫ ∞

0
∇ · Fλdλ. (8)

In the optically thick regime, where radiative transfer is dif-
fusive, this integral may be simplified with good accuracy by
assuming the Rosseland mean opacity in the so-called gray
approximation. However, gray opacities are not sufficient for
a realistic treatment of the height-dependent line-blanketing
above the surface, where the atmospheric structure is very sen-
sitive to the radiation field. Atomic and molecular lines are
important opacity sources in this region, changing the radia-
tive heating and cooling compared to the simplified case of a
gray atmosphere (see, e.g., Vögler et al. 2004, for a detailed
discussion). The current version of the MARCS 1D atmosphere
code uses the opacity sampling technique (Peytremann 1974),
which approximates the spectrum through statistical sampling
at ∼100 000 wavelength points. This resolution is sufficient to
capture continuum absorption and line-blanketing without bias,
at least in the lower parts of the atmosphere where the spectral
distribution of absorbers is sufficiently widespread. Stellar atmo-
sphere models in 3D do not allow for such a detailed treatment
yet, since a single formal solution is many orders of magnitude
more expensive to compute: the radiative transfer equation in our
radiation-hydrodynamical model (Sect. 5.1) is solved for 240 ×
240 columns and 24 transport directions, which is equivalent to
∼105 1D calculations for each time step.

Nordlund (1982), Ludwig (1992) and Skartlien (2000) have
described opacity binning techniques, where wavelength inte-
gration is performed over subsets of the spectral range before
the solution of the radiative transfer equation, and the radiation

field is computed for only a few mean opacities instead of the full
spectrum. We will give a brief description of the technique in the
following; see Skartlien (2000) for a more detailed discussion.

Integrating the radiative transfer equation (Eq. (1)) over
wavelength leads to the definition of a mean opacity, mean scat-
tering coefficient and mean absorption coefficient:

χI =

∫
χλIλdλ∫

Iλdλ
(9)

σJ =

∫
σλJλdλ∫

Jλdλ
(10)

κB =

∫
κλBλdλ∫
Bλdλ

· (11)

The intensity-weighted mean opacity χI and the mean-intensity-
weighted mean scattering coefficientσJ depend on the unknown
radiation field Iλ and its angular average Jλ, which must be es-
timated: we use 1D radiative transfer calculations on the mean
stratification of the atmosphere (see Sect. 5.2), which yield ap-
proximations for χI ≈ χJ,1D and σJ ≈ σJ,1D.

These three mean coefficients represent absorption, scatter-
ing and thermal emission of photons with good accuracy where
the stellar atmosphere is optically thin across the spectrum.
However, χJ,1D does not ensure a correct total radiative energy
flux at optical depths τ � 1 where radiative transfer is diffusive.
It needs to be replaced by the Rosseland mean opacity, defined
as the weighted harmonic mean

χR =

∫
(dBλ/ds) dλ∫

(1/χλ) (dBλ/ds) dλ
· (12)

We consequently use a τ-weighted sum of the two quanti-
ties χJ,1D and χR. The geometrical depth of the transition be-
tween the two regimes near τ ≈ 1 varies quickly with wave-
length where spectral lines are present, and it is not sufficient to
consider only a single pair of mean opacities χJ,1D and χR. The
opacity binning method therefore defines several opacity groups,
where each member reaches unit optical depth (τλ = 1) at a sim-
ilar geometrical depth. The integrals in Eqs. (9)−(12) are then
evaluated only for a set of member wavelengths {λi} in each bin i,
which does not have to be continuous.

Depending on the height range of the stellar atmosphere
model and the wavelength selection method, it turns out that
about 5 such opacity bins are enough to capture the essence of
the line-blanketing and continuum opacity and to obtain a re-
alistic temperature structure (Vögler et al. 2004). More recent
atmosphere models have been extended to 12 bins (Caffau et al.
2008). For the simulations presented in this work, we compute
radiative transfer with 12 bins, where wavelengths are sorted not
only by the geometrical height of the monochromatic optical sur-
face, but also by wavelength, separating opacities in the UV, vi-
sual and infrared bands (Trampedach et al., in preparation).

It is difficult to assess the quality of the opacity binning
method in realistic 3D simulations: deviations of the resulting
radiative heating rates Qrad from an accurate monochromatic so-
lution have a height-dependent impact on the temperature struc-
ture (see Sect. 5), making the long-term behavior of the simu-
lation hard to predict. The agreement of 3D model atmospheres
with various observational tests indicates that opacity binning
still yields a reasonable estimate for the line-blanketing.

Page 3 of 18



A&A 517, A49 (2010)

3. The numerical implementation

The large variety of radiative transfer models for astrophysi-
cal problems inspired the development of very different ana-
lytical and numerical methods to obtain the radiation field (see,
e.g., Wehrse & Kalkofen 2006, for an overview). For our given
problem of computing radiative heating rates as the flux diver-
gence −∇ · F of a time-independent radiation field in 3D, the di-
rect solution of Eq. (4) yields accurate results with efficient nu-
merical schemes.

Characteristics methods, which solve the transfer problem
along a discrete set of light rays to capture the anisotropy of
the radiation field in the optically thin atmosphere, are a pop-
ular choice in stellar atmosphere models. Nordlund (1982) and
Skartlien (2000) use Feautrier-type differential radiative trans-
fer solvers (Feautrier 1964) for solving Eq. (4) on long charac-
teristics. They span across the entire simulation domain, which
is an obstacle for a domain-decomposed parallelization of the
MHD code (see Sect. 3.2 below). Bruls et al. (1999), Vögler
et al. (2005) and Muthsam et al. (2010) employ the short char-
acteristics method (Mihalas et al. 1978; Olson & Kunasz 1987;
Kunasz & Auer 1988), where the radiative transfer equation is
solved on characteristics which only extend to the adjacent up-
wind and downwind grid layers. This method is required by our
choice of iteration technique for an efficient solution of the scat-
tering problem.

3.1. Short characteristics

The short characteristics method employs the formal solu-
tion (Eq. (5)) of the monochromatic radiative transfer equation
(Eq. (4)) to compute the radiation field at the center of a three-
point ray for a known source function S λ. The discretization is
performed by interpolating the source function for a given wave-
length λ (or bin number) along the ray using a second-order
Bézier curve (see, e.g., the discussion in Auer 2003)

S (t) = (1 − t)2S u + t2S 0 + 2t(1 − t)S c, (13)

where S u and S 0 are the upwind and local source functions and
t = (τ − τu)/(τ0 − τu) is the curve parameter. S c is a control
point, which shapes the interpolating curve by restricting it to
the convex hull laid out by S u, S c and S 0. This characteristic
of Bézier curves may be exploited to detect and suppress over-
shoots, which destabilize the numerical solution at places in the
atmosphere where strong opacity and temperature gradients oc-
cur. Inserting Eq. (13) into the formal solution (Eq. (5)), evalu-
ating the integral and reordering the terms yields the discretized
expression

I(τ) = I(τu)e−(τ−τu) + ΨuS u + Ψ0S 0 + ΨdS d. (14)

The shape of the three interpolation coefficients Ψu, Ψ0 and Ψd
for the upwind, center and downwind source functions depends
on the control point S c. Choosing

S c = S 0 − τ0 − τu

2
S ′0, (15)

where S ′0 is the centered derivative on the three-point sten-
cil (S u, S 0, S d), yields second-order interpolation. It is used
where no overshoots happen and correctly reproduces the dif-
fusion approximation at optical depths τ >∼ 30 (see Appendix A
for the detailed shape of the Ψ coefficients). In the optically thin
atmosphere where τ <∼ 10−3, a second-order expansion of the
(1−e−τ) terms in theΨ constants stabilizes the solver, which may

therefore be implemented with single precision floating point
numerics throughout the simulation domain. Optical depths Δτ
along the characteristics are similarly computed using the Bézier
interpolation technique.

The mean intensities J and the components of the flux vec-
tor F are computed by approximating the zeroth and first mo-
ment integrals by a quadrature sum over selected ray angles
(“method of discrete ordinates”),

J ≈ 1
4π

∑
i

wiI(n̂i); F j ≈
∑

i

wi I(n̂i)(n̂i · n̂j), (16)

where wi is the weight of direction n̂i. The best choice of quadra-
ture depends on the expected anisotropy of the radiation field
and on the quantity that needs to be computed. In our case, the
components of the flux vector F need to be calculated explic-
itly, requiring the quadrature be invariant to rotation by π/2 to
avoid directional bias. Carlson’s A4 quadrature (Carlson 1963)
with 3 rays per octant is an appropriate choice and represents the
anisotropy with good accuracy.

Short characteristics require knowledge of the upwind inten-
sities I(τu) for each ray direction n̂, on which the sweep direc-
tion for a formal solution therefore depends. Interpolation yields
all such quantities (Sect. 3.3). Shallow rays, that fail to hit the
upwind layer within the grid cells, need to be extended and
may cross several cells, possibly across subdomain boundaries.
For the first formal solution of a simulation run, a Feautrier-
type long characteristics solver delivers boundary intensity es-
timates; intensities from the previous iteration in the neighbor
subdomains are used for all subsequent computations. Once I(τ)
is known along two edges of the current layer, the remaining
unknown intensities may be computed away from the boundary
through vertical interpolation between the upwind layer and the
current layer. It is worth noting that some long characteristics
codes turn transport directions around the vertical axis with ev-
ery time step to avoid numerical artefacts stemming from a fixed
set of discrete ordinates. Such an effect is not observed in our
short characteristics implementation. Moreover, the anisotropy
of the radiation field slows down convergence of an iterative so-
lution in optically thin parts when transport directions are turned
between time steps, since the stored boundary intensities come
from the previous solution (see Sect. 3.2 for further details).
All ray directions are therefore kept fixed.

The discretized formal solution (Eq. (14)) in the simulation
domain and averaging of the radiation field over solid angle will
be abbreviated in the following using the Λ operator, which is
commonly defined through

J = ΛS . (17)

Λ is a linear matrix operator on the source functions S which
represents the numerical algorithm used to compute the radiation
field in the code.

3.2. The Gauss-Seidel scheme and MPI parallelization

As noted in Sect. 2.1, the coherent scattering term turns the trans-
fer equation into an integro-differential equation for the specific
intensity I. Using theΛ operator defined in Eq. (17), the problem
may be rewritten into the matrix equation

[� − (1 − ε)Λ] S = εB, (18)

with the identity matrix �. The expression represents a very large
system of linear equations. Its direct solution in 3D through
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inversion of the operator on the left-hand side is far too com-
plex and numerically unstable in some cases, to be of prac-
tical use. Most solvers therefore apply an iteration scheme,
the choice of which depends on the structure of the Λ opera-
tor matrix. Approximate Lambda Iteration (ALI, sometimes also
called Accelerated Lambda Iteration, Cannon 1973) is a popu-
lar method to obtain a good approximation of the radiation field
with fast convergence. J is computed through a formal solution
and used to correct the source function. Rather than just insert-
ing J in S , which leads to very slow convergence (or no con-
vergence at all), a largely simplified approximate operator Λ∗ is
used to compute correction values ΔS at low cost, speeding up
convergence tremendously.

We employ the Gauss-Seidel scheme (Trujillo Bueno &
Fabiani Bendicho 1995), an ALI method that combines the for-
mal solution and correction steps. It mimics a tridiagonalΛ∗ op-
erator, but the scheme does not require the expensive construc-
tion of the matrix. Source function corrections at the grid point i
are obtained during a solver sweep from the expression

ΔS i =
(1 − εi)Jold/new

i + εiBi − S old
i

1 − (1 − εi)Λii
· (19)

Jold/new
i is the radiation field that includes the corrections in the

upwind part of the simulation domain, which have already been
computed during the current sweep. The dependence of ΔS i
on Ji in each layer for immediate correction of S i during the
sweep requires employing the short characteristics method. The
denominator contains the diagonal element Λii of the Λ oper-
ator, which may be computed using Eq. (14) and therefore re-
duces to a sum of Ψ constants. Source function corrections may
be applied during both upsweeps and downsweeps for faster
convergence.

We tested our radiative transfer code by comparing the nu-
merical results with an analytical solution for the case of an
isothermal 1D atmosphere with constant photon destruction
probability ε (see the discussion in Trujillo Bueno & Fabiani
Bendicho 1995) and found very good agreement.

The radiation solver is parallelized using spatial domain de-
composition and communication with the MPI library, adopting
the virtual topology given by the MHD solver of the BIFROST
code. The grid is decomposed into cuboid subdomains, allowing
an arbitrary number of divisions on all three spatial axes. While
this parallelization lends itself to a mixed initial and bound-
ary value problem found in computational hydrodynamics, it is
harder to apply in an efficient way to the pure boundary value
problem of time-independent radiative transfer. Concurrent com-
putation of spectral subdomains (or opacity bins) would provide
a higher degree of parallelism considering the non-local depen-
dencies in a monochromatic formal solution of our given coher-
ent scattering problem, but such an approach would cause severe
load balancing issues and suffer from node memory limitations
when applying the code to very large simulations. Spatial do-
main decomposition may still be combined with spectral domain
decomposition if radiative transfer needs to be solved for a large
number of wavelengths.

Heinemann et al. (2006) have presented a domain-
decomposed method based on a variant of the formal solution
(Eq. (5)) on long characteristics. The solver bypasses the prob-
lem of missing incident intensities at subdomain boundaries by
splitting the local and boundary contributions. While their ap-
proach efficiently solves the radiative transfer equation with-
out scattering, the long characteristics solver would have to
be combined with a different ALI scheme than Gauss-Seidel.

An approximate Λ∗ operator needs a certain bandwidth around
its matrix diagonal to achieve good convergence (see, e.g., the
discussion in Hauschildt & Baron 2006). It is therefore more ex-
pensive to construct and invert than the diagonal operator used
for the Gauss-Seidel scheme.

Our code iterates the solution, starting with the source func-
tion and subdomain boundary intensities from the previous hy-
drodynamical time step, until the maximum relative source func-
tion correction in the domain after the nth iteration is smaller
than a preset threshold C:

max

⎛⎜⎜⎜⎜⎜⎝
∣∣∣S n

i − S n−1
i

∣∣∣
S n−1

i

⎞⎟⎟⎟⎟⎟⎠ � C. (20)

When scattering is not included, the maximum relative change
of mean intensities at the boundary is used instead to test the
convergence of the radiation field:

max

⎛⎜⎜⎜⎜⎜⎝
∣∣∣Jn

i − Jn−1
i

∣∣∣
Jn−1

i

⎞⎟⎟⎟⎟⎟⎠ � C. (21)

If too few iterations are performed, the subdomain boundaries
produce artifacts in the upper parts of the atmosphere, where
photon mean free paths are comparable to or larger than the
subdomain size. In practice, it turns out that a threshold of
C ∼ 10−3 yields good results in either case.

The convergence speed of an iterative method depends on
the spectral radius ρ of the operator with which corrections are
computed, as the error of the solution after n iterations decreases
with ρn. The spectral radius approaches ρ ≈ 1 − ε for opti-
cally thick scattering media (see, e.g., the discussion in Trujillo
Bueno & Fabiani Bendicho 1995). Strong scattering at high op-
tical depths therefore leads to very poor convergence rates of the
Gauss-Seidel solver, requiring hundreds of iterations in extreme
situations. However, this difficulty is mostly alleviated by us-
ing the source function solution from the previous time step and
the slow evolution of the plasma flow between consecutive time
steps, so that the code ideally needs to fully converge the solution
only once at the beginning. Domain decomposition additionally
slows down convergence if the photon mean free paths cross sub-
domain boundaries, which is the case at continuum wavelengths
in the thin atmosphere, since the subdomain boundary intensi-
ties are not initially known. Storing intensities from the previous
time step again largely circumvents this problem, and the actual
number of iterations per time step that is required during a sim-
ulation run depends on how fast the atmosphere evolves.

We therefore test the convergence of the solution for arbi-
trary time steps of our solar-type simulation using 12 opacity
bins with continuum and line scattering (see Sect. 5), follow-
ing a similar discussion in Skartlien (2000). The tests were run
at half resolution on all axes to facilitate computation on a sin-
gle core, which yields slightly faster convergence. Since the true
solution S of our radiative transfer problem is unknown, we
compare the approximate solution after n iterations, S n, with
an approximate solution S∞ which we obtained after additional
iterations with a lower convergence threshold of C ∼ 10−4, as-
suming S∞ ≈ S with good accuracy.

We use three representative opacity bins, which cover weak,
intermediate and strong opacities in the UV, with different depth-
dependence of the scattering strengths. The remaining nine bins
at longer wavelengths behave in a similar way. Figure 1 shows
horizontal averages of the photon destruction probabilities ε for
each bin in an arbitrary snapshot of our photospheric simulation:
averages over layers with the same geometrical depth are plotted
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Fig. 1. Horizontal mean photon destruction probability ε for three bins representing continuum and weak lines (1), intermediate lines (2) and strong
lines (3) in the UV, plotted as a function of geometrical depth (left) and optical depth in the respective bin (right, the average is taken over surfaces
with the same vertical optical depth). The dotted line marks the stellar surface (left) and unit optical depth in each bin (right).

Fig. 2. Convergence of the source function for
bins 1−3 (see Fig. 1) during a simulation run without
domain decomposition (left column), with 2×2×2 de-
composition (center column) and 3× 3× 3 decompo-
sition (right column), and with a time step of Δt =
0.03 s (upper row), Δt = 0.04 s (center row) and
Δt = 0.08 s (lower row). Line styles represent the
same bins as in Fig. 1. Thin lines: relative source
function correction ΔS after n iterations with re-
spect to S n−1 from the previous iteration n− 1. Thick
lines: relative source function correction ΔS with re-
spect to the “true” solution S∞. Dotted lines mark the
threshold C beneath which convergence is assumed
(see text).

in the left panel, averages over surfaces with the same vertical
optical depth are plotted in the right panel.

Figure 2 compares the convergence speed for the radiative
transfer solution of the sample bins with and without domain
decomposition, and with different time step lengths. Thick lines
represent convergence relative to the true solution S∞ for each
bin, thin lines show the convergence relative to the solution ob-
tained in the previous iteration, which we use as the convergence
criterion. In normal operation, the solver would stop as soon as
the thin line of the currently computed opacity bin has crossed
the dotted horizontal line. We caution that the number of itera-
tions needed for a solution also depends mildly on the time step-
ping algorithm, since the choice of method affects the deviation
of stored boundary intensities and source functions between sub-
steps of the time integration. We therefore only analyze the be-
havior for the first extrapolation step of a 3rd order Runge-Kutta
time stepper.

The poorer convergence speed caused by scattering at high
optical depths in bin 3 is evident in all plots (thick dot-dashed
line), compared to the situation in bin 1, where the photon de-
struction probability is larger. The small optical path lengths of
bin 3 reduce the impact of domain decomposition, since the radi-
ation field is essentially local in most parts of the simulation box.
Contrary to that, bin 1 suffers most strongly from slower conver-
gence with increasing number of subdomain divisions, as well as
from some flip-flopping ofΔS . The latter is caused by high-order
interpolation (see Sect. 3.3) and disappears when the solver is set
to linear interpolation. High order interpolation of upwind inten-
sities widens the domain of dependence of the short character-
istics, and the effect is amplified where large path lengths in the
optically thin regime cross subdomain boundaries.

Domain decomposition mildly slows down convergence, and
the accuracy of the solution in bin 3 slightly deteriorates for a
larger number of subdomains. Longer time steps have the same
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effect on that bin, causing slower convergence towards S∞ than
indicated by the relative corrections with respect to S n−1 (thick
and thin dot-dashed lines in Fig. 2). The method devised by
Skartlien (2000) exhibits similar behavior for bins with strong
scattering lines.

The effect of such inaccuracies in the numerical solution of S
and J on the energy transfer between the radiation field and the
gas are nevertheless small or even vanish in some regions: radia-
tive heating is reduced in the atmosphere where coherent scat-
tering is important (see Eq. (7) and Fig. 1). Coherent scattering
also effectively damps the impact of any remaining discontinu-
ities in the radiation field across subdomain boundaries on the
flux divergence in the optically thin atmosphere, so that no vis-
ible artifacts from the domain decomposition remain in the gas
temperatures.

Compared to the solver proposed by Heinemann et al.
(2006), it is clear that our method is not optimal for the case
without scattering, since several computationally expensive for-
mal solution and communication steps are required to obtain a
radiation field that is consistent in the whole domain. It offers
good performance when scattering is included, which is not con-
sidered in their method.

3.3. Interpolation and grid refinement

At every time step, the hydrodynamical solver updates mass den-
sities and internal energy densities. These quantities are used to
look up tabulated opacities, bin-integrated Planck functions and
photon destruction probabilities at every grid point. In general,
the characteristics grid needed to represent the anisotropy of the
radiation field does not coincide with the hydrodynamical mesh,
requiring the interpolation of χ, S and the upwind intensities Iu
during the formal solution.

The accuracy of this interpolation strongly influences the
overall accuracy of the solver, and there is a large choice of pos-
sible methods (see, e.g., the discussion in Auer 2003). Linear
interpolation is fast and avoids instabilities produced by interpo-
lation overshoots, but yields poor estimates where the radiation
field is not well-resolved, e.g. between granules and intergran-
ular lanes at the optical surface. It also amplifies the numerical
diffusion effect of short characteristics, where lateral diffusion
artificially transports radiation away from the beam.

To illustrate this behavior, we repeat the searchlight test of
Kunasz & Auer (1988), where a rectangular light beam is cast
through an empty 3D box with a 1003 mesh and zero opac-
ity. Any diffusion of radiation away from the beam results in
a broadening of the beam profile at the surface and can only
stem from the interpolation of unattenuated upwind intensities.
The light source illuminates the bottom of the 3D box, where it
initially covers an area of 302 mesh points; it is slanted with an
angle of θ = 28.1◦ off the vertical and an azimuth of φ = 45.0◦.
The upper left panel in Fig. 3 shows the beam profile at the top
of the 3D box expected from an exact solution of the unattenu-
ated transfer problem through vacuum; note that the finite reso-
lution of the surface in the plot leads to a slightly widened pro-
file. The upper right panel shows the broadening of the beam
profile caused by 100 consecutive linear interpolations applied
for the numerical transfer through the box. Although the area-
integrated intensity is conserved with good accuracy, limited
by the machine precision, the beam is visibly widened through
numerical diffusion. The lower left panel in Fig. 3 shows the
result when using local cubic interpolation for the transport
problem. The broadening is reduced, but the overshooting cu-
bic polynomials produce ringing and negative intensities. We

therefore use the local cubic monotonic interpolation scheme
of Fritsch & Butland (1984), which effectively suppresses over-
shoots by using weighted harmonic mean derivatives, in con-
secutive 1D-1D interpolation on horizontal planes, and local
quadratic interpolation on vertical cell walls (see Appendix B for
further details). The lower right panel in Fig. 3 shows the result
from the searchlight test, where the beam profile is conserved to
a satisfactory degree. Numerical diffusion is reduced and reaches
a level which renders the computed flux divergences comparable
to those obtained with long characteristics codes: although up-
wind intensities do not need interpolation along the beam, dif-
fusion affects the local flux divergences when transfered from
the slanted long characteristics grid back to the hydrodynami-
cal grid.

The basic mesh on which radiative transfer is computed is
imposed by the MHD solver. This is usually not critical in the
optically thin upper atmosphere and the optically thick inte-
rior, where radiative transfer is simple and may even be over-
resolved. The opposite is the case in the transition region around
the optical surface, where opacities drop rapidly due to their
strong temperature dependence and cause a runaway cooling ef-
fect (Stein & Nordlund 1998). For a solar simulation, 1D tests
performed by Nordlund & Stein (1991) indicate that a vertical
spacing of <∼10 km is desirable at this atmospheric height. Using
a non-linear vertical grid with the finest resolution around the
surface, this is easily achievable in 3D for modern MPI-based
domain decomposed radiative hydrodynamics codes. However,
for large coronal simulations or in the case of giant stars, where
the spatial scales needed to resolve hydrodynamics and radiation
transport exhibit much larger disparity than in the Sun, finding
the optimal grid leads to a conflict. Besides the larger simula-
tion size, too small length intervals Δx drastically increase the
stiffness of the hydrodynamical equations, where the stability-
limited time steps of the transport and diffusion terms scale
with Δx and Δx2, respectively, and quickly become exceedingly
small. In extreme cases, both effects may increase computation
times of a model beyond tractability.

A fully adaptive mesh for computing radiative transfer would
yield optimal results without affecting the stiffness of the equa-
tions, but is difficult to realize in a characteristics method. We
achieve partial adaptivity by inserting horizontal layers in the
hydrodynamical mesh for the radiative transfer computation, re-
ducing optical path lengths without reducing the time steps. The
refinement is based on the maximum vertical gradient of the
Rosseland mean opacity in each layer and reassessed in regu-
lar intervals. While inserting additional layers slows down con-
vergence of the Gauss-Seidel method (see Sect. 3.2), this is
again overcome by storing the source function from the previ-
ous time step.

