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ARTICLE

RADICL-seq identifies general and cell
type–specific principles of genome-wide
RNA-chromatin interactions
Alessandro Bonetti 1,2,18*, Federico Agostini 3,18, Ana Maria Suzuki1,4, Kosuke Hashimoto1,

Giovanni Pascarella1, Juliette Gimenez 5, Leonie Roos6,7, Alex J. Nash6,7, Marco Ghilotti1,

Christopher J. F. Cameron8,9, Matthew Valentine 1, Yulia A. Medvedeva10,11,12, Shuhei Noguchi1,

Eneritz Agirre 2, Kaori Kashi1, Samudyata2, Joachim Luginbühl1, Riccardo Cazzoli13, Saumya Agrawal1,

Nicholas M. Luscombe 3,14,15, Mathieu Blanchette8, Takeya Kasukawa 1, Michiel de Hoon1, Erik Arner1,

Boris Lenhard 6,7,16, Charles Plessy 1, Gonçalo Castelo-Branco 2, Valerio Orlando5,17* & Piero Carninci 1*

Mammalian genomes encode tens of thousands of noncoding RNAs. Most noncoding tran-

scripts exhibit nuclear localization and several have been shown to play a role in the reg-

ulation of gene expression and chromatin remodeling. To investigate the function of such

RNAs, methods to massively map the genomic interacting sites of multiple transcripts have

been developed; however, these methods have some limitations. Here, we introduce RNA

And DNA Interacting Complexes Ligated and sequenced (RADICL-seq), a technology that

maps genome-wide RNA–chromatin interactions in intact nuclei. RADICL-seq is a proximity

ligation-based methodology that reduces the bias for nascent transcription, while increasing

genomic coverage and unique mapping rate efficiency compared with existing methods.

RADICL-seq identifies distinct patterns of genome occupancy for different classes of tran-

scripts as well as cell type–specific RNA-chromatin interactions, and highlights the role of

transcription in the establishment of chromatin structure.
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T
he vast majority of mammalian genomes is pervasively
transcribed, accounting for a previously unappreciated
complexity of the noncoding RNA (ncRNA) fraction1. In

particular, long ncRNAs (lncRNAs) have emerged as important
regulators of various biological processes2. Although most
lncRNAs exhibit nuclear localization with enrichment for the
chromatin fraction, the genomic-interacting regions for most of
these transcripts are still unknown2,3.

Several technologies have been developed to map the genomic-
interacting sites of lncRNAs4–6. However, these methodologies
rely on the use of antisense probes to target individual transcripts
and are not suitable for de novo discovery and high-throughput
application in multiple cell types.

A few technologies have emerged to assess genome-wide
RNA–chromatin interactions7–9, but each has limitations. Map-
ping RNA-genome interactions (MARGI) is a proximity ligation-
based technology that requires a high number of input cells (i.e.,
hundreds of millions) and the disruption of the nuclear struc-
ture7, which can result in detection of a large number of spurious
interactions10; because of this, it has limited applicability
to investigations of RNA–chromatin interactions in multiple
cell types. Chromatin-associated RNA-sequencing (CHAR-seq)
and global RNA interaction with DNA by deep-sequencing
(GRID-seq) utilize in situ approaches to detect genome-wide
RNA–chromatin contacts8,9. CHAR-seq requires a large number
of cells as starting material and the use of DpnII to digest the
chromatin. Because DpnII has a restricted number of sites across
the genome, this method has limited coverage of captured
RNA–DNA interactions9. In addition, the technology does not
size select the molecules containing both interacting RNA and
DNA, resulting in a large fraction of uninformative sequences in
the final library. GRID-seq preferentially captures nascent
RNA–chromatin interactions and, consequently, may overlook
the presence of other patterns of genome occupancy by specific
classes of transcripts. Furthermore, its reliance on a restriction
enzyme for chromatin fragmentation coupled with read length
restricted to 20 nucleotides (nt) limits both genome coverage and
mappability.

To address these limitations, we introduce RNA And DNA-
Interacting Complexes Ligated and sequenced (RADICL-seq), a
methodology to identify genome-wide RNA–chromatin interac-
tions in crosslinked nuclei that substantially improves on pre-
viously published methods. Specifically, RADICL-seq reduces the
bias for nascent transcription while increasing genomic coverage
and unique mapping rate efficiency. Application of RADICL-seq
to mouse embryonic stem cells (mESCs) and mouse oligoden-
drocyte progenitor cells (mOPCs) reveals distinct genome occu-
pancy patterns for specific classes of transcripts and uncovers
cell-type-specific RNA–chromatin interactions. Furthermore, our
results highlight the role of transcription in the establishment of
the three-dimensional (3D) structure of chromatin.

Results
RADICL-seq technology. We developed RADICL-seq by using
R08, a male mESC line with a deeply characterized tran-
scriptome11, to identify genome-wide RNA–chromatin (or
RNA–DNA) interactions in preserved nuclei (Fig. 1a). We
crosslinked cells with 1% formaldehyde (FA) unless stated
otherwise. After crosslinking we isolated the nuclei, partially
digested the genomic DNA with DNase I, and end-prepared the
chromatin. During technical development of RADICL-seq, we
evaluated different enzymes that specifically act on RNA to
generate a 3ʹ-hydroxyl end compatible with RNA ligation (Sup-
plementary Fig. 1a). Sequencing data of test RADICL-seq libraries
showed that RNase H treatment increased the percentage of

uniquely mapped RNA–chromatin interactions by decreasing the
ribosomal RNA (rRNA) content, when compared with nuclease
S1 or RNase V1 treatment, or no treatment. RNase H is known to
target RNA–DNA hybrids and, therefore, it could potentially
digest nascent RNA bound to its transcription locus, including
the highly transcribed rRNA. Indeed, we observed a 1.7-fold
reduction in the number of RNA–DNA interactions occurring at
a distance of <1 kb between RNase H-treated and -untreated
samples (Supplementary Fig. 1b).

After enzymatic treatment of the RNA, we introduced a bridge
adapter to specifically ligate proximal RNA and DNA (Supple-
mentary Fig. 1c). The adapter is a 5ʹ pre-adenylated, partially
double-stranded DNA linker with an internal biotin moiety and a
thymidine (T) overhang located at the 3ʹ end. The adapter was
selectively ligated to available 3ʹ-OH RNA ends, and the excess of
non-ligated adapter was washed away before DNA ligation was
performed to capture the digested genomic DNA ends located in
near proximity (Fig. 1a). The experimental design of RADICL-seq
not only allows for unambiguous discrimination of RNA and
DNA tags within the chimeric construct but also correctly assigns
sense and antisense transcripts by retaining the information on
the RNA fragment strand. After reversal of crosslinks, the
resulting RNA–adapter–DNA chimera was converted to double-
stranded DNA by reverse transcription and second-strand DNA
synthesis, followed by digestion with the type III restriction
enzyme EcoP15I, which cleaves 25 to 27 nucleotides (nts) away
from each of its two recognition sites strategically placed within
the adapter (Supplementary Fig. 1c). Next, the digested DNA
fragments were end-prepared and ligated to sequencing linkers.
Finally, the biotinylated adapter-ligated molecules were captured
and PCR amplified, and the library corresponding to the correct
RNA–adapter–DNA ligation product size was gel purified
(Supplementary Fig. 1d).

To test whether the captured interactions were dependent on
the amount of crosslinking agent, we compared results for 1 and
2% FA (1FA and 2FA) datasets. After deep sequencing,
RADICL-seq produced an average of 120 and 115 million
150-nt single-end raw reads from 1FA and 2FA libraries,
respectively (Supplementary Fig. 2a). Each library with the two
different crosslinking conditions yielded over 15 million
RNA–DNA pairs uniquely mapping to the reference genome
(Supplementary Fig. 2a). We prepared libraries from three
biological replicates for each experimental condition. RADICL-
seq exhibited high reproducibility among biological replicates
and conditions, even when crosslinked with different FA
concentrations (Fig. 1b and Supplementary Fig. 2b). Since
results obtained with 1 and 2% FA crosslinking were highly
comparable, all analyses described below were conducted with
1FA unless stated otherwise.

To characterize the interactions detected by RADICL-seq, we
annotated RNA–DNA pairs that could be uniquely mapped to the
genome. The RNA tags were found to be primarily from genic
regions with a dominant contribution from intronic reads
(Fig. 1c). In contrast, DNA tags had an equivalent contribution
from genic (mainly intronic) and intergenic regions (Fig. 1d).
When the distributions of RNA and DNA tags captured by
RADICL-seq were compared with the background distribution,
we observed an enrichment for regions of the genome that have
functional annotations (Supplementary Fig. 2c). We assigned
the RNA and DNA fragments captured by RADICL-seq to the
genomic features annotated by the GENCODE consortium12 and
analyzed their distribution among different classes of gene
biotypes (Supplementary Fig. 2d). Protein-coding genes were
the most abundant class of loci detected by RADICL-seq at both
the RNA and DNA level. Indeed, we observed multiple classes of
transcripts interacting with chromatin regions encompassing
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protein-coding genes, suggesting a multi-layered regulation for
the expression of these mRNAs.

When the expression of chromatin-interacting RNAs was
compared with fractionated RNA-seq data11, higher correlation
was found with the nuclear fraction than the cytosolic counter-
part (Fig. 1e, f). This finding is consistent with RADICL-seq
capturing ligation events occurring between RNAs and DNAs
located within intact nuclei.

Although the majority of DNA reads captured by RADICL-seq
originated from euchromatin (based on DNase I hypersensitive
site sequencing (DHS-seq) and assay for transposase-accessible
chromatin using sequencing (ATAC-seq) data), we observed a
minor enrichment from genomic regions located in heterochro-
matic regions, consistent with the role of some lncRNAs as
repressors of gene expression13 (Fig. 1g).

To better evaluate the quality of our results, we developed two
controls (Supplementary Fig. 3a). The first control was used to
test the stability of RNA–chromatin interactions upon transcrip-
tional blockade. Hence, we treated mESCs with actinomycin D
(ActD), an inhibitor of RNA polymerase II (RNA pol II)
elongation14, for 4 h before crosslinking with 1% FA (Supple-
mentary Fig. 3b, c). The second control was developed to estimate
the specificity of RNA–chromatin interactions mediated by the
presence of proteins. To this end, 1% FA crosslinks were reversed

immediately before the RNA ligation reaction by digesting the
sample with proteinase K in denaturing conditions. As a result,
RNA and DNA would be able to reproducibly interact only if the
binding was direct and not mediated by the presence of proteins.
We defined this dataset as “non-protein mediated” (NPM)
(Supplementary Fig. 3d, e). Since the standard 1% FA cross-
linking condition includes both protein-mediated and NPM
interactions, we defined the 1FA dataset as “total.” Although total
and ActD-treated datasets displayed a relative similarity in the
distribution of their RNA–DNA interactions, the two datasets
greatly differed from the NPM dataset (Supplementary Fig. 4).

Comparison of RADICL-seq with existing technologies.
RADICL-seq introduces substantial improvements over similar
RNA–chromatin proximity ligation approaches7–9. Compared
with MARGI, RADICL-seq minimizes the frequency of spurious
interactions in the dataset by performing the in situ ligation in
intact nuclei. Moreover, RADICL-seq requires a substantially
lower number of cells (two million) than MARGI or CHAR-seq,
which require 400 and 100 million cells, respectively.

RADICL-seq differs from GRID-seq in four main technical
aspects (Fig. 2a), as described below:

(i) In the fixation step, GRID-seq employs a higher
concentration of FA and uses disuccinimidyl glutarate, a strong
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protein–protein crosslinker, thus capturing RNA and DNA
linked together indirectly via multiple protein intermediates15.

(ii) The GRID-seq protocol employs the type II restriction
enzyme MmeI to trim RNA- and DNA-interacting sequences,
generating 20-nt tags as opposed to the 27-nt tags produced by
the EcoP15I restriction enzyme, thus resulting in tags that are
more difficult to map uniquely to the genome. Indeed, when we
compared the percentage of sequencing reads that can be mapped
to the mouse genome, RADICL-seq outperformed GRID-seq with
a more than a 3-fold increase in uniquely mappable reads (45%
vs. 14%) (Fig. 2b). To confirm this result, we artificially trimmed
down RADICL-seq tags (i.e., 27 nt) to generate RNA and DNA
reads with lengths similar to those obtained by GRID-seq tags
(i.e., 20 nt) and observed a dramatic reduction in the fraction of
uniquely mapped RNA–DNA interactions (from 45 to 10%),
comparable to the rate observed for the GRID-seq dataset and in
concordance with previous findings16. This difference affects both
the number and the type of detected interactions because reads
encompassing repetitive regions are intrinsically more difficult to
map than those from other genomic regions.

(iii) GRID-seq technology digests genomic DNA with AluI,
whereas the RADICL-seq protocol employs a controlled DNase I
digestion that avoids the sequence biases encountered with
restriction enzymes, and, therefore, generates a more homo-
geneous shearing of the chromatin. When we looked at the
genomic coverage of DNA regions identified by both technolo-
gies, RADICL-seq exhibited higher coverage (Fig. 2c). We
additionally observed that RADICL-seq genome coverage
increased proportionally with the sequencing depth, whereas
the coverage of GRID-seq converged to a plateau (Fig. 2c).

(iv) Finally, RADICL-seq employs RNase H treatment prior to
the RNA ligation step to reduce the number of captured
interactions generated by nascent transcription and consequently
increases the variety of captured RNA–DNA interactions. When
compared with uniquely mapped RNA and DNA reads detected
by GRID-seq, the RADICL-seq dataset showed increased
detection of intergenic transcripts and ncRNAs (Supplementary
Fig. 5a). Moreover, in GRID-seq data we observed both a higher
contribution of intronic coding RNA reads (66.9% vs. 54.7%)
(Supplementary Fig. 5a) and a 2.5-fold increase in RNA–DNA
interactions occurring at a distance below 1 kb than in the
RADICL-seq data (Fig. 2d), which suggests a higher content of
nascent transcripts in this set of interactions. Furthermore,
GRID-seq DNA reads exhibited stronger enrichment for
the H3K36me3 signal, a marker of elongating RNA pol II
(Supplementary Fig. 5b), suggesting a stronger bias for nascent
transcription when compared with RADICL-seq. In contrast,
RADICL-seq captured RNA sequences derived from the bodies of
annotated genes and enriched for histone modifications asso-
ciated with exonic regions (H3K4me3 and H3K9Ac; first exon
and intron regions were removed for the analysis, Supplementary
Fig. 5c, d), indicating enrichment for mature transcripts17.
Notably, RADICL-seq uses a similar amount of input cells as
GRID-seq, but it achieves higher detection power by yielding a
higher number of informative RNA–DNA interactions at a lower
cost. The publicly available GRID-seq dataset has higher
sequencing depth (156.6M raw/total reads), but yields less usable
reads (14M uniquely mapped reads; 8.9% of the total)9, whereas
RADICL-seq was sequenced at a lower depth (121.9M total reads)
and produced 19.9M uniquely mapped reads (16.3% of all
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sequenced reads). Moreover, when comparing the capture rate for
different classes of transcripts between the two technologies, we
observed that RADICL-seq detects a higher number of RNAs
from different biotype groups compared to GRID-seq (up to one
order of magnitude for antisense, lincRNAs and protein-coding
classes, Supplementary Table 1), thus widening the spectrum of
RNA–DNA interactions that is otherwise unattainable with
GRID-seq.

Interestingly, while GRID-seq displayed a larger fraction of
captured cis (i.e., intrachromosomal) interactions, RADICL-seq
recovered ~30% more trans interactions (i.e., interactions where
RNA and DNA tags in the pair are mapped to different
chromosomes) (Fig. 2d), thus providing a vastly expanded
interaction dataset for investigating long-range RNA–chromatin
associations. We overall observed lower correlation between
technologies than within replicates (Supplementary Fig. 5e),
suggesting that RADICL-seq and GRID-seq capture different sets
of interactions.

We evaluated the extent of known interactions captured by
RADICL-seq and GRID-seq by comparing the genomic targets of
Malat1 (lncRNA) and Rn7sk (small nuclear RNA) detected by
RADICL-seq with those observed using RNA antisense purifica-
tion, followed by DNA-sequencing (RAP-DNA)15 for Malat1 and
chromatin isolation by RNA purification (ChIRP-seq)18 for
Rn7sk. Malat1 targets detected by RADICL-seq data had a
genomic distribution comparable to that of Malat1-targeted RAP-
DNA libraries prepared from pSM33 ES cells15 (Supplementary
Fig. 5f). The RADICL-seq list of targets confirmed 78% of
Malat1-decorated protein-coding genes in the RAP-DNA library
compared with 69% of targets found by GRID-seq (Fig. 2e).
When compared with GRID-seq, RADICL-seq exhibited a lower
percentage of genomic targets that were not detected by RAP-
DNA. For the genomic targets of Rn7sk detected by ChIRP-seq18,
RADICL-seq detected over 20-fold more interactions mediated by
Rn7sk than did GRID-seq (9.491 and 0.357 average normalized
counts in RADICL-seq and GRID-seq, respectively). Further-
more, RADICL-seq detected 56% of the protein-coding genes
interacting with Rn7sk, compared with only 13% of targets for
GRID-seq (Fig. 2f).

Collectively, these analyses suggest that RADICL-seq captures
RNA–chromatin interactions more comprehensively and with
less genomic bias when compared with GRID-seq.

Recently, a technology that maps DNA–DNA contacts, split-
pool recognition of interactions by tags extension (SPRITE)19 has
been published. SPRITE has also the capability to map
RNA–chromatin interactions, and it has been used to map
RNA–DNA contacts in mESCs. However, we noticed that out of
52.5M total DNA–DNA and RNA–DNA complexes identified by
SPRITE, only 0.275M (0.5%) contained RNA species, and 80% of
these contained rRNA. Hence, this indicates that RNA–DNA
interactions detected by SPRITE are only corollary to the
overwhelming majority of rRNA-mediated chromatin interac-
tions. Nevertheless, we included SPRITE data in our analysis and
compared RNA–DNA interactions captured by existing technol-
ogies in mESCs. Compared to other technologies, RADICL-seq
exhibited significantly higher resolution for the genomic DNA
signal for Malat1 (Supplementary Fig. 5g) and Rn7sk (Supple-
mentary Fig. 5h), respectively.

Identification of robust RNA–chromatin interactions. The
RADICL-seq technology yields a large amount of interaction data
with a complexity comparable to that obtained with Hi-C tech-
nology. Consequently, to account for the occurrence of spurious
events, we decided to adopt an approach similar to that employed
in Hi-C analyses20–22; this approach assumes that all biases

(e.g., amplification biases due to differences in sequence com-
position across the genome) are reflected in the observed inter-
action counts. To this end, we partitioned the linear genome
into intervals (i.e., bins of 25 kb, see Methods) to represent the
RADICL-seq data as a contact matrix between RNA and DNA
loci. We then used a one-sided cumulative binomial test to detect
significant RNA–chromatin interactions, assuming that the
transcript-specific background interaction frequency of a given
RNA and a genomic interval depends also on their relative
genome-wide coverage23. We employed the Benjamini–Hochberg
multiple-testing correction to control for the false discovery rate
and used an adjusted P cut-off of 0.05 to define the “significant”
set (Supplementary Fig. 6a). The resulting significant dataset
displayed different distributions for specific transcript biotypes
(Supplementary Fig. 6b). By applying this method to RADICL-
seq data produced from the total dataset, 288,065 unique, robust
RNA–DNA-interacting loci, supported by 8,420,123 interactions,
were identified as statistically significant (Supplementary Fig. 6c).
As expected, many of the trans interactions were removed
because of their lower occurrence and inherent difficulty in being
consistently detected at the chosen sequencing depth (Supple-
mentary Fig. 6c). The RNA–chromatin interactions were medi-
ated by 14,001 transcripts, with a prevalent contribution from
protein-coding transcripts (12,441 transcripts; 89%) followed by
lncRNAs (1430 transcripts; 10%) (Supplementary Fig. 6d). Fur-
thermore, the RNAs that interacted the most with the chromatin
were similar across experimental conditions (Supplementary
Table 2).

To compare RNA–chromatin interaction patterns across
different cell types, we performed RADICL-seq (using 1% FA)
on oli-neu, a neural cell line derived from mOPCs24 (Supple-
mentary Fig. 7a). Again, the three biological replicates exhibited
high reproducibility, but markedly lower correlation with the
mESC biological replicates, suggesting cell specificity in a
substantial fraction of the captured interactions (Supplementary
Fig. 7b). Interestingly, the proportion of the noncoding
transcriptome captured by RADICL-seq in mOPC total dataset
showed markedly higher detection of lncRNAs (Supplementary
Fig. 7c, d) compared with the equivalent dataset in mESCs
(Fig. 1c, d). Although mapping of RNA and DNA tags from the
mOPC NPM dataset (Supplementary Fig. 8a–c) revealed a
distribution of biotypes similar to the mOPC total dataset, we
observed higher variability in the frequency of RNA–DNA
interactions between conditions than within replicates (Supple-
mentary Fig. 8d). As for mESCs, we filtered for robust
RNA–chromatin interactions in both mOPC datasets (Supple-
mentary Fig. 9a–c), and, hereafter, we have used the significant
interactions in all the analyses described below.

To globally visualize the RNA–DNA interactions in the mESC
and mOPC total datasets, we arranged each transcript and its
interacting genomic regions in a two-dimensional contact matrix.
For each 25-kb bin, the highest contributing RNA region and
class were depicted and quantified according to distance
categories (Fig. 3a–c). A clear trend for proximal interactions
emerged, highlighted by a diagonal signal dominated by intronic
RNA signal (Fig. 3a) derived from protein-coding genes (Fig. 3b).
On the one hand, we observed that the number of interactions in
cis from intronic regions increased with the distance to the
genomic region bound by the transcript, and on the other hand,
we observed a dominant contribution of exonic regions from
noncoding transcripts in the trans interactions (Fig. 3c).
Remarkably, a few noncoding transcripts, such as Malat1, the
small nuclear RNA Gm22973, and the small nucleolar RNA
Snord118, which is involved in splicing, exhibited extensive trans-
interaction patterns (Fig. 3a). In mOPCs, we observed the same
trend of dominant contribution of intronic protein-coding and
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exonic noncoding transcripts for cis and trans interactions,
respectively (Fig. 3d–f). In addition, most lncRNAs displayed
preferential binding to chromatin with local (≤10 kb), short- (>10
and ≤100 kb) and medium-range (>100 kb and ≤1Mb) cis
patterns in both cell types (Supplementary Table 3).

To further strengthen the substantial difference between
RADICL-seq and GRID-seq technologies, we proceeded by
analyzing their datasets of significant interactions. We confirmed
that RADICL-seq retains a much higher genomic coverage than
GRID-seq even when we consider only significant interactions
(Supplementary Fig. 10a). In order to investigate whether GRID-
seq data would be able to find similar results to those obtained
with RADICL-seq (Fig. 3), we called significant interactions from
GRID-seq data by using the same statistical approach we
employed for RADICL-seq. Then, we plotted the proportion of
specific RNA biotypes for different intervals of RNA–DNA
interaction distances (Supplementary Fig. 10b). The comparison
between the two technologies shows that GRID-seq captures
considerably less long-range cis and trans RNA–chromatin
interactions, specifically those mediated by ncRNAs (Supplemen-
tary Fig. 10c).

Global patterns of interactions indicated clear differences
between the two cell types for both cis and trans interactions.
Specifically, we observed large domains of cis interactions
distributed along each chromosome with various transcripts
interacting with broad regions of the chromosome from which
they originate in a cell-type-specific manner (Supplementary
Fig. 11a, b). For example, Pvt1 contacted large portions of its
chromosome of origin in both cell types, whereas Malat1
interacted widely across the genome with cell-type-specific
patterns, and Gm22973 contacted multiple chromosomes but
only in mESCs (Supplementary Fig. 11a, b).

We sought to investigate whether the DNA binding could be
connected to the transcriptional levels of the RNAs involved in
the interactions. Accordingly, we generated cap analysis of gene
expression (CAGE) data from the nuclear fraction of mESCs and
mOPCs, and divided the genic transcripts into expression
quartiles (I: lowest; IV: highest). When we plotted the number
of interactions as a function of the distance to the gene body in
the total datasets of both cell types, we observed a sharper
decay rate for transcripts that were expressed at lower levels,
suggesting that the expression plays a role in the establishment of
RNA–DNA contacts proximal to the transcription locus (Sup-
plementary Fig. 12a, b). However, we noticed that a fraction of cis
interactions occurring at considerable distance from the gene
body were still present after treatment with ActD, which suggests
that factors other than transcriptional activity might play a role in
the formation of such contacts (Supplementary Fig. 12a). Indeed,
in ActD-treated mESCs, we still observed a prevalent intronic
RNA signal from protein-coding genes in cis interactions
(Supplementary Fig. 13a–c); however, the inhibition of RNA
pol II elongation resulted in a strong depletion of the signal in
long- (>1Mb and ≤10Mb, 1.4% vs. 9.1% in total dataset)
and extreme long-range (>10Mb, 0.5% vs. 1.8% in total dataset)
cis interactions (Supplementary Fig. 13c). Furthermore, the
contribution of ncRNAs was increased in the subset of extreme
long-range cis interactions, and, interestingly, a significant
number of trans interactions were preserved (Supplementary
Fig. 13a, b) and appeared in the same regions of the genome as in
the total dataset (Fig. 3a, b).

In the NPM datasets of both cell types, the broadening of the
signal from the diagonal observed in the total datasets (Fig. 3a, b)
was completely lost (Supplementary Fig. 13d, e, g, h), suggesting
a relevant contribution of proteins in the establishment of
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RNA–chromatin interactions. Genome-wide binding of specific
noncoding transcripts was absent, although we observed
genomic regions highly bound by RNAs with cis and trans
contacts. Moreover, we observed a dramatic drop in trans
interactions involving exonic RNAs from noncoding genes, which
suggests that most of these interactions are protein mediated
(Supplementary Fig. 13f, i).

To further investigate the nature of direct binding between
RNA and DNA molecules, we examined the distribution of the
distances between interacting RNA and DNA tags in the mESC
and mOPC NPM datasets (Supplementary Fig. 14a). We observed
a dominant contribution (>85%) of interactions where both RNA
and DNA tags were complementary to each other (distance of <1
kb) compared with only 4.5% in the total datasets (Supplemen-
tary Fig. 14a, b). Next, we looked at the overlap of DNA tags
captured by the NPM and total datasets with available DRIP-seq
data that maps the location of R-loops genome-wide in mESCs25

(Supplementary Fig. 14c). There was a relative enrichment of
RADICL-seq DNA tags across DRIP-seq peaks in the NPM
dataset compared with the total dataset, possibly indicating an
over-representation of R-loops. As the remaining fraction of
direct RNA–DNA interactions in the NPM dataset could not be
explained by complementarity of RNA and DNA strands, we
examined whether these interactions could be mediated by the
formation of triple-helical nucleic acid structures26. To this end,
we analyzed the interactions of lncRNAs that are known to form
triple helices with DNA26,27, namely Malat1 and Meg3. We found
that these transcripts were among the lncRNAs with the highest
number of trans contacts (Supplementary Table 4) and that they
are likely to form triplexes in close proximity to these contacts
(Supplementary Fig. 14d–i).

Influence of 3D chromatin architecture on RNA–DNA inter-
actions. To better understand the relationship between the
interactions captured by RADICL-seq and the 3D architecture of
the genome (i.e., DNA–DNA contacts and/or genomic distance),
we leveraged Hi-C data produced from similar cell types (mESCs
and neural progenitor cells)28. At 25-kb resolution, the fre-
quencies of cis RNA–DNA contacts in the total datasets moder-
ately correlated with normalized Hi-C DNA–DNA contacts
(Pearson’s correlation coefficient= 0.56 for both cell types, Sup-
plementary Fig. 15). However, about 30% of the variance (based
on the above correlation coefficient) in the cis RNA–DNA contact
frequency could be explained by genomic architecture. The
remaining ~70% of variance in RNA–DNA contacts is most likely
a combination of noise and true signal that is not linearly
dependent on spatial distance between genomic loci.

We investigated the distribution of DNA tags with respect to
topologically associating domains (TADs) identified in the above
Hi-C data28 and found a clear signal enrichment at TAD
boundaries in both cell types total and NPM datasets (Fig. 4a, b).
This finding was replicated also in the mESC ActD dataset.
(Supplementary Fig. 16a). Furthermore, we observed enrichment
for RNA tags at TAD boundaries primarily in the NPM condition
in both cell types (Fig. 4c, d and Supplementary Fig. 16b).
Interestingly, we obtained a similar enrichment for DRIP-seq
signal25 at the TAD boundaries, possibly suggesting a relationship
between TAD formation and the generation of R-loops
(Supplementary Fig. 16c). These results underline the importance
of including the NPM condition to capture biological features
that might be otherwise overlooked by solely using total datasets.
Finally, we surveyed RNA–DNA interactions located in A and B
compartments (i.e., preferentially open and closed chromatin,
respectively) for both the mESC and mOPC total datasets
(Supplementary Fig. 16d). Although we did not observe

significant enrichment of RNA classes (protein coding or
lncRNA) for any compartment, the results showed a clear
segregation of A and B compartments with transcripts originating
from one compartment mainly involved in interactions within the
same compartment.

Next, we asked whether RNAs originating from loci positioned
within or outside TADs showed specific DNA-binding patterns,
possibly dictated by genomic structural constraints. When we
looked at the distribution of the signal for RNAs transcribed
within TADs in the mESC and mOPC total datasets, we found
it to dramatically drop outside the domain regions, whereas
the signal from transcripts transcribed outside TADs showed the
opposite trend (Fig. 4e, f), thus suggesting a barrier effect for the
RNA migration into or out of TADs that prevents free diffusion.
Collectively, our results highlight a putative role for TADs in
shaping RNA–chromatin interactions in mESCs, mOPCs, and
possibly other cell types.

Transcripts containing repeat elements differentially engage in
specific chromatin interactions. Repeat elements (REs) have
emerged in recent years as key contributors to genomic regulation
and organization29. In the mESC and mOPC total datasets we
observed that ~12% and ~8%, respectively, of the uniquely
mapped genic RNA tags intersected with REs as defined by
RepeatMasker30 (Supplementary Fig. 17). In mESCs, the most
abundant classes of intragenic REs were small nuclear RNA
(snRNA) (~39%) and SINE (short interspersed elements) (~35%),
followed by LINE (long interspersed elements) and LTR (long
terminal repeat) (both ~9%) (Supplementary Fig. 18). In mOPCs
the most abundant classes were SINE (~48%) followed by LINE
(~20%) and LTR (~15%); intriguingly, the frequency of snRNAs
involved in RNA–DNA interactions was dramatically lower in
mOPCs (<1%) than in mESCs (Supplementary Fig. 18). We
annotated non-self RNA–chromatin interactions for the most
abundant classes of intragenic REs across increasing distances
from the site of transcription. When we compared them to
interactions not involving REs, we found a remarkably well-
defined RE-specific pattern of cis interactions that was repro-
ducible in both cell types (Fig. 4g, h). In terms of differences
among different RE families, RNA–DNA pairs where the RNA
mapped to SINE were found to be enriched at distance intervals
of ≥10 kb and <1Mb, whereas RNAs that mapped to LINE and
LTR were proportionally depleted at linear distances of <100 kb,
but significantly enriched at longer range intervals (Fig. 4g, h)
even in the absence of nascent transcription (Supplementary
Fig. 19). Although pairs where the RNA mapped to SINE, LINE,
or LTR displayed no trans interactions, those mapping to
snRNAs exhibited extensive trans interactions (>95%, Fig. 4g, h
and Supplementary Fig. 19). Collectively, these analyses show that
transcripts containing REs are engaged in cis interactions with the
chromatin, which is in agreement with previous studies that
reported their association with euchromatin29.

RADICL-seq identifies cell-type-specific RNA–DNA interac-
tions. To better understand the involvement of RNA in genome
organization and the fine-tuning of cell-specific gene expression,
we compared genome-wide RNA–DNA binding profiles and
capture rates between mESCs and mOPCs. For each transcript,
we calculated the Jaccard distance between the RNA–DNA
binding profiles as a function of the difference in RADICL-seq
capture rate, here considered a proxy for gene expression
(Fig. 5a). As expected, there was a clear relationship between
differential transcript abundance and differences in RNA–DNA
binding profiles. However, even at comparable expression levels,
we observed a diversity of interaction patterns among various
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Statistical significance was calculated with the two-tailed Student’s t test. *P≤ 0.05; **P≤ 0.01; ***P≤ 0.001. All panels were generated using significant

datasets. Source data are available in the Source Data File.

0MB 1
0MB 2

0MB 3
0M

B 4

0M
B 5

0M
B 6

0
M

B 7
0
M

B 8
B

M
0

9
0
M

B

1
0

0
M

B

1
1

0
M

B

1
2

0M
B

130M
B

14

0M
B

150MB

16
0MB

170MB

18
0MB

19
0MB

X
0MB

Y
0MB

B
M

2
7

8
1
M

B

9
0
M

B

99
M

B

10
8M

B

117MB

126MB

135MB

9MB

18MB

27M
B

36M
B

4
5
M

B

5
4
M

B

6
3
M

B

144MB

c
h
ro

m
_
7

Neat1

1

10

100

1000

10,000

1 10 100 1000 10,000

RADICL-seq counts mESC

R
A

D
IC

L
-s

e
q
 c

o
u
n
ts

 m
O

P
C

–10 –5 0 5 10

RADICL-seq mESC/mOPC (normalized interactions)

0

1000

2000

N
o
rm

a
liz

e
d
 c

o
u
n
ts

mESCs mOPCs

Fgfr2

a c

d e g

mOPCs mESCs

b

mESC enrichedmOPC enriched

Neat1 Fgfr2

f

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Percent difference in gene expression

J
a
c
c
a
rd

 d
is

ta
n
c
e
 o

f 
R

N
A

 b
in

d
in

g
 p

ro
fi
le

0MB 1
0MB 2

0MB 3
0M

B

4

0M
B 5

0M
B

6
0
M

B
7

0
M

B
8

0
M

B

9
0
M

B

1
0

0
M

B

1
1

0
M

B
1
2

0M
B

130M
B

140M
B

150MB

16
0MB

170MB

18
0MB

19
0MB

X
0MB

Y
0MB

3
2
M

B

3
6
M

B

4
0
M

B

44
M

B

48M
B

52MB

56MB

4MB

8MB

12M
B

16M
B

2
0
M

B

2
4
M

B

2
8
M

B

60MB

c
h
ro

m
_
1
9

0MB 1
0MB 2

0MB 3
0M

B

4

0M
B 5

0M
B

6
0
M

B

7
0
M

B 8
0
M

B

9
0
M

B

1
0

0
M

B

1
1

0
M

B
1
2

0M
B

130M
B

140M
B

150MB

16
0MB

170MB

18
0MB

19
0MB

X
0MB

Y
0MB

3
2
M

B

3
6
M

B

4
0
M

B

44
M

B

48M
B

52MB

56MB

4MB

8MB

12M
B

16M
B

2
0
M

B

2
4
M

B

2
8
M

B

60MB

c
h
ro

m
_
1
9

0MB 1
0MB 2

0MB 3
0M

B 4

0M
B 5

0M
B 6

0
M

B
7

0
M

B 8
B

0

9
0
M

B

1
0

0
M

B

1
1

0
M

B
1
2

0M
B

130M
B

14

0M
B

150MB

160MB

170MB

18
0MB

19
0MB

X
0MB

Y
0MB

B
M

2
7

8
1
M

B

9
0
M

B

99
M

B

10
8M

B

117MB

126MB

135MB

9MB

18MB

27M
B

36M
B

4
5
M

B

5
4
M

B

6
3
M

B

144MB

c
h
ro

m
_
7

0 2 4 6 8 10 12 14 16

log2(Count)
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transcripts between the two cell types (e.g., Hunk and Ralgapa2,
Supplementary Fig. 20a–d). When transcripts were divided into
differential expression deciles, for genes with <40% difference in
gene expression between the two cell types, we found no link
between differential gene expression and changes in genome-wide
binding profile (Supplementary Fig. 20e). These results suggest
that, although expression plays a role in determining the binding
pattern of a transcript, the DNA binding profile for genes
expressed at similar levels may be governed by other factors, such
as 3D chromatin architecture or epigenomic state.

Next, we assessed whether RADICL-seq can be used to
discriminate biologically relevant differences between cell types.
To this end, we collected from the literature a list of marker genes
that are specifically expressed in mESCs or mOPCs (Supplemen-
tary Table 5) and used RADICL-seq to analyze patterns of
RNA–chromatin regulation at the genomic regions containing
these markers. To compare cell-specific RNA–chromatin inter-
actions at the gene level, we used the total datasets to calculate the
mESC/mOPC ratio of the normalized RADICL-seq counts of
bound RNAs for the promoter regions (defined as ±2 kb around
the transcription start site [TSS]) of all genes. We examined the
positions of the cell-specific markers in the distribution of these
mESC/mOPC ratios and found that they segregated towards the
tails of the distribution according to the cell line in which they
were expected to be more highly expressed (Fig. 5b). Our results
suggest that the technology is able to discriminate cell-type-
specific features.

To investigate in greater detail whether RNA–chromatin
interactions could play a role in gene expression, we employed
CAGE data to annotate de novo promoters in mESCs and
mOPCs. For both total datasets, we compared the distribution of
unique RNAs interacting with promoter regions of genes that are
transcriptionally active with those that are inactive. We did not
observe any clear difference between the two groups in either cell
type (Supplementary Fig. 21a, b), indicating that gene expression
does not seem to be dependent on the number of unique
interacting RNAs. However, the top 100 promoters of the genes
that interacted with the highest number of unique RNAs
clustered in different chromosomes in the two cell types:
predominantly in chromosomes 8 and 11 in mESCs and in
chromosome 5 in mOPCs (Supplementary Fig. 21c, d).

When comparing the number of unique genomic targets for
each transcript detected in the total datasets for mESCs vs.
mOPCs, we observed a linear correlation with the presