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Abstract. We consider algebras over a field of characteristic zero, and prove
that the Jacobson radical is homogeneous in every algebra graded by a linear
cancellative semigroup. It follows that the semigroup algebra of every linear

cancellative semigroup is semisimple.

Recently it has been shown that several theorems concerning various ring con-
structions can be obtained in the more general situation of graded rings. For exam-
ple, Saoŕın [20] carried certain results due to Passman [15] and Reid [19] to strongly
group graded rings. More general graded arguments may also clarify and unify the
proofs of various facts (see [17, p. 708], [7, p. 159], [5], [8]). It would be interesting
to determine which of the known results on group algebras extend to algebras of
cancellative semigroups and are of graded nature.

One of the long-standing problems on group algebras is that of whether every
group algebra over any field of characteristic zero is semiprimitive. The answer is
known to be positive for linear groups. We obtain a graded analog of this result.

Group algebras of linear groups have been explored by many authors. Passman
and Zalesskii investigated the Jacobson radical and semiprimitivity of these alge-
bras, see [16]. A systematic study of the semigroup algebras of linear semigroups
has been started by Okniński and Putcha ([12], [13], [14]). In particular, in [14]
the radicals of algebras of connected algebraic monoids were described. For alge-
bras over a field of characteristic zero, it is shown in [13, §3] that the radical of
every algebra of a linear semigroup is nilpotent, and the algebra of the full matrix
semigroup is semiprimitive. For the full matrix semigroup M over a finite field F
and for a field K of characteristic different from that of F , it follows from Fadeev’s
Theorem (see Kovács [10]) that the semigroup algebra KM is semiprimitive.

Let S be a semigroup. An algebra R =
⊕

s∈S Rs is said to be S-graded if RsRt ⊆
Rst for all s, t ∈ S. An ideal I of R is said to be homogeneous if I =

⊕
s∈S Is,

where Is = I ∩Rs.

Theorem 1. Let S be a cancellative linear semigroup. Then the Jacobson radical
of every S-graded algebra over a field of characteristic zero is homogeneous.

The radical of a (not necessarily cancellative) semigroup algebra over a field
cannot contain nonzero homogeneous elements. Indeed, the factor of the semigroup
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algebra FS by the augmentation ideal

I =

{∑
s∈S

fss|
∑
s∈S

fs = 0

}
is isomorphic to F . Therefore the radical is contained in I. However, I does not
contain nonzero homogeneous elements. Hence we get

Corollary 2. If F is a field of characteristic zero and S a linear cancellative semi-
group, then FS is semiprimitive.

For algebras over a field F with charF = p > 0, the assertion analogous to
Corollary 2 is not valid, and so the restriction on characteristic cannot be removed
from Theorem 1. In [3] it is proved that if S is not cancellative, then there exists an
S-graded algebra whose radical is not homogeneous. Therefore cancellativity cannot
be dropped either. Note that if one extends Theorem 1 to arbitrary groups, then
the positive solution to the semiprimivity problem for group algebras mentioned
above will follow.

We shall use the previous results on radicals of graded rings ([7]), on linear
groups ([7, Lemma 49.8]), and on linear semigroups ([11, Chapter 1]). Let R be an
S-graded algebra. The Jacobson radical of R is denoted by J (R). If r =

∑
s∈S rs

where rs ∈ Rs, then we put supp(r) = {s|rs 6= 0}, and H(R) = {rs|rs 6= 0}.
By the length of r we mean | supp(r)|. For T ⊆ S, put RT =

⊕
s∈T Rs, and

rT =
∑
s∈T rs. For P ⊆ R, let H(P ) = {H(r)|r ∈ P}. Then H(R) =

⋃
s∈S Rs is

the set of all homogeneous elements. If I is a homogeneous ideal of R and I ⊆ J (R),
then R/I =

⊕
s∈S Rs/Is is S-graded and J (R/I) = J (R)/I. Using this during

the proof we shall be able to factor out homogeneous ideals contained in J (R).
In what follows, “algebra” will always mean “algebra over a field of characteristic
zero”.

Let us begin with a few known lemmas.

Lemma 3 ([7, Corollary 22.8]). Let G be a group, N a normal semigroup of G,
and R a G-graded algebra. Then R =

⊕
gN∈G/N RgN is G/N -graded.

Lemma 4 ([7, Corollary 30.11]). Let G be a finite group with identity e, and let R
be a G-graded algebra. Then J (R) is the largest homogeneous ideal of R with the
property that J (R) ∩Re = J (Re).

Next we collect all the information on the structure of the full matrix semigroup
needed for our proof. We present only the final conclusions.

Lemma 5. Let F be a field and Mn(F ) the set of all n× n matrices over F . For
k = 0, 1, . . . , n denote by Ik the set of all matrices of rank ≤ k. Then

0 = I0 ⊂ I1 ⊂ · · · ⊂ In = Mn(F )

are the only ideals of the multiplicative semigroup Mn(F ). For every k = 1, . . . , n,
the set Ik\Ik−1 is a disjoint union of subsets Gαβ, indexed by the elements α, β of
a certain set Λk, and such that for all α, β, γ, δ ∈ Λk

(i) either Gαβ is a linear group, or G2
αβ ⊆ Ik−1;

(ii) GαβMn(F )Gγδ ⊆ Gαδ ∪ Ik−1;
(iii) Gα∗ ∪ Ik−1 is a right ideal of Mn(F ), where Gα∗ =

⋃
λ∈Λk

Gαλ;

(iv) Gαβ ∪ Ik−1 is a left ideal of Gα∗ ∪ Ik−1.
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These facts are well known. They are contained, for example, in Lemma 1.4 and
Theorems 1.3, 1.6 of [11] which use the terms “completely 0-simple semigroup” and
“Rees matrix semigroup” (see also [12, Lemma 2] and [18]).

Lemma 6. Let S be a cancellative semigroup, R an S-graded algebra, and I 6= 0
an ideal of R. Let P = P (I) be the set of all elements of the minimal positive length
in I, and let Min(I) be the linear span of H(P ) in R. Then Min(I) is an ideal of
R.

Proof. Take any x ∈ H(P ) and y ∈ H(R) such that xy 6= 0. Clearly, x = rs for
some r ∈ P, s ∈ S. Given that S is cancellative and xy 6= 0, we get ry ∈ P . Hence
xy ∈ H(P ). It follows that Min(I) is a right ideal of R. Similarly, it is a left ideal
of R.

Lemma 7. If G is a linear group and R is a G-graded algebra, then J (R) is
homogeneous.

Proof. For any subgroup T of G, it is known that J (RT ) ⊇ RT ∩J (R) ([7, Propo-
sition 6.18]). Let F be the set of all finitely generated subgroups of G. Then
R =

⋃
T∈F RT and all J (RT ) ⊇ RT ∩J (R) imply

⋃
T∈F J (RT ) ⊇ J (R). Hence it

suffices to show that J (RT ) is homogeneous for every T ∈ F . So we may assume
that G is finitely generated itself. Then G has a normal subgroup N of finite index
such that N is residually finite ([7, Lemma 49.8]). Therefore G itself is a residually
finite group.

For any 0 6= r ∈ J (RG), there exists a normal subgroup K of finite index in
G such that gK 6= hK for every g, h ∈ supp(R), g 6= h. By Lemma 3 R is G/K-
graded, and Lemma 4 shows that J (R) is homogeneous in this gradation. Since
rgK = rg for every g ∈ supp(r), we get H(r) ⊆ J (RG). Therefore J (RG) is
homogeneous.

Note that Mn(F ) may have cancellative subsemigroups which are not contained
in a subgroup of Mn(F ) ([11, Example 1.10]). Therefore Lemma 7 alone is not
sufficient to imply Theorem 1. However, the proof follows from Lemmas 5 and 7.

Proof of Theorem 1. Let S be a cancellative subsemigroup of Mn(F ). Suppose
to the contrary that there exists an S-graded algebra R such that J (R) is not
homogeneous. Factoring out the largest homogeneous ideal of J (R) we may assume
that J (R) 6= 0 has no nonzero homogeneous elements.

Let L = Min(J (R)) be the homogeneous ideal defined in Lemma 6. For k =
1, . . . , n, let Ik be the set of all matrices of rank ≤ k in Mn(F ), and let Rk = RIk .
Consider the minimal positive integer k such that L has a nonzero intersection with
ideal Rk introduced in Lemma 5. Then K = Rk ∩ L is a homogeneous ideal of R.