3.4. Numerical flux divergences

Having established a method for numerically computing radia-
tive transfer with coherent scattering in a decomposed simula-
tion domain, we now need to obtain flux divergences ∇ · F,
a derivative of the radiation field.

The right-hand side of Eq. (7) involves only local quantities
that are defined on the cell centers of the hydrodynamical mesh,
where Qrad is eventually needed, and therefore seems a natural
choice. The expression χ(J−S ) is numerically stable in the opti-
cally thin regime, where round-off errors of a possibly vanishing
difference between J and S are attenuated by the exponential
outward decrease of the opacity χ. At the same time, χ amplifies
round-off errors of (J − S ) beneath the optical surface, where
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Fig. 3. Numerical diffusion of a searchlight beam with rectangular cross-section using linear (upper right), local cubic (lower left) and local cubic
monotonic (lower right) interpolation, compared to the exact solution (upper left).

the radiation field thermalizes (J ≈ B, also in the scattering case
since ε > 0): the flux divergence again vanishes, but the finite
machine precision prevents complete cancellation of the terms.

It is possible to stabilize a short characteristics solver in the
whole simulation domain by subtracting S 0 from the discretized
formal solution (Eq. (14)), which yields the modified integra-
tion constant Ψ̃0 = Ψ0 − 1. Using this equation, one obtains
a monochromatic Qrad,λ(x, n̂) along each ray. We note, how-
ever, that this leads to a deviation between the radiative energy�

Qrad,λ(x, n̂)dΩdV that is emitted by the gas in the simulation
volume V per time unit, and the outgoing radiative flux com-
puted from the specific intensities at the surface: the expressions
are not equivalent anymore in their discretized form, and numer-
ical errors affect the two values in a different way.

The discretized flux divergence∇ ·F on the left-hand side of
Eq. (7) using finite difference quotients is stable in the optically
thick regime, but its accuracy deteriorates outward: round-off er-
rors quickly become significant, as the internal energy per gas
volume decreases exponentially (see also the discussion in Bruls
et al. 1999).

Adopting the approach presented in Bruls et al. (1999) and
Vögler et al. (2005), we combine both expressions through

exponential bridging in each vertical column of the simula-
tion domain as a function of bin optical depth to benefit from
their respective advantages. We slightly reduce the transition
range between the regimes by a squared exponent, resulting in
the expression:

Qrad = e−(τ/τ0)2

QJ
rad +

(
1 − e−(τ/τ0)2)

QF
rad, (22)

where τ0 = 0.1, QJ
rad = 4πχ(J−S ) and QF

rad = −∇ ·F, represent-
ing the two sides of Eq. (7). The total radiative energy computed
with this expression delivers a consistent surface flux, since QF

rad
contributes most of the radiative heating.

Following Vögler et al. (2005), we compute radiative trans-
fer on cell corners to improve the accuracy of QF

rad. Radiative
fluxes F are averaged over cell corners surrounding each face
before computing difference quotients, while QJ

rad is averaged
over all eight cell corners surrounding each grid point. Both ex-
pressions use exactly the same stencil and exhibit very good
agreement around the threshold optical depth τ0 in our solar-
type simulation.

Flux divergences are computed only on the hydrodynamical
grid. Additional layers that are possibly inserted by the radiative
transfer solver just serve to stabilize the computation and may
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simply be omitted when computing Qrad, since conservation of
the radiative energy flux through the hydrodynamical cell sur-
faces must hold.

4. Absorption and scattering opacity sources
in the Sun

A complete description of radiative transfer in stellar atmo-
spheres requires a detailed wavelength-resolved treatment of
numerous radiative absorption and emission processes, colli-
sions with neutral atoms, electrons and ions in the plasma,
as well as an evaluation of the feedback of the radiation field
on the level populations of the interacting particles. The com-
plexity of the resulting problem vastly exceeds current com-
putational resources. We therefore restrict all of the under-
lying thermodynamical plasma states to LTE, neglecting the
effects of radiation on the excitation and ionization of atoms
and photo-dissociation of molecules. The cross-sections and
level populations needed for the absorption and scattering co-
efficients then depend only on the gas density ρ and the tem-
perature T . Microscopic plasma thermodynamics is treated with
the Mihalas-Hummer-Däppen equation of state (EOS) for stel-
lar envelopes (Hummer & Mihalas 1988; Mihalas et al. 1988;
Däppen et al. 1988; Mihalas et al. 1990) and used in tabulated
form. The solar chemical composition for the 15 elements in-
cluded in the EOS and for the opacities is taken from the abun-
dances of Asplund et al. (2005).

4.1. Continuum opacity

The most important continuous opacity sources are various tran-
sitions of hydrogen atoms, their ions and molecules. The H− ion-
ization opacity dominates the solar continuum around the optical
surface in the visual band; the large temperature sensitivity of
the weakly bound second electron in the hydrogen atom causes
runaway radiation cooling and the strong temperature gradient
found at the top of the granules in the Sun (Stein & Nordlund
1998). Most solar continuum photons originate from this very
thin layer. Among many other processes, photoionization of met-
als contributes significantly to the continuous opacity at shorter
wavelengths. Table D.1 gives an overview of all sources consid-
ered in this work; our data is mostly identical to those used in
the latest MARCS models (see Table 1 in Gustafsson et al. 2008),
but includes additional bound-free data from the Opacity Project
and the Iron Project (see Trampedach et al., in prep., for further
details). We also include opacities of the second ionization stage
for many metals, allowing 3D models to extend deeper into the
convection zone than their 1D counterparts, which is a require-
ment for correctly simulating surface granulation.

The upper panel in Fig. 4 shows the wavelength and depth
dependence of the continuum photon destruction probabili-
ties εcλ for the mean stratification of our 3D model, includ-
ing all continuous absorption and scattering opacity sources
considered here. Continuum scattering has a significant contri-
bution mostly above the surface, photons thermalize beneath
at almost all wavelengths. Note that the narrow features at
the short-wavelength end are the scattering resonances of the
Lyman series; Lyman lines are nevertheless treated as true ab-
sorbers if line scattering is not included in the simulations.
The Rayleigh scattering tail of H i contributes mostly to the
UV continuum opacity in the upper solar photosphere due to
its comparatively small cross-section and strong wavelength de-
pendence (σλ ∼ λ−4). The importance of elastic scattering on

neutral hydrogen is outweighed by thermalizing processes closer
to the surface and at short wavelengths. Electron scattering is
wavelength-independent in the spectral range considered here,
and becomes significant in the upper photosphere, where metals
are the most important electron donors. It is mostly notable red-
ward of the 1.644 μm edge of H− bound-free, before H− free-
free absorption takes over. Rayleigh scattering on He i atoms
only gives minor contributions to the UV continuum opacity in
the upper photosphere. The scattering opacity of H2 molecules
is negligible. Rayleigh and electron scattering are treated as
isotropic, neglecting their weak (1 + cos2 θ) anisotropy, where θ
is the scattering angle away from the incident direction (see, e.g.,
Mihalas 1978).

Between 5000 Å and 1.644 μm, the strong H− bound-free ab-
sorption opacity thermalizes the photons. Its dominance slightly
decreases in the cool outermost layers owing to the lack of free
electrons to form the ion.

4.2. Line opacity

Spectral line absorption and scattering are important processes
which dictate the near-radiative equilibrium found in the solar
photosphere. The heating/cooling effect of this line-blanketing
forces the flatness of the observed temperature gradient, bal-
ancing the adiabatic dynamical gradient; see the discussion
in Sect. 5.4. Spectral lines are particularly significant opacity
sources at short wavelengths where many radiative bound-bound
transitions of metals lie.

We obtain line opacities from extensive opacity sampling ta-
bles provided by B. Plez (2008, priv. comm.) as part of the MARCS
collaboration. The data are based on VALD with some modifica-
tions; see Gustafsson et al. (2008) for further details. The origi-
nal line data combine scattering and absorption contributions in
a total opacity, which is sampled with ∼100 000 wavelengths and
tabulated for a range of temperatures and pressures. The tables
assume Saha ionization equilibrium and Boltzmann level popu-
lations to obtain the absorber density fractions. Departures from
LTE, e.g. through radiative ionization, are neglected.

