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1. Introduction. Let RD denote the contracted semigroup ring of the completely 0-simple
semigroup D over the ring R. The Rees structure theory of completely 0-simple semigroups
is used to obtain necessary and sufficient conditions that RD have zero radical (Theorem 3.8).
By using Amitsur's construction of the upper 7c-radical [1], we are able to treat the Jacobson,
Baer (prime), Levitzki (locally nilpotent) and possibly the nil radicals simultaneously. Our
results generalize a theorem of Munn [6] on semigroup algebras of finite 0-simple semigroups.

2. Preliminaries.

(A) RADICALS. Let n be a property of rings. If the ring R has property n we say R
is a 7r-ring. We call an ideal a n-ideal if as a ring it is a Tt-ring. We say the ring R is n-
semisimple if it has no nonzero 7t-ideals.

Following Amitsur [1], we define a sequence of ideals of R, Ux = UX(R), for ordinals A
as follows:

(1) Uo = {0}.

(2) If A has predecessor A - 1 , Uxis the sum of all ideals P of R containing C/A_! such that
P/t/A_j is a 7r-ring.

(3) If A is a limit ordinal, Ux is the sum of all Uv for v < A.

The upper rc-radical <%(R,n) = <%(R) is defined to be the limit ideal of this sequence; i.e. <%(R)
is the minimal ideal Ux such that UA=Ux+l. It is clear that <%(R) = {0} if and only if R is
7t-semisimple.

The property n is called an H-property if homomorphic images of 7i-rings are rc-rings.
We include the zero homomorphism. Thus, if n is an H-property, the ring consisting of {0}
is a rc-ring.

The following definition will be useful.

DEFINITION 2.1. A property n of rings is left inductive if

(i) n is an H-property,

(ii) 7r-semisimple rings have no left n-ideals,

(iii) left ideals of 7t-rings are Tr-rings.

REMARK 2.2. Amitsur [1, Theorem 3.1] shows that for H-properties condition (ii) is
equivalent to: the upper rr-radical of a ring contains every left n-ideal of the ring.

t This paper is part of the author's doctoral dissertation at the University of Wisconsin written under the
direction of Professor Hans Schneider.

t The author was supported in part by research grant NSF-GP-3993.
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Some well known radicals are obtained in the following way:

1. Left quasi-regular. By definition, R is a n-ring if for every aeR there exists x such
that xoa = a+x—xa = 0. The upper m-radical tft(R) is then the Jacobson radical of R, which
we shall denote by /(R). It is well known that left quasi-regularity is left inductive.

2. Nil. By definition, R is a 7r-ring if, for every aeR, there exists an integer n = n{a) such
that a" = 0. The upper rc-radical is then the (upper) nil radical. We shall denote it by ^(R).
Although nil satisfies 2.1(i) and 2.1(iii) it is not known whether a ring with no nil ideals can
have a nil left ideal.

3. Locally nilpotent. By definition, R is a rc-ring if for every finite subset A of R there
exists an integer n = n(A) such that A" = {0}. We shall denote the upper ^-radical in this case
by y(R). It is called the locally nilpotent, or Levitzki, radical of R. Amitsur has shown that
locally nilpotent (semi-nilpotent in his terminology) is a left inductive property. ([2], Theorems
1.3 and 2.1.)

4. Nilpotent. By definition, R is a 7i-ring if there exists an integer n such that R" = {0}.
The upper Ti-radical will be denoted by &(R). ^(R) is commonly called Baer's radical or the
prime radical (since it is the intersection of all the prime ideals of R). Nilpotent is a left
inductive property.

Note that all four of the above properties n satisfy:

(Z) R2 = {0} implies that R is a 7r-ring.

We call 7t a Z-property if it satisfies Condition (Z). We also observe that all four properties
satisfy the following condition.

CONDITION 2.3. If A is an ideal in a ring B such that A and B\A are 71-rings, then B is a
7i-ring.

We now establish some preliminary results on the relationship between the radical of a left
ideal in a ring and the radical of the ring.

LEMMA 2.4. Let % be left inductive and let R be a left ideal of a ring S.

(i) IfL is a left n-ideal of R, then RL c <%(S).

