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Radicals, crossed products, and flows

by PaurL S. MuHnLy* (lowa)

Abstract. Associated with a homeomorphism 7 of a locally compact Hausdorff space X is
a subalgebra (zr, X) of the translormation group C*-algebra determined by 1. As shown by
Arveson and Josephson in [1], (z, X) frequently constitutes a complete sel of conjugacy
invariants for t. Addressing a question raised by them, we give conditions under which A(z, X)
will be semi-simple. We also show that (z, X) need riot be semi-simple and we compute the
radical in a special case.

1. Introduction. Our objective in this note is to address a problem posed
by Arveson and Josephson in [1], p. 120. They showed how a discrete flow,
i.e, a homeomorphism t of a locally compact Hausdorff space X may be
used to construct an operator algebra (r, X) which, under suitable tech-
nical hypotheses, determines the flow up to conjugacy. They also identified
all of the continuous automorphisms of (r, X). Their arguments were
complicated by the fact that they did not know if U(r, X) admits discont-
inuous automorphisms, and consequently they asked, “When Is U(z, X)
semi-simple?” For, semi-simplicity guarantees continuity. We shall show that
for those flows which seem to be of most interest in topological dynamics,
the corresponding algebra is semi-simple. We then show that for the flow
consisting of translation by 1 on the integers Z, the radical of U(zr, X) is
non-zero and we discribe it explicitly. Using this result, we then give a very
general sufficient condition for A(r, X) to have a non-zero radical.

2. The definition of A(t, X). The algebra A(z, X) is a subalgebra of the
transformation group C*-algebra or crossed product, C*(r, X), determined
by T and X and we begin by recalling its definition. Let K(tr, X) denote the
space of all complex, compactly supported, continuous functions on Z x X,
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where Z is the group of integers. For f and g in K(t, X), f*g is defined by
the formula

fxgn, x)= ) [k, x)g(n—k, t"*x)
k= -«
and f/* is defined by the formula
f*(n, x) =f(_n’ T_"X).

With respect to these operations, pointwise addition and scalar multipli-
cation, and norm || ||, defined by the formula

o = le.f(k, Noos

where ||-||, denotes the ordinary sup-norm, K(t, X) becomes a normed,
x-algebra whose enveloping C*-algebra is C*(r, X). (See [2] for a detailed
analysis of C*(r, X))

The algebra A(z, X) 1s, by definition, the closure in C*(z, X) of the set
of functions f in K(z, X) such that f(k, x) =0 when k <0, for all x in X.
Thus we have this analogy which should be kept in mind throughout:
K (7, X) should be viewed as the algebra of trigonometric polynomials on the
circle T C*(tr, X) should be viewed as C(T), and (r, X) should be viewed
as the disc algebra A(T). Indeed, when X is a one point space, this is exactly
what K (t, X), C*(1, X), and (1, X) are up to isomorphism. Specifically, if
X = !x}, then the map from K (1, X) to the trigonometric polynomials on T,
defined by the formula f— ) f(n,'x)=", is an isomorphism which extends to

a C*-isomorphism from C*(r, X) onto C(T) and which carries (z, X) onto
the disc algebra. It should be noted, too, that our definition of U(z, X) is
slightly different from the one given by Arveson and Josephson in the
beginning of their paper [1]. However, as they show in Section 5, the two are
equivalent.

For z in T, define a. on K (1, X) by the formula («, (f)) (n, X) =f(n, x)z".
Then «, extends to a *-automorphism of C*(t, X) and }a,},.s is a strongly
continuous automorphism group of C*(z, X) called the dual automorphism
group of t, [14]. For f in C*(z, X), set f, = [ 7« (f)dz, ne Z. (The integral

T

converges in the norm of C*(t, X).) Then f, is in K(r, X) and, in fact,
f,(k, x) =0, k # n. The f, may be viewed as the Fourier coefficients of f and

formally we write f~ Y f,. The series { f, does not converge to f in
neZ neZ

C*(t, X), generally, but it is Cesaro summable to f. This is because the nth
arithmetic mean of the series can be written as jk,,(z) a,(f)dz, where (k,}J-,
T
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is the Fejer kernel — an approximate identity for ['(T), [4], Lemma 1. It
follows that we may view elements in C*(t, X) as functions on Z x X ; for f
in C*(z, X), simply set f(n, x)=f,(n, x).