Following Skartlien (2000), we estimate the importance of
scattering in line transitions by computing a photon destruc-
tion probability εlλ for every line opacity sample, using the
van Regemorter (1962) formula (see Appendix C). We assume
all scattering atoms to be neutral, accounting for the large con-
tribution of Fe i to the line-blanketing (Anderson 1989), and all
transitions to be permitted, in which case the assumptions of the
van Regemorter (1962) formula yield reasonable estimates. Only
electrons are taken into account for collisional de-excitation. The
estimated photon destruction probability εlλ is then a function
of wavelength, temperature and electron pressure, and indepen-
dent of the actual transition. It may therefore also be applied in
cases where the line opacity sample includes several transitions
(see the discussion in Appendix C). Line transitions are treated
as independent two-level processes without taking the coupling
of the respective level populations into account, which is a rea-
sonable assumption for resonance lines.

The center and lower panels in Fig. 4 show the wavelength
and depth dependence of the estimated εlλ of spectral lines and
the total photon destruction probabilities ελ, including all con-
sidered continuous and line processes. It is clear that collisional
de-excitation dominates beneath the surface and at the longest
wavelengths. Resonant line scattering becomes important to-
wards optical and shorter wavelengths at increasing depth.

With the exception of very strong lines, line scattering is
generally not coherent due to the Doppler shifts in the moving
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Fig. 4. Wavelength and depth dependence of
the continuum photon destruction probabil-
ities εcλ (upper panel), the van Regemorter
(1962) line photon destruction probabilities εlλ
(center panel) and the total photon destruc-
tion probabilities ελ (lower panel) for the mean
solar-type stratification. The zero point on the
depth axis marks the stellar surface.

gas, which are not accounted for in our calculations. The two-
level approximation probably gives a reasonably realistic pic-
ture of strong permitted lines, but departures from the LTE pop-
ulations of the atomic levels are still neglected. The important
Fe i opacity deviates from the LTE estimate in higher layers (see
Fig. 7 in Short & Hauschildt 2005), thereby affecting the over-
all magnitude of the line-blanketing in these regions. Moreover,
the accuracy of the opacity sampling method itself deteriorates
outwards, where fewer and fewer lines contribute to the opac-
ity. The van Regemorter approximation assumes resonant line
scattering and consequently produces poorer estimates for all
non-resonant lines. In summary, we should expect to obtain
an order-of-magnitude estimate for the effects of scattering on
the atmospheric structure. A more detailed picture requires a
full treatment of the departures from LTE level populations and
velocity fields, which is still out of reach for time-dependent
3D simulations.

5. The effects of scattering on the photospheric
temperature structure of a solar-type star

5.1. The 3D hydrodynamical surface convection model

To investigate the effects of scattering on the atmosphere of a
solar-type star, we conduct time-dependent radiative hydrody-
namical simulations of the quiet surface, neglecting the effects of
magnetic fields. We solve the fully compressible Navier-Stokes
equations, the mass conservation equation and the energy equa-
tion, along with the time-independent radiative transfer equa-
tion (Eq. (4)); see, e.g., Stein & Nordlund (1998) and Nordlund
et al. (2009) for further details. Our 240 × 240 × 226 model
covers a horizontal area of 6 Mm × 6 Mm at a constant res-
olution of 25 km, and extends approximately 700 km above
and 2.8 Mm below the surface. The vertical resolution reaches
7 km around the radiative cooling peak and decreases in the op-
tically thick and thin parts of the simulation; radiative transfer
is thus resolved well enough that only ∼3% of the rays would
be affected by overshoots (see Sect. 3.1). We test the accu-
racy of the vertical resolution using the adaptive refinement, in-
serting two extra layers before each computation of radiative

Fig. 5. Horizontal average heating rate per unit mass around the stellar
surface at an arbitrary time step of the simulation. Boxes show 〈qrad〉
when computed on the hydrodynamical grid; the vertical resolution
reaches 7 km around the peak. The solid line shows the result after
inserting two additional horizontal layers in each hydrodynamical cell.
The upper panel gives the average deviation between the two cases in
the same units.

transfer. Local differences between the two calculations reach
∼3 × 1010 erg g−1 s−1, owing to the strong sensitivity of the
heating rate per unit mass, qrad ≡ Qrad/ρ, to the local temper-
ature gradients in the highly inhomogeneous granulation flow.
On the average, however, the change in radiative flux divergence
is negligible (see the upper panel of Fig. 5), and the radiation
field is well resolved on the hydrodynamical grid. Note the dif-
ference between the magnitude of the cooling peaks in Figs. 5
and 6: the 1D calculation is based on the mean structure; in the
3D case, the average over each depth layer in the 3D box is taken
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Fig. 6. Left: heating rates qrad per unit mass as a function of monochromatic optical depth at 5000 Å, computed on the 1D mean structure with full
opacity sampling for three cases: without scattering (solid line), with continuum scattering (dashed line), and with continuum and line scattering
(dot-dashed line). The upper panel shows the deviations of the latter two cases from the computation without scattering (same axis units as in the
lower panel). Right: same computation, but using mean opacities and scattering albedos in 12 bins for the radiative transfer computations.

and thus includes lateral inhomogeneities produced by the gran-
ulation flow.

Horizontal boundaries are periodic to mimic an infinitely ex-
tended atmosphere, vertical boundaries at the top and bottom of
the simulation box are open to minimize the interference with
the granulation flow. Mass conservation is ensured at the bottom
by keeping the gas pressure constant; the underlying convection
zone is mimicked by setting the entropy of the inflowing gas.
The upper atmosphere is stabilized by setting internal energies
to a slowly evolving average at the top.

We approximate the wavelength integral (Eq. (8)) with
12 opacity bins to account for the depth-dependence and
wavelength-dependence of the absorption and scattering coeffi-
cients. The simulation box extends far into the optically thin at-
mosphere with 〈τ5000〉 ≈ 10−6, where irradiation I−top from above
is negligible. Rosseland optical depths at the bottom typically
reach 〈τRoss〉 ≈ 107, where radiative transfer is entirely diffusive
and the radiation field is completely thermalized. We therefore
set the diffusion approximation I+bot = Bbot + dB/dτ for all ingo-
ing intensities at the bottom.

The three simulations discussed in Sect. 5.3 have mean ef-
fective temperatures Teff between 5804 K and 5811 K with av-
erage temporal fluctuations of about 13 K; they are thus slightly
hotter than the Sun. For our purposes, there is no need to ex-
actly reproduce the solar Teff. The simulations yield time-series
of snapshots spanning ∼1 h of stellar time each, covering sev-
eral granule lifetimes (t ∼ 10 min) and several periods of the
dominant p-mode (t ∼ 5 min). Our simulation box covers about
10 granules with typical sizes of the order of ∼1 Mm, allowing
us to obtain a statistically meaningful sample of the surface flow
in terms of the ergodic hypothesis. The model without scatter-
ing was computed with a coarser radiation time step of 0.2 s,
keeping the radiation field constant during the intermediate hy-
drodynamical calculations. The slow evolution of the flow field

and the locality of the Planck source function allow such reduc-
tion of the computation time in very good approximation.

5.2. Scattering in the 1D mean stratification

We first test the importance of scattering in the 1D mean strat-
ification of our 3D model (the S = B case, see Sect. 5.3) by
comparing the wavelength-integrated qrad, using the full opacity-
sampled spectrum. Radiative transfer was computed in 1D using
a direct block matrix Feautrier-type solver with coherent scatter-
ing (for a detailed description see, e.g., Rutten 2003) and 4th or-
der Radau quadrature for the integral over the polar angle. The
left-hand side of Fig. 6 shows qrad without scattering and S = B,
with continuum scattering only, and with both continuum and
line scattering (lower panel), as well as the deviations from the
first case (upper panel).

Continuum scattering seems to have very little impact on qrad
for the given mean structure; the cooling is slightly stronger near
the surface. This behavior is expected from the mostly large
photon destruction probabilities εcλ shown in the upper panel
of Fig. 4.

The differences are slightly larger when scattering is in-
cluded in the line-blanketing: the small heating bump, where
cool uprising gas is heated from beneath by hot granules (see the
discussion in Stein & Nordlund 1998), and the cooling peak be-
neath the surface both slightly weaken, since the fraction of scat-
tered photons in the line-blanketing does not contribute to heat
exchange (cf. the right-hand side of Eq. (7)). The upper atmo-
sphere, however, now shows slight heating of the mean structure.