(ii) If Q is a left n-ideal of S, then

Proof, (i) RL is a left ideal of S. Also RL £ L, so that RL is a left ideal of L. By
Definition 2.1(iii), RL is a 7r-ring. Hence, by Remark 2.2, RL £<

(ii) Q n R is a left ideal of Q. Hence Q n R is a 7r-ring. But Q n R is also a left ideal of
R. Hence, by Remark 2.2, QnR^<%(R).

REMARKS 2.5. (i) Stronger assumptions on n permit the specific determination of the
radical of a left ideal. See Amitsur [1].

(ii) In Lemma 2.4(i) it may not be true that L is contained in %(S) even if L is a (two-
sided) ideal of R. For example, let S be the ring of 2 x 2 matrices over a field. Let R be the
left ideal of S consisting of matrices with second column zero. Let L be the ideal of R con-
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sisting of matrices with upper left hand corner zero. Let Ql = , / , the Jacobson radical. Then
/(S) = 0, but L is a quasi-regular ideal of R.

If M is a left (right) T-module, then we denote the left (right) annihilator of M in T by
>H(TM) (H(MT)). In particular, 2l(/?j,) is the right annihilator of R in R.

THEOREM 2.6. Let n be left inductive and let R be a left ideal of a ring S.

(i) If1\(RR) = {0}, then <%(S) = {0} implies that <%(R) = {0}.

(ii) If1\{sR) = {0}, then #(J?) = {0} implies that «(S) = {0}.

/fence, ifW(RK) = {0} and 2I(S.R) = {0}, then <%(R) = {0} //anrf only if%(S) = {0}.

Proof, (i) Assume that ^ (5) = {0}. By Lemma 2.4(i), any rc-ideal of R annihilates R on
the right. But ?((/?„) = {0}; hence there are no nonzero re-ideals in R, so that "U{K) = {0}.

(ii) Assume that °U{R) = {0}. By Lemma 2.4(ii), if Q is a 7i-ideal of S, QnR= {0}.
But QR s Q n /? if Q is an ideal of S1. Hence any Ti-ideal of 5 annihilates R on the left. But
2t(s/?) = {0}, so that S has no re-ideals and %{S) = {0}.

(B) COMPLETELY 0-SIMPLE SEMIGROUPS. A subset A of a semigroup D is a
/e// (r/^A/) /Wea/ if DA £ ,4 (/4Z) £ ,4). ^ is an ideal if it is both a left and a right ideal. A
semigroup D with a zero element 0 is called 0-simple if its only ideals are {0} and D and
D1 # {0}. The set of idempotents of a semigroup may be partially ordered by defining e g /
to mean e / = / e = e. (Cf. [4], Section 1.8.) An idempotent/is said to be primitive i f / # 0
and e ^ / implies that e = 0 or e = / . A completely 0-simple semigroup is a 0-simple semigroup
with a primitive idempotent. Clearly, a finite 0-simple semigroup is completely 0-simple.

Let T be a semigroup and let /, A be sets. Define M(T; I, A) to be the set of all mappings
A: / x A -> T. Denote the image of (i, X) under A by aiX and write A = (aiX). The elements
of M(T;I, A) are called / x A matrices over 71. The element aiX is called the (/,l)-entry of A.
Let T be a semigroup with zero. Let A be an / x A matrix over T and B a A x I matrix over
T. Define /45 to be the / x /matrix C = (cu), where c,7 = ^ A a u ^ ; if> f° r e v e r v ('">./)> a t m o s t

one summand in ^\xaixbxj is nonzero. Otherwise the product is not defined.
The group with zero G° is just the semigroup obtained by adjoining a zero to the group

G. A Rees / x A matrix over the group with zero G° is an / x A matrix over C° having at most
one nonzero entry. Let P = (pXi) be an arbitrary but fixed A x / matrix over G°. Then AP
and PA are defined for every Rees / x A matrix A over G°. Define the binary operation " •"
on the set of Rees / x A matrices over G° by A • B = APB. If A has a as its nonzero entry
in the (/, A)-position and B has b as its nonzero entry in the (J, ^-position, then A • B is the
/ x A matrix having apxj b as its (i, /<)-entry and zero elsewhere. Hence A • B is a Rees / x A
matrix over G°. It is easily seen that this multiplication is associative. Therefore the set of all
Rees / x A matrices over G° is a semigroup with respect to the multiplication " . " . This
semigroup is denoted by J?(G°;I,A;P). It is called the Rees / x A matrix semigroup over
the group with zero G° having sandwich matrix P. The construction is important in the charac-
terization of completely 0-simple semigroups. Rees [8] has shown that a semigroup is com-
pletely 0-simple if and only if it is isomorphic to a Rees matrix semigroup over a group with
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zero with the sandwich matrix P having at least one nonzero entry in each row and column
(see also [4]). This last fact enables us to exhibit an isomorphism between the contracted
semigroup ring of a completely 0-simple semigroup and a certain matrix ring.