Using the sets Gαβ , α, β ∈ Λk, defined in Lemma 5, we put Rαβ = RGαβ ,Kαβ =
K ∩ Rαβ , and Kα∗ = K ∩ RGα∗ . By the choice of k we get KIk−1

= 0. Therefore
Lemma 5 gives the following:

(i) either Gαβ is a linear group and Kαβ is a Gαβ-graded algebra, or K2
αβ = 0;

(ii) RαβKRαβ ⊆ Kαβ;
(iii) Kα∗ is a right ideal of R;
(iv) Kαβ is a left ideal of Kα∗.
If Gαβ is not a group, then K2

αβ = 0, and so Kαβ is quasi-regular. Next suppose

that Gαβ is a group. Let P = P (J (R)) be the set of all elements of the minimal
positive length in J (R), and let Q = H(P ) ∩ Rαβ . Then Kαβ is the linear span
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of Q (see Lemma 6). Take any q ∈ Q. There exist r ∈ P and g ∈ Gαβ such that
q = rg. For any a, b ∈ H(Rαβ), it follows from (ii) that arb ∈ Kαβ . By (iii) and
(iv) we get arb ∈ J (Kαβ). Lemma 7 shows that J (Kαβ) is homogeneous. Since S
is cancellative, aqb = (arb)h for some h ∈ Gαβ . Therefore aqb ∈ J (Kαβ). It follows
that K3

αβ ⊆ J (Kαβ), and so Kαβ is quasi-regular, again.
Since Kα∗ is the sum of quasi-regular left ideals Kαβ , and K is the sum of

right ideals Kα∗, evidently K is quasi-regular. Therefore J (R) contains a nonzero
homogeneous ideal K. This contradiction completes the proof.

A ring R is said to be left T -nilpotent if, for every sequence of elements x1, x2, . . .
of R, there exists n such that x1x2 · · ·xn = 0. A ring R is semilocal if R/J (R)
is Artinian. Further, R is semiprimary ( left perfect) if R is semilocal and J (R)
is nilpotent (left T -nilpotent). If R is S-graded and Rs ⊆ J (R) for all but finitely
many s ∈ S, then we say that R/J (R) is finitely graded.

Camillo and Fuller proved that a Z-graded ring R is semilocal (left perfect) if and
only if R1 is semilocal (left perfect) and R/J (R) is finitely graded ([2, Propositions
8 and 10]). For semigroup graded analogs of this theorem we need the following

Lemma 8 ([9]). Let a ring R be the direct sum of a finite number of its additive
semigroups Ri, i = 1, . . . , n, and let the union of the Ri be closed under multipli-
cation. Then R is semilocal (right or left perfect ; semiprimary; nilpotent ; locally
nilpotent ; right or left T -nilpotent ; Baer radical ; quasiregular ; P. I.) if and only if
all subrings among the Ri satisfy the same property.

This fact and [4, Proposition 4] (see [6]) give us

Lemma 9. Let S be a semigroup without infinite periodic subgroups and R an S-
graded algebra with homogeneous radical J (R). Then R is semilocal if and only if
R/J (R) is finitely graded and Re is semilocal for every idempotent e of S.

Therefore results on homogeneity of the Jacobson radical can be applied to derive
corollaries concerning finiteness conditions. For example, combining Theorem 1
with Lemma 9, we obtain the following corollary. (Note that if e is an idempotent
of a cancellative semigroup S, then e is the identity of S).

Corollary 10. Let S be a linear cancellative semigroup with identity e and without
infinite periodic subgroups, and let R be a S-graded algebra over a field of charac-
teristic zero. Then R is semilocal if and only if R/J (R) is finitely graded and Re
is semilocal.

Saoŕın [20] considered left perfect strongly graded rings. An S-graded ring R is
said to be strongly graded if RsRt = Rst for all s, t. For a strongly group graded
algebra with homogeneous J (R) it is routine to verify that J (R) is nilpotent (left
T -nilpotent) if and only if J (Re) is nilpotent (left T -nilpotent), see [7, Corollary
27.4]. Therefore, Corollary 10 yields the following

Corollary 11. Let G be a linear group with identity e and without infinite periodic
subgroups, and let R be a strongly G-graded algebra over a field of characteristic
zero. Then R is left perfect (semiprimary) if and only if R/J (R) is finitely graded
and Re is left perfect (semiprimary).

Passman’s example of a field which is a twisted group algebra of an infinite peri-
odic group ([15, Proposition 4.3]) shows that the restriction on periodic subgroups
cannot be removed from Corollaries 10 and 11.
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In conclusion we record a related problem of interest. Amitsur [1] proved that
if F is a field of characteristic zero and F is not algebraic over Q, then FG is
semiprimitive for every group G.

Problem 12. Let F be a field of characteristic zero which is not algebraic over
the field of rational numbers. Let S be a cancellative semigroup, and let R be an
S-graded F -algebra. Is it true that the Jacobson radical of R is homogeneous?
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6. E. Jespers and J. Okniński, Descending chain conditions and graded rings J. Algebra (to
appear).

7. G. Karpilovsky, The Jacobson radical of classical rings, Longman Sci. Tech., Harlow, 1991.
MR 93a:16001

8. A. V. Kelarev, A general approach to the structure of radicals in some ring constructions,
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