We repeat the same test with the binned opacities, com-
puting 1D radiative transfer with and without scattering for
12 mean opacities, photon destruction probabilities and bin-
integrated Planck functions. The right panels of Fig. 6 compare
again the three different cases. The binning has been optimized
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for matching sampled and binned qrad in the S = B case (solid
lines in the lower panels of Fig. 6). The continuum scattering cal-
culation with opacity bins underestimates the cooling beneath
the surface. The disparity increases further when line scatter-
ing is included; the relative deviations reach 7.5% in the cooling
peak (dot-dashed lines in Fig. 6). However, the overall impact
of scattering radiative transfer on the temperature structure of
the 3D atmosphere above τ5000 >∼ 10−3 is small (see Sect. 5.3
and Fig. 7), the same binning setup was therefore adopted for all
three simulations. Higher up in the atmosphere, at τ5000 <∼ 10−3,
opacity binned radiative transfer shows slightly stronger heating
of the gas.

5.3. Scattering in the mean 3D model

In order to assess the effects of continuum and line scattering, we
perform three independent simulation runs: the first one treats
radiation without scattering by adding all scattering opacity to
the absorption opacity and assuming a Planck source function
S = B. The second one includes continuum scattering in the
source function and only adds line scattering opacity to the ab-
sorption opacity, and the third one includes scattering both in the
continuum and in the line-blanketing. All three time series start
from the same initial snapshot and span the exact same amount
of simulation time. Snapshots are taken at regular intervals of
Δtsim = 10 s. We consider time steps at tsim > 8 min after the
initial snapshot to allow the atmosphere to adjust to any changes
in the radiative heating rates. Exploiting the tight correlation be-
tween gas temperature T and vertical optical depth τ (Stein &
Nordlund 1998), we interpolate the 3D temperature cube at each
time step of the series onto surfaces with the same optical depth,
using a reference τ-scale at 5000 Å. We then compute the av-
erage temperature of each surface in the 3D cube, which yields
a 1D mean temperature profile for every snapshot. These pro-
files are finally averaged over time, and we obtain a very robust
characteristic T − τ relation.

Figure 7 compares the resulting horizontal and temporal
mean temperature profiles. The simulations without scattering
and with continuum scattering have practically identical strat-
ifications, as expected from the continuum photon destruction
probabilities εcλ (Fig. 4) and the 1D test presented in the previ-
ous section; continuum scattering is therefore insignificant for
the atmospheric stratification in solar-type stars.

The effects of scattering on line-blanketing in and below the
photosphere are also rather weak (dot-dashed line in Fig. 7).
The gas temperatures above τ5000 >∼ 10−2 deviate up to 40 K
from the stratification without scattering, resulting in a slightly
steeper temperature gradient around the surface (τ5000 = 1).
Since our adopted binning setup overestimates the deviations for
the 1D mean structure (right-hand side of Fig. 6), the impact of
line scattering is probably even smaller at τ5000 >∼ 10−2. The
temperature structure in the lower photosphere is thus hardly af-
fected by scattering. The opposite is the case in the high photo-
sphere and above (τ5000 <∼ 10−4), where we observe temperatures
that are about 350 K lower, resulting in a significantly steeper
mean gradient.

5.4. Comparison of the 1D and 3D calculations
and with other model atmospheres

The effects of line scattering on the temperature structure of the
3D model seem to be opposite of 1D hydrostatic models in radia-
tive equilibrium, where heating of the highest layers rather than

Fig. 7. Horizontal and temporal average of the mean temperature struc-
ture as a function of optical depth at 5000 Å without scattering (solid
line), with continuum scattering (dashed), and with continuum and line
scattering (dot-dashed). The upper panel shows the deviation from the
first case.

cooling is observed. Indeed, the 1D calculations on the mean
3D atmosphere exhibit slight heating in this region when scatter-
ing is included (Fig. 6). The temperature gradient would there-
fore become shallower if the 1D calculations were iterated under
the assumption of radiative equilibrium (see, e.g., the discussion
in Rutten 2003).

The total radiative flux divergence includes several com-
ponents: hot radiation from deeper layers at short wavelengths
dominates the heating of the gas; the steep outward dBλ/dT gra-
dient causes a positive growing (J − S ) split. The effect de-
clines in higher layers due to the rapidly decreasing opacity
(cf. Eq. (7)). Strong LTE lines may heat or cool the higher at-
mosphere (since J ≈ B in deeper parts), depending on the spec-
tral region and local temperature gradient, which determine the
sign of the (J − S ) split. Including coherent scattering in line-
blanketing effectively reduces both radiative heating and cooling
in high layers through the outwards decreasing εl (see Fig. 1).
As a consequence, strong resonance lines become unimportant
for the temperature structure in high layers, and radiative heating
at shorter wavelengths decreases.

In the 1D mean atmosphere, scattering-weakened line cool-
ing shifts the total qrad slightly towards positive values. The be-
havior of the 3D case can be understood by considering the
dynamical nature of our 3D models. Following a derivation in
Mihalas & Mihalas (1984), we insert the continuity equation

Dρ
Dt
+ ρ∇ · u = 0, (23)

where ρ is the gas density, D/Dt is the material derivative and u
is the gas velocity, into the energy equation,

De
Dt
+

P
ρ
∇ · u = qrad, (24)
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Fig. 8. Horizontal averages of the radiative heating rates qrad for the continuum scattering case (circles) and the continuum and line scattering case
(diamonds) as a function of simulation time t, at optical depths τ5000 = 10−5 (upper panel), τ5000 = 10−4 (center panel) and τ5000 = 10−3 (lower
panel). Dashed lines show the spatial and temporal averages for the continuum scattering case, where line scattering is treated as true absorption;
dot-dashed lines show the spatial and temporal averages for the line scattering case. Dotted lines indicate zero heating.

where e is the internal energy per unit mass, P is the gas pressure,
and qrad is the radiative heating rate per unit mass; we omit the
viscous dissipation term for simplicity. The resulting expression,

De
Dt
− P
ρ2

Dρ
Dt
= qrad, (25)

is the first law of thermodynamics. An upflowing (downflow-
ing) gas parcel cools (heats) through expansion (compression)
represented by the Dρ/Dt term in Eq. (25), and is exposed to ra-
diative heating through the qrad term. Equation (25) is equivalent
to the expression

T
Ds
Dt
= qrad, (26)

where T is the gas temperature and s is the entropy per unit mass,
and it is immediately clear that gas motion is adiabatic when
qrad → 0. In the photosphere of the 3D simulation, temperatures
are not affected by scattering. In the upper atmosphere, below
τ5000 ≈ 10−4, scattering strongly reduces the line-blanketing.
Small or vanishing heating rates qrad cause the temperature strat-
ification to steepen towards an adiabatic gradient.

Figure 8 compares the time evolution of radiative heating
rates at three optical depths in the atmosphere, averaged over sur-
faces of constant optical depth to approximately account for ver-
tical gas motion. The plot shows a sequence of snapshots taken

at regular simulation time intervals of 10 s; the zero point on the
abscissa is arbitrary. At τ5000 = 10−3 and τ5000 = 10−4 (lower
and center panels), the continuum scattering case (circles) and
the continuum and line scattering case (diamonds) exhibit simi-
lar positive heating rates on the average (dashed and dot-dashed
lines) and thus similar average temperatures (Fig. 7). Line scat-
tering radiative transfer produces slightly stronger mean heating
at τ5000 = 10−3, but fluctuates with lower amplitude. At τ5000 =
10−5, qrad practically vanishes on the time average in the line
scattering case, but there is still significant radiative heating with
line scattering as true absorption. Note the dynamical variation
of the sequences: contrary to 1D hydrostatic models, where the
radiation field is time-independent by definition, the evolution of
the 3D simulations produces fluctuating radiative heating.

Wedemeyer et al. (2004) presented 3D radiation-
hydrodynamical simulations of the solar atmosphere that
include a chromosphere, using radiative transfer without scat-
tering and solving the equation only for the Rosseland mean
opacity to suppress radiative cooling by strong LTE lines. They
found an increasing asymmetry of the gas temperature distribu-
tion with increasing height above the surface, and a bifurcation
in the chromosphere. Wedemeyer et al. (2004) further observed
that treating strong spectral lines as true absorption with the
opacity binning method reduces the amplitude of temperature
fluctuations, which are caused by outward propagating acoustic
waves, resulting in unrealistically low maximum temperatures
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Fig. 9. Temperature histograms at three dif-
ferent geometrical heights z above the optical
surface, integrated over each simulation run.
Solid lines show the radiative transfer com-
putation with continuum scattering, dot-dashed
lines the case where continuum and line scatter-
ing are included. Each temperature distribution
is normalized.

in high layers. Skartlien (2000) investigated scattering radiative
transfer in the chromosphere, comparing radiative heating
with and without scattering, and came to the conclusion
that including line scattering reduces this damping effect of
LTE lines.