(C) RINGS OF INFINITE MATRICES. If Tis a ring, and so a fortiori a semigroup with
zero, M(T; I, A), the 7 x A matrices over T, can be made into an abelian group. If a = (aa)
and B = (ba), define A+B to be (cu), where ca = aa+bu. Now let A be an / x A matrix
over T and let B be a A x / matrix over T. Define the product AB to be the / x / matrix
D = (du) if djj = Yj».anbxj is defined for every (ij) (i.e. all but finitely many of the summands
are zero). Otherwise the product is undefined. Let A and C be 7 x A matrices over a ring T
and let B be a A x 7 matrix over T. It may happen that AB and 5 C are defined but {AB)C
and A(BC) are not defined. However, if (/45)C and A{BC) are defined, it is easily seen that
(AB)C = A(BC).

An 7 x A matrix /4 = (au) is column finite if, for every A 6 A, there exists a finite subset
N(X) £ I such that a,A = 0 if i$N(X). The matrix ,4 is column bounded if the finite subsets
N(X) can be chosen to be independent of X (i.e. if there exists a finite subset N ^ I such that
aa = 0 if J^^V). Row finite and row bounded are defined analogously. We say the matrix A
is bounded if aa = 0 for all but finitely many (/, A). The matrix A is bounded if and only if A
is both row and column bounded.

If A is a bounded 7 x A matrix and P is any A x 7 matrix, the products AP and PA are
defined. In fact, AP is a column bounded 7 x 7matrix. Also, if C is a column bounded 7 x 7
matrix and B is a bounded 7 x A matrix, then CB is a bounded 7 x A matrix. Hence, if A and
B are bounded 7 x A matrices and P is any A x 7 matrix, the product (AP)B is a bounded
7 x A matrix. Similarly A(PB) is a bounded 7 x A matrix. Since both products are defined,
(AP)B = A(PB). Fix a A x I matrix P and define a binary operation on the set of all bounded
7 x A matrices by A • B = APB. This operation is seen to be associative and the distributive
laws are easily verified. Hence the set of all bounded 7 x A matrices is a ring with respect to
A • B = APB. This ring is denoted by Jt*y(T;I,A;P). If A = 7 and if P is the 7 x 7 identity
matrix, we write M*y (T; 1,7) in place ofJt*y (T; 7,7; P). (The notation used is based on that of
Patterson [7]. The subscripts p and y refer to row and column finiteness. The * indicates
that the rows or columns or both, depending on the subscripts appearing, are bounded. We
use Jl or M depending on whether sandwich multiplication or ordinary multiplication occurs.
In particular M*(T;I,I) denotes the ring of all column bounded matrices over T under
ordinary multiplication. Multiplication of square column bounded matrices is always
defined.)

3. Radicals of semigroup rings over completely 0-simple semigroups. If D is a semigroup
and R is an associative ring, the semigroup ring of D over R is defined to be the set of all
functions from D into R of finite support. We denote the semigroup ring of D over R by RD.
Addition is pointwise and multiplication is convolution. Thus, if x,yeRD, then
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and
xy(d) = £ x(a)y(b).

Under these operations RD is an associative ring. We write the elements of RD as finite
formal sums x = a t dL +... + an dn, where x(dt) = af e R. If D has a zero, the contracted semi-
group ring, denoted by RD, identifies the zero z ofD with the zero of the semigroup ring. More
specifically, we define RD to be the ring RDjI, where / = {xeRD | x(d) = 0 if d # z).

The following lemma reduces the study of contracted semigroup rings of completely
0-simple semigroups to the study of rings of the form Jl*y{T;I,A\P). We shall show (Lemma
3.9) that, for a wide class of properties n, if R is 7t-semisimple, then RD is 7r-semisimple if
RD is.