We note in passing that while it is difficult to compute the norm of a
general element of C*(t, X), we do have this useful fact. If f = f,, then the
norm of f in C*(z, X), Ifll, 1s |f(n, lls- To see this, observe that ||f]|
= |f *f/*||*?, and that f*f*(k, x) =|f(n, x)|%, k =0, and is zero otherwise.
For elements of this form, the assertion follows from Corollary 4.10 of [2].

Recall that the radical J of an algebra A is the intersection of all of its
maximal, modular, left ideals. Equivalently, J is the intersection of all of its
maximal, modular, right ideals. Thus J is a two-sided ideal invariant under
all automorphisms of 4. One says that A4 is semi-simple when J = {0}. When
A is a Banach algebra, J is norm closed and may be described as the
collection of all a such that ab is quasi-nilpotent for every b in A. For these
things see [9].

The discussion to this point comes together to provide a proof of the
following proposition which lies at the heart of our analysis.

ProrosITION 2.1. The algebra U(z, X) is {feC*(t, X)| f, =0, n< 0}
and f lies in its radical J if and only if f, is in J for each n > 0.

In the language of [6], this proposition describes ?A(r, X) as the
collection of f in C*(t, X) such that the spectrum of f with respect to {a,},.s,
sp,(f), is non-negative.

CoroLLARY 2.1.1. The radical J of NU(z, X) is contained in \f| f, =0)].

Proof. The collection {feC*(t, X)| f = f,} is a subalgebra of A(z, X)
isomorphic to C,(X), the continuous functions on X vanishing at infinity
and no such element is quasi-nilpotent.

Thus we see in particular that 2(z, X) is never a radical algebra. We
note, too, that J is frequently zero as we show below, while {fe A(z, X)| f,
= 0} is never zero; this shows that the inclusion in Corollary 2.1.1 may be
proper.

3. A sufficient condition for semi-simplicity. While we lack a necessary
and sufficient condition for deciding when U(r, X) is semi-simple, the
following theorem identifies a very usable criterion ensuring semi-simplicity.
In it, we write (', for the orbit determined by x, ie., ¢, = {1"x}> __, and we
write (% for its closure.

THEOREM 3.1. Suppose that t is a homeomorphism of a locally compact
Hausdorf] space X satisfying these two hypotheses:

(a) For each xe X, ¢ is compact; and

(b) For each pair of points x and y in X, % and (5 are
either disjoint or equal.

Then N(t, X) is semi-simple.
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Proof. Suppose f is a non-zero element in the radical J of A(r, X).
Then by Proposition 2.1, we may assume f = f, for some n. That is, we may
assume that f(k, x) = O when k # n. Define g(k, x) = f(n, x) when k = 0 and
set g(k,x)=0, k#0. Then g is in A(r, X) and so g=f lies in J. Since
g*f(k, x) = |f(n, x)|* when k =n, and is zero otherwise, we may assume
without loss of generality that f(n,x)>0. Let U be the open set

(xeX| f(n,x) >0} and fix an x in U. Then ¢, < () 7*(U) and hy-

k=—

pothesis (b) implies that ¢! is contained in {J t*(U). Since ¢ is compact
k=— s

by hypothesis (a), we may select a finite subcover tl'(U),...,rk'(U) of (3.

Observe that the map ¢ defined by the formula (®f)(k, x) = f(k, 7' x),

feK(t, X) extends to a x-automorphism of C*(tr, X) mapping A(z, X) onto
p . )
A(z, X). Thus #(J)=J. We set h= ). oY J. Then h is a non-zero element

Jj=1
in J, h(k, x) =0, k # n, and there is an & > 0 such that h(n, y) > ¢ ye(.
Now calculate to see that for each j >0, ¥ = h+h=*...+h, j times, has this
form:

h(n, 2)h(n, T "z)...h(n, T 9" "z), k =jn,
0, k # jn.
It follows that ||i|| = sup |k’ (jn, z)} > sup |k (jn, z)] > ¢ and, consequently,

zeX <l
zeC x

that lim ||#||"” > ¢. This is a contradiction, so J = {0}, and the proof is
j—®

complete.