Our simulations do not include a chromosphere; the inter-
nal energy at the top boundary is set to a slowly evolving mean
instead. In the line scattering case, where radiative transfer has
only weak influence on the gas, the temperature gradient is sen-
sitive to this boundary condition and thus not well-constrained.
However, this does not compromise our conclusions, since the
boundary is free to adapt to any upward or downward shift in the
mean energies of the gas beneath.

Figure 9 shows temperature distributions of the simulations
with continuum scattering and with continuum and line scatter-
ing at three different heights above the surface. Our simulations
do not reach the same geometrical heights as those of Skartlien
(2000) and Wedemeyer et al. (2004), and we use a more real-
istic radiative transfer treatment with 12 opacity bins. We find
a similarly growing asymmetry in the temperature distribution
of the line scattering simulation in the outer layers (cf. Fig. 7 in
Wedemeyer et al. 2004). Treating strong lines as absorbers shifts
the mean temperature upward and removes the high temperature
tail of the distribution, in qualitative agreement with the findings
of Skartlien (2000) and Wedemeyer et al. (2004).

Figure 10 shows horizontal and temporal averages of the rel-
ative temperature fluctuations, which we define as

ΔTrms

〈T 〉 =
√〈(T − 〈T 〉)2〉

〈T 〉 (27)

in every geometrical depth layer (cf. Eq. (2) and Fig. 9 in
Wedemeyer et al. 2004). The comparison between the cases
with continuum scattering and with continuum and line scatter-
ing confirms the damping of temperature fluctuations through
line absorption. Note the decreasing ΔTrms at the top of the
simulation, which is induced by the hydrodynamical boundary
conditions.

We conclude that line scattering is an important ingredi-
ent for model atmospheres of solar-type stars that include a
chromosphere; while gray radiative transfer reduces damping
through strong LTE lines, it cannot produce a realistic temper-
ature structure.

Anderson (1989) presented simplified, and Short &
Hauschildt (2005) presented full 1D non-LTE line-blanketing
calculations, respectively, for hydrostatic model atmospheres of
solar-type stars. The departures of line-blanketing from LTE

Fig. 10. Horizontal and temporal averages of the relative temperature
fluctuations ΔTrms/〈T 〉 as a function of atmospheric height, computed
with continuum scattering (solid line) and with continuum and line scat-
tering (dot-dashed line).

through iron-group elements heat up the atmosphere in the
height range 10−6 <∼ τ5000 <∼ 10−2. Our 3D model predicts a pre-
dominant temperature decrease as we discussed above. However,
it is not clear how departures from LTE in the absorber popula-
tions through the ionization balance etc. would affect the atmo-
spheric structure in our 3D simulations, making a direct compar-
ison with the 1D models difficult.

Doppler shifts may have a significant influence on line ab-
sorption in higher layers, which expose line cores to hot radia-
tion from deeper in. Vögler et al. (2004) estimated the effects to
be insignificant in the photosphere, but their work was based on
1D tests. The large scattering albedo of strong resonance lines,
however, should reduce the impact of Doppler shifts higher up.

6. Conclusions

We presented a 3D radiative transfer method with coherent scat-
tering for time-dependent (M)HD simulations of stellar atmo-
spheres with the new BIFROST code (Gudiksen et al., in prep.).
The simulations are parallelized through domain-decomposition
to take advantage of large-scale computer clusters. The solver is
based on short characteristics and the Gauss-Seidel scheme for
an iterative computation of the radiation field and the radiative
flux divergence in the whole simulation domain. We use mono-
tonic interpolation to reduce the numerical diffusion effect of
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short characteristics and represent the source function integral
with Bézier polynomials to suppress interpolation overshoots.
A partial grid refinement scheme is included to improve the res-
olution of the radiative transfer computation where strong verti-
cal opacity gradients occur. The wavelength integral is treated in
the opacity binning approximation, using 12 bins that divide the
opacity spectrum by formation height and wavelength.

The effects of coherent scattering on the temperature struc-
ture of a solar-type star are investigated with 3D time-dependent
hydrodynamical simulations of magnetically quiet surface con-
vection, including Rayleigh scattering and electron scatter-
ing in the continuum and estimated line scattering using the
van Regemorter formula. While continuum scattering processes
are not important for the mean temperature stratification, we find
lower temperatures in the upper atmosphere when scattering is
included in the line-blanketing. 3D radiative-hydrodynamical at-
mospheres thus show the opposite behavior of 1D hydrostatic
atmospheres in radiative equilibrium, where scattering in strong
lines effectively heats the outer layers.

3D LTE models of solar surface convection have been very
successful at reproducing various observational tests, and our
results indicate that the solar photosphere is indeed well rep-
resented when scattering is not included in radiative transfer.
It therefore seems that a refined treatment of the line-blanketing
through, e.g., opacity distribution functions or opacity sam-
pling will be the next significant step to improve the realism of
3D radiative-hydrodynamical model atmospheres. Scattering ra-
diative transfer is nevertheless an important ingredient of con-
sistent 3D MHD models of the solar chromosphere, transition
region and corona.

While it is not unexpected to see only small differences in
the photospheres of solar-type stars when scattering is taken into
account, this is likely to change for the much less dense atmo-
spheres of giants, where the importance of Rayleigh scattering
increases. The case of metal-poor giants is particularly interest-
ing in that respect, owing to their significance for understanding
galactic chemical evolution and the origin of the elements.
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Appendix A: Bézier interpolation of source
functions and opacities

The discrete formal solution (Eq. (14)) of the radiative trans-
fer equation (Eq. (4)) requires interpolating the source func-
tion S (τ) along the short characteristic. While linear interpola-
tion never overshoots, its accuracy is not sufficient in optically
thick media, since the discrete expression is not equivalent to
the diffusion approximation. Second-order interpolation signifi-
cantly improves the accuracy, but suffers from strong overshoots
where ΔS/Δτ gradients change rapidly between the upwind and
downwind halves of the characteristic. In extreme cases, this can
even destabilize the solver and produce spikes in the local flux
divergences.

Bézier-type interpolation techniques allow for a direct de-
tection and suppression of such overshoots by virtue of a control
point in the polynomial which shapes its curve (see Auer 2003).
A second-order Bézier polynomial may be written in the param-
eterized form

S (t) = S u(1 − t)2 + S 0t2 + 2S ct(1 − t), (A.1)

where S u and S 0 are the source functions at the upwind end and
the center point of the characteristic, between which interpola-
tion is needed, t = (τ − τu)/(τ0 − τu) is the curve parameter,
and S c is the control point. A Beziér curve is always bounded
by the convex hull of the three points S u, S c and S 0. Using the
abbreviations

Δτu = τ0 − τu; Δτd = τd − τ0 (A.2)

for the optical depths along the characteristic and choosing the
control point

S c = S 0 − Δτu

2
S ′0

= S 0 − Δτu

2

(
Δτd

Δτu + Δτd

S 0 − S u

Δτu
+

Δτu

Δτu + Δτd

S d − S 0

Δτd

)

yields second-order interpolation of S , which now also depends
on the source function S d at the downwind end. Introducing the
three functions

U0(t) = 1 − e−t

U1(t) = t − U0(t)

U2(t) = t2 − 2U1(t),

and evaluating the integral of the Bézier polynomial results in
the familiar second-order integration constants for Eq. (14),

Ψu = U0(Δτu) +
U2(Δτu) − (Δτd + 2Δτu)U1(Δτu)

Δτu(Δτu + Δτd)

Ψ0 =
(Δτu + Δτd)U1(Δτu) − U2(Δτu)

ΔτuΔτd

Ψd =
U2(Δτu) − ΔτuU1(Δτu)
Δτd(Δτu + Δτd)

(cf. Eqs. (8) and (9) in Kunasz & Auer 1988). If the source func-
tions S u, S 0 and S d have an extremum at S 0, choosing S c = S 0
enforces S ′0 = 0, yielding the constants

Ψu = U0(Δτu) +
U2(Δτu) − 2ΔτuU1(Δτu)

Δτ2
u

Ψ0 =
2ΔτuU1(Δτu) − U2(Δτu)

Δτ2
u

Ψd = 0.

Overshoots are avoided by limiting S c to the range of the data
points: min(S u, S 0) ≤ S c ≤ max(S u, S 0). If S c lies outside these
limits, choosing S c = S u results in the constants

Ψu = U0(Δτu) − U2(Δτu)

Δτ2
u

Ψ0 =
U2(Δτu)

Δτ2
u

Ψd = 0.

Note that, contrary to the first two cases, suppressing such over-
shoots leads to discontinuous left-hand and right-hand deriva-
tives at S 0.

Optical depths are computed in an analogue fashion to avoid
negative results. A second-order Bézier polynomial χ(s) interpo-
lates opacities over the path length Δs along the ray; integration
over s yields the optical depth interval

Δτ =

∫ Δs

0
χ(σ)dσ =

Δs
3

(χu + χ0 + χc) , (A.3)

where the control point χc is selected according to the same cri-
teria as discussed above for S c.
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Appendix B: Local cubic monotonic interpolation

The radiative transfer solver uses local cubic interpolation for in-
terpolating data from the hydrodynamical grid onto the charac-
teristics grid. This choice of method improves the accuracy com-
pared to linear interpolation, while ensuring local control of the
interpolating polynomial to reduce artifacts. In addition to being
a one-pass algorithm, the method also exhibits good computa-
tional performance through its instruction-per-data ratio, which
is well-suited for modern multi-core CPUs, where high compu-
tation speeds are contrasted with slow memory access.

2D interpolation is approximated by consecutive 1D interpo-
lation using a cubic polynomial

f (t) = at3 + bt2 + ct + d, (B.1)

with the curve parameter t ∈ [0, 1]. The coefficients a−d depend
on the adjacent data points f1 and f2 and their derivatives f ′1
and f ′2 . Inserting the data and reordering the terms, the polyno-
mial may be rewritten in the form

f (t) = α(t) f1 + β(t) f2 + γ(t) f ′1 + δ(t) f ′2 , (B.2)

where the interpolation weights α, β, γ and δ now depend on the
parameter t:

α(t) = 2t3 − 3t2 + 1

β(t) = 3t2 − 2t3

γ(t) =
(
t3 − 2t2 + t

)
Δx

δ(t) =
(
t3 − t2

)
Δx

with the grid spacing Δx between the two data points. The shape
of the curve is defined by the derivatives f ′1 and f ′2 . A natural
choice is the mean of the left-handed and right-handed difference
quotients f ′L and f ′R at both end points. An unweighted arithmetic
mean leads to wiggles and overshoots where strong gradients
appear. We therefore adopt a recipe by Fritsch & Butland (1984),
which uses a weighted harmonic mean

f ′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f ′L f ′R

(1−α) f ′L+α f ′R
f ′L f ′R > 0

0 f ′L f ′R ≤ 0
(B.3)

with the weighting factor

α =
1
3

(
1 +

ΔxR

ΔxL + ΔxR

)
, (B.4)

which depends on the grid spacing ΔxL and ΔxR on the left and
right sides of the data point. The weighted harmonic mean bi-
ases f ′ towards the smaller of the two difference quotients f ′L
and f ′R where strong gradients occur, effectively suppressing
overshoots.

Quadratic interpolation uses only one of the two deriva-
tives f ′1 and f ′2 , depending on the interpolation parameter t. The
interpolation coefficients are

t ≤ 1
2

: t >
1
2

:

α(t) = 1 − t2 α(t) = (1 − t)2

β(t) = t2 β(t) = t(2 − t)

γ(t) = t(1 − t)Δx γ(t) = 0

δ(t) = 0 δ(t) = t(t − 1)Δx. (B.5)

Fig. C.1. Dependence of the tabulated Gaunt factor integral P(ΔEλ,T )
for collisions of electrons with neutral atoms in the van Regemorter
(1962) formula on the transition energy ΔEλ and the gas temperature T .
The dashed lines mark the boundaries for typical values of ΔEλ/kT
found in solar surface convection simulations (Sect. 5.1).

Appendix C: Line scattering
with the van Regemorter formula

The photon destruction probabilities in line transitions may be
estimated using the semi-empirical van Regemorter (1962) for-
mula to obtain electron collision rates, following the discussion
in Skartlien (2000). Neglecting other contributions from, e.g.,
collisions with neutral hydrogen atoms, the de-excitation rate for
electron collisions according to this formula is given by

C21 ∼ λ3NeT−1/2A21P(ΔEλ, T ), (C.1)

where λ is the transition wavelength, Ne is the electron density,
T is the gas temperature, and A21 is the Einstein coefficient for
the corresponding spontaneous radiative transition. The func-
tion P(ΔEλ, T ) abbreviates the velocity integral over the empir-
ically calibrated Gaunt factor of the scattered electron, and de-
pends on the transition energy ΔEλ and the gas temperature T .
We adopt the tabulated data for neutral atoms of van Regemorter
(1962), see Fig. C.1.

The photon destruction probability for a two-level atom is
given by

ελ =
κλ

κλ + σλ
=

C21

C21 + A21 + B21Bλ
, (C.2)

where B21 is the rate for induced de-excitation, and Bλ is the
Planck function. Neglecting the induced de-excitation term,
Eq. (C.2) simplifies to

ελ ≈ 1
1 + A21/C21

· (C.3)

ελ is independent of the actual transition after inserting the
van Regemorter formula Eq. (C.1), and thus only a function of λ,
Ne and T .

Line opacities in stellar spectra often combine contribu-
tions from many transitions at a given wavelength. The total
monochromatic photon destruction probability of an opacity
sample at wavelength λ is given by the sum over all transitions,

εlλ =

∑
i κ

l
λ,i∑

i χ
l
λ,i

· (C.4)
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Table D.1. Continuum opacity sources.

Absorber and process Reference
H− b-f Broad & Reinhardt (1976); Wishart (1979)
H− f-f Bell & Berrington (1987)
H i b-f, f-f Karzas & Latter (1961)
H i+H i Doyle (1968)
H i+He i Gustafsson & Frommhold (2001)
H2+H i Gustafsson & Frommhold (2003)
H2+He i Jørgensen et al. (2000)
H2+H2 Borysow et al. (2001)
H−2 f-f Bell (1980)
H2 photo-dissociation Allison & Dalgarno (1969)
H+2 b-f, f-f Stancil (1994)
He− f-f John (1995)
He i b-f TOPbase1

He i f-f Peach (1970)
He ii b-f TOPbase1

C− f-f Bell et al. (1988)
C i b-f Nahar & Pradhan (1991)
C i f-f Peach (1970)
C ii b-f Nahar (1995, 2002)
C ii f-f Peach (1970)
C iii b-f Nahar & Pradhan (1997)
N− f-f Ramsbottom et al. (1992)
N i b-f Nahar & Pradhan (1997)
N ii b-f Nahar & Pradhan (1991)
N iii b-f Nahar & Pradhan (1997)
O− f-f John (1975)
O i, O ii b-f Nahar (1998)
O iii b-f Nahar & Pradhan (1994b)
Ne i, Ne ii, Ne iii b-f TOPbase1

Na i, Na ii, Na iii b-f TOPbase1

Mg i, Mg ii, Mg iii b-f TOPbase1

Al i, Al ii, Al iii b-f TOPbase1

Si i b-f Nahar & Pradhan (1993)
Si ii b-f Nahar (1995)
Si iii b-f TOPbase1

S i b-f TOPbase1

S ii b-f Nahar (1995)
S iii b-f Nahar (2000)
Ar i, Ar ii, Ar iii b-f TOPbase1

Ca i, Ca ii, Ca iii b-f TOPbase1

Fe i b-f Bautista (1997)
Fe ii b-f Nahar & Pradhan (1994a)
Fe iii b-f Nahar (1996)
Ni ii b-f Bautista (1999)
CO− f-f John (1975)
H2O− f-f John (1975)
OH b-f Kurucz et al. (1987)
CH b-f Kurucz et al. (1987)
H i scattering Gavrila (1967)
H2 scattering Victor & Dalgarno (1969)
e− scattering Thomson
He i scattering Langhoff et al. (1974)

Notes. (1) Contains Opacity Project data (Seaton et al. 1994).

Inserting Eq. (C.3), thus assuming the above mentioned approx-
imations, yields

εlλ ≈
∑

i ελχ
l
λ,i∑

i χ
l
λ,i

= ελ, (C.5)

where the equality holds since ελ is independent of the ac-
tual transition i. The absorption and scattering contributions κlλ

and σl
λ to each opacity sample χl

λ are then isolated using εlλ
and added to the coefficients of the continuum processes
(see Table D.1).

Appendix D: Continuum opacity sources
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