LEMMA 3.1. Let D be a completely 0-simple semigroup represented as a Rees matrix
semigroup by D = JJ(G°; /, A; P). Then the contracted semigroup ring RD=J{*y{RG;I,A;P).

Proof. Let xeRD; say, x = <xld1 + . .. + andn, d{^ z. Each d{ is a Rees / x A matrix
over C°; suppose dx has gx # 0 as its (k,-, A,)-entry and zero elsewhere. Map a,rfj onto the
element ofJt*y {RG;I, A;P) with a,-^ as its (kh A,)-entry and zero elsewhere. Extend this map
linearly to all of RD; thus x maps into the sum of the images of a; dt (/ = 1,..,«). This map
is an isomorphism of RD onto Ji*y (RG;I,A;P).

DEFINITION 3.2. Let P be a A x / matrix over a ring T and let R = Jl*y(T; I, A;P).
P is cancellable with respect to /? if, for ,4 ei?, /4 # 0 imples that AP ¥= 0 and P ^ ^ 0.

REMARK. If T is a finite-dimensional algebra over some field and / and A are finite sets,
of cardinality n and m respectively, then m =£ n implies that no m x n matrix is cancellable
(see Clifford and Preston [4], p. 157). This is not the case if / and A are infinite.

Note also that the conditions AP # 0 and PA j= 0 are not redundant. In the following
lemma we use only the requirement that A # 0 implies that AP ^ 0. The significance of
requiring PA / 0 will be seen later.

LEMMA 3.3. Let R = J(*y(T\ I,A;P),S= M*(T; I, I). Then R is a left S-module. Define
<j>:R~>Sby<f>(A) = AP. Then

(i) (j) is both a ring homomorphism and an S-module homomorphism of R into S.

(ii) If P is cancellable with respect to R, then 4> is one-to-one and hence R is isomorphic to a
left ideal of S.

Proof. It was observed earlier that CeS, BeR imply that CBeR, and it is easy to check
that R is an S-module. Statements (i) and (ii) are immediate.

For cancellable P, Lemma 3.3 reduces the study of rings of the form Jl*y(T; I,A;P) to the
study of left ideals in M*(T;I,I), the ring of column bounded / x / matrices over T. The
next lemma will permit us to apply the results on radicals of left ideals in arbitrary rings which
we developed in Section 2.
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LEMMA 3.4. Let R = J/*y(T; I, A; P) and S = Jt*{J; I, T).

(i) P cancellable with respect to R and VL(TT) = {0} imply that 91(7?,,) = {0}.

(ii) 1\{TT) = {0} implies that 1\{sR) = {0}.

(iii) 91(̂ 7?) = {0} implies that 9T(Tr) = {0}.

Proof, (i) Let BeR, B ^ 0. Since P is cancellable, PB # 0. Let b be a nonzero entry
of PB in the (A,^-position. Since 9l(7V) = {0}, there exists aeT such that ab # 0. Let A
be the 7 x A matrix with a in the (1, A)-position and zero elsewhere. Then APB ^ 0; hence
2r(/?fl) = {0}. Statements (ii) and (iii) are proved similarly.

Recall that n is a Z-property if every ring T such that T2 = {0} is a Tt-ring.

THEOREM 3.5. Let n be a left inductive Z-property. Let R = J/*y(T; I, A; P) and
S = M*(T; I, I). IfP is cancellable with respect to R and %{T) = {0}, then W(R) = {0} if and
only if<%(S) = {0}.

Proof. 2f(Tr) and 9t(7Y) are ideals of T which square to zero. Since "UiJ) = {0} and n
is a Z-property, we can conclude that 2 t ( r r ) = {0} and 2f(TT) = {0}. Hence, by Lemma 3.4,
^((.Rjj) = {0} and 2f(si?) = {0}. Now, by Lemma 3.3, R is isomorphic to a left ideal of S since
P is cancellable. Applying Theorem 2.6, we conclude that <%(R) = {0} if and only if qi(S) = {0}.

This theorem and Lemma 3.1 effectively reduce the question of jr-semisimplicity of a
contracted semigroup ring of a completely 0-simple semigroup to the question of ^-semi-
simplicity of a ring S of column bounded matrices over a ring T.