Wk, z) ={

The hypotheses of Theorem 3.1 are together equivalent to the condition
known as pointwise almost periodicity, [3], Proposition 2.6. Most flows
appearing in topological dynamics are pointwise almost periodic. (Caution:
Pointwise almost periodicity is a much weaker notion than the more
familiar, but restricted, concept of uniform almost periodicity or equicont-
inuity.) Recall that t is called minimal if © and 7~ ' have no common, proper,
closed, invariant sets.

CoroLLARY 3.1.1. (a) If X is compact and t is minimal, then NU(z, X) is
semi-simple. '

(b) If X is compact and < is distal [3], then N(t, X) is semi-simple.

Proof. Under the hypothesis of (a), there is only one orbit closure while
(b) follows from Proposition 2.6 and Corollary 5.5 of [3].

We note, too, that if each orbit in X is finite, then A(r, X) is semi-
simple. In particular, this is the case when X itself is finite and 7 is a cyclic
permutation. This should be compared with Theorem 4.1 below. Incidentally,
arguments of McAsey [8] go to show that when X is a finite set of
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cardinality n and 7 is a cyclic permutation, then (z, X) is isomorphic to the
subalgebra of nxn matrices (a;;) over the disc algebra A(T) such that g;;(0)
=0 when j > i.

4. A sufficient condition for non-semi-simplicity. While it is difficult to
identify the radical of U(t, X) explicitly for every choice of X and t, one
particularly revealing case stands out where the radical can be described
completely. Our general sufficient condition for non-semi-simplicity depends
heavily upon it.

THEOREM 4.1, Let X = Z with t defined by t(n) = n+1. Then there is a
faithful representation n of C*(t, X) on 1*(Z), whose image is the full algebra
of compact operators, X (I*(Z)), such that n(U(z, X)) consists of those oper-
ators A in X (P(Z)) such that the matrix of A with respect to the usual
orthonormal basis for I*(Z) is lower triangular. The radical of N (t, X) consists
of those [ in W (t, X) such that the matrix of n(f) is strictly lower triangular
and this is precisely {feU(r, X)| fo =0}.

Proof. The existence of the faithful representation n of C*(r, X) whose
image is o (12 (Z)) (and the fact that it is unique up to unitary equivalence) is
of course a celebrated result, going back essentially to Mackey [7], if not to
Weyl and von Neumann. For a proof more in the spirit of the present study,
see Rieflel's paper [10] or Proposition 3.3 of Takai’s paper [14]. It is given
by the formula

(m(Ng)n) =} Sk, ng(n—k),

keZ

feK(t,x), ge P (Z), and is extended to all of C*(t, X) by continuity. For
ze T, define W, on I>(Z) by the formula (W, f)(n) = z"f(n). Then a calculation

shows that {W,},; is a strongly continuous unitary representation of T on
I*(Z) such that

4.1 W () W* = n(e.(f))
for all feC*(z, X) and ze T One may write W, in its spectral form

fn), k=n,
0, k #n.

W,= Y z"E,, where (E,f)(k) ——-{
Then on account of equation (4.1), together with the fact that U(r, X)
= {feC*(1, X)| f,=0, n< 0} (Proposition 2.1), we may appeal to
Corollary 2.14 of [6] to conclude that n(2l(r, X)) consists of those operators
Ain n(C*(zr, X)) = X (P(Z)) such that A leaves invariant the spaces F,?(Z),
neZ, where F, = z E,; ie., the matrix of A is lower triangular. Note, too,

k2n
that the matrix of n(f), fe U(z, X), 1s strictly lower tniangular if and only if
Jo = 0. Indeed, quite generally, if f = f, n > 0, then the matrix of n(f) is zero
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everywhere but on the nth subdiagonal and the entry in the kth row is
f(k, n). As pointed out earlier in Corollary 2.1.1, the radical J of 2(z, X) is
contained in {feWU(r, X)| fo =0}. Thus n(J) is contained in the set of
operators in X (I*(Z)) which have strictly lower triangular matrices with
respect to the usual basis. On the other hand, n{U(r, X)) is contained in the
full algebra B of operators on I?(Z) which leave the spaces F,I’(Z), ne Z,
invariant. By Ringrose’s theorem [1], Theorem 5.4, it is easy to see that the
radical of B is the collection of all compact operators which have strictly
lower triangular matrices with respect to the usual basis for /*(Z) and, with
this, the proof is complete.

Recall that a "set U< X i1s called wandering under t if
fn| T"(U)n U # @} is finite. It is evident that if a point has a wandering
neighbourhood, then it has a neigbourhood U such that t"U n U = @ for all
n#0.

THEOREM 4.2. If there is a point in X with a wandering neighbourhood,
then the radical of W(z, X) is non-zero. '

Proof. Choose an open set U in X so that t"U~ U = @ for all n and

set Y= () 7"U. Then Y is an open, translation invariant subset of X and so
neZ

C* (1, Y) is 1somorphic to a non-zero ideal in C*(z, X), [5], Lemma 1. Thus
A(z, Y) may be viewed as an ideal in 2(z, X) and it suffices to prove that
the radical of U(z, Y) is non-zero. But the map « from U x Z to Y defined by
the equation a(u,n) = t"u is a homeomorphism which implements a =*-
isomorphism between C*(r, Y) and C,(U)®(z, Z), where 1’ is trans-
lation by 1 on Z. This isomorphism carries 2(z, Y) onto Co(U)®@AU(z’, Z), of
course. While examples show that the radical of Co(U)®@U(t’, Z) may be
properly contained in C,(U)® J, where J is the radical of 2(z’, Z), neverthe-
less, from the form of J, we may argue that the radical of Co(U)®@N(t’, Z) is
non-zero as follows. Use the representation n of Theorem 4.1 to identify
Co(U)®C*(1', Z) with the space CO(U, J{/'(IZ(Z))) consisting of all con-
tinuous functions (which vanish at infinity if U is not compact) from U to
XA (I*(2)) in such a way that C,(U)®U(t', Z) becomes identified with the
space of those function which take their values in the algebra consisting of
the compact operators having lower triangular matrices with respect to the
usual basis in [*(Z). Let e be an element in A(z’, Z) such that n(e) is strictly
lower triangular and has but one non-zero matrix entry, let g be a non-zero
function in Cy(U), and set f(u) = g(u)e, uc U. Then f is a non-zero element
in Co(U)®@U(', Z) and fx (Co(UV)@®AU(1', Z)) consists entirely of nilpotent
elements (of index at most 2). It follows that the radical of Cy(U)Y®2U(1’, Z)
is non-zero. This completes the proof.

Recall that t is called freely acting if there are no periodic orbits; i.e., if
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for no k does ™ have a fixed point. The following corollary is an immediate
conscquence of Theorem 4.2 and Corollary 18 of [5].

Cororeary 4.2.1. If X is second countable, if t is freely acting, and if
C*(t, X) is type 1, then the radical of N(z, X) is non-zero.

Remarks 4.3. It is attractive to conjecture that the converse of
Theorem 4.2 is true — yielding a necessary and sufficient condition that
A(tr, X) be semi-simple. That is, all our evidence leads us to believe that if
WA(r, X) 1s not semi-simple, then some point in X has a wandering neigh-
bourhood. In this connection it is worth noting that there is a condition
weaker than having a wandering neighbourhood which implies that A(z, X)
has a quotient with non-zero radical. It is the condition that there is a point
x such that the map k — t*x is a homeomorphism of Z onto (-, (with its
relative topology). We do not know 1if 2(z, X) can be semi-mimple, but have
a non-semi-simple quotient. We note, too, that when X is Z and 7 is
translation by 1, the radical of 2 (r, X) is complemented as a Banach space.
i.e., an analogue of Wedderburn’s principal theorem is true. For what other
choices of X and 7 is the radical of 2 (z, X) complemented? Finally, consider
the question which led to the present investigation: Are all isomorphisms
between two algebras of the type we have been discussing necessarily
continuous? Of course when the algebras are semi-simple, the answer is
yes. _

On the other hand the answer may be yes even in the non-semi-simple case.
Indeed, the arguments of Ringrose in [11] or [13] coupled with Theorem 4.1
show that when X = Z and r is translation by 1, then every automorphism of
W(r, X) is continuous. What the situation is in general, we do not know.
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