LEMMA 3.6. Let n be a left inductive Z-property. Let S = M*(T; 1,1). Then any n-ideal
ofS is contained in M*(%(T);l,I). Hence %{T) = {0} implies that <^1{S) = {0}. Conversely
ifn satisfies Condition 2.3, then <%{s) = {0} implies that °U{T) = {0}.

Proof. Let A be a 7i-ideal of S. Let

A = {aeT\a is an entry in some matrix in A}.

We shall show that

TAT=\YJhait'i\tht'ieT, a^A, n = 1,2,3,...Is «(T).

If TAT = {0}, the claim is clearly true. Hence we may assume that there exist t, t' e T, aeA,
such that tat' ^ 0. Let L be the subset of S consisting of matrices whose first column has
entries from TAT and all other entries zero. L is a nonzero left ideal of S. Now A contains
all matrices with entries from the ideal TAT of T. For, given any aeA, the matrix with ttat[
as the (&:J)-entry and zero elsewhere is obtained by multiplying the matrix of A in which a
appears, say as the (/,w)-entry, on the left by the matrix with /,• in the (A:,/)-entry and zero
elsewhere and on the right by the matrix with // as the (w,y')-entry and zero elsewhere. Adding
finitely many such matrices produces any bounded matrix with entries from TAT. In par-
ticular, L £ A. Hence L is a 7c-ring, since n is left inductive. Now TAT is a homomorphic
image of L under the map which takes a matrix in L into its first entry. Hence TAT is a
7r-ring and so a 7r-ideal of T. Thus TAT^ °U(J). This implies that, if / is the ideal generated
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by (and containing) A, J3 £ %{T). Hence the image of / under the natural homomorphism
T-* Tj°ll{T) is a nilpotent ideal. But n is a Z-property; so Tl<ft{T), being 7r-semisimple, does
not contain any nilpotent ideals. Thus J s <%(T). Hence A £ <%(T) and so A £ Mf(<%(T); / , / ) .

Conversely, assume that n satisfies Condition 2.3 and that %{S) = {0}. Suppose Q is a
rc-ideal of T. Let Q be that subset of S consisting of matrices with first column entries from Q
and zero elsewhere. Then Q is a left ideal of S. Let N be the ideal of Q consisting of all
matrices with upper left-hand corner zero; then Q s QjN. Now N2 = {0}, so that N is a
7r-ideal of Q and hence Condition 2.3 implies that Q is a 7r-ring. But n is left inductive and so
S has no nonzero left rc-ideals. Hence Q, = {0} and thus Q = {0}. We have shown that T
has no nonzero rc-ideals. Hence <M(T) = {0}.

REMARK. The proof of the converse above was motivated by Amitsur's Theorem 6.3 in
[1].

THEOREM 3.7. Let R = J(*y{T; I, A; P). Let n be a left inductive Z-property satisfying
Condition 2.3. Then <%(R) = {0} if and only ifU{T) = {0} and P is cancellable with respect to
R.

Proof. Assume that %{J) = {0} and that P is cancellable. By Lemma 3.6, <%(S) = {0}.
Hence by Theorem 3.5, <&(R) = {0}. Conversely, assume that <%(R) = {0}. If P is not can-
cellable, then either 2t(R7?) or 9I(/?R) is not zero. Hence there is a nonzero ideal in R which
squares to zero. But this contradicts ^(R) = {0}, since n is a Z-property; therefore P is
cancellable. Also <%(R) = {0} implies that 2t(RiJ) = {0}, since n is a Z-property; hence, by
Lemma 3.4(iii), 2I( rr) = {0}. By part (ii) of the same lemma, 9IG-R) = {0}. Since we have
already shown that P is cancellable, Lemma 3.3 implies that R is isomorphic (as an 5-module)
to a left ideal of S. Hence, by Theorem 2.6(ii), <%{S) = {0} and, by Lemma 3.6, <Vt(T) = {0}.

REMARK. Condition 2.3 is only needed to prove that <%(R) = {0} implies that <%(T) = {0}.
Theorem 3.7 is now applied to contracted semigroup rings.

THEOREM 3.8. Let D be a completely 0-simple semigroup represented as a Rees matrix
semigroup by D = J/(GQ; I, A; P). Let nbe a left inductive Z-property satisfying Condition 2.3.
Then ^(R3) = {0} if and only if<%(RG) = {0} and P is cancellable with respect to

Proof. By Lemma 3.1, RD^J^*y(RG;I,A;P). The result now follows immediately
from Theorem 3.7.

REMARK. The stated conditions are sufficient for <?/(/?£*) = {0} without assuming that n
satisfies Condition 2.3.

The following lemma shows the connection between the 7r-semisimplicity of RD and that
oiRD.

LEMMA 3.9. Let n be an H-property. Let D be a semigroup with zero element z. Then

(i) <H(RD) = {0} and <%(R) = {0} imply that %{RD) = {0};

(ii) %{RD) = {0} implies that <U(R) = {0}.
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Proof, (i) RD = RD/I, where / is isomorphic to R. In general, for H-properties, if A
is an ideal of a ring T, then °U(A) = {0} and <%(T/A) = {0} imply that %(T) - {0}. The result
follows.

(ii) If P is a n-ideal of R, then {xeRD\x(z)eP, x(d) = Oif d± z) is an ideal of
isomorphic to P.

We shall continue to discuss the semisimplicity of RD. The implications for RD are
obvious.

Theorem 3.8 permits the application of any of the known results about group rings to
obtain corresponding results for semigroup rings. The theory applies to at least three of the
four properties that were discussed in Section 2A. As was observed then, all of the properties
satisfy the hypotheses of Theorem 3.8 except possibly nil.

Some examples of the application of Theorem 3.8 follow. There are others.

COROLLARY 3.10. Let D = J/(G°; /, A; P). Then @(RD) = {0} if and only if

(i) P is cancellable with respect to ̂ t*y (RG;I,A;P),

(ii) 0>(R) = {0},

(iii) the orders of the finite normal subgroups of G are cancellable in R.

Proof. Simply apply ConnelFs result for group rings ([5], p. 162) and Theorem 3.8.

COROLLARY 3.11. Let D = Ji(G°; I, A; P). Let F be a transcendental extension of the
rationals. Then /(FD) = {0} if and only if P is cancellable with respect to J^*y (FG ;I,A;P).

Proof. Amitsur [3] has shown that under these conditions /(FG) = {0}.

COROLLARY 3.12. (Munn). If F is afield and D is a finite 0-simple semigroup,

D = J/(G°,m,n;P),

then FD is completely reducible if and only if P is invertible regarded as a matrix over FG (in
particular m = n) and the characteristic of F does not divide the order of G.

Proof. FG is a finite dimensional algebra over F. For m x n matrices over finite dimen-
sional algebras, invertibility is equivalent to cancellability. (See [4], Corollary 5.10 and
Theorem 5.11.) Also, since FD is finite dimensional over F, FD is completely reducible if and
only if /(FD) = {0}. Applying Theorem 3.8, we see that FD is completely reducible if
and only if /(FG) = {0} and P is invertible. But, by Maschke's Theorem, /(FG) = {0}
if and only if the characteristic of F does not divide the order of G. The result follows.

We have not investigated the question of which completely 0-simple semigroups have
cancellable sandwich matrices P. This question deserves some study. For a particular class
of semigroups, however, the answer is easy. Brandt semigroups are defined in [4]. A semi-
group D is inverse if, for every aeD, there exists a unique x such that axa = a and xax = x.
Either of the following conditions is necessary and sufficient for a semigroup D with zero to
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be a Brandt semigroup:

(i) D is a completely 0-simple inverse semigroup,

(ii) D is isomorphic to a Rees 7 x 7 matrix semigroup J/(G°;I,I, A) over a group with

zero G° with the sandwich matrix A equal to the I x 7 identity matrix. (Cf. [4], Theorem 3.9.)

THEOREM 3.13. Let D be a Brandt {completely 0-simple inverse) semigroup with a maximal
subgroup G. Let n be a left inductive Z-property satisfying Condition 2.3. Then <%(RD) = {0}
// and only if fy(RG) = {0}.

Proof. The Rees structure theory shows that D = J{(G°; I, I, A) where G is a maximal
subgroup. The result follows from Theorem 3.8, since the identity matrix is always cancellable.

REMARK 3.14. Although Theorem 3.8 cannot be applied to the nil radical, it is possible to
obtain special results concerning the existence of one sided nil ideals in RD. It can be shown
that, if D = Jl(G°;I,h;P), P is cancellable with respect to .J?*y(RG;I,A;P) and RG has no
nil left ideals, then RD has no nil left ideals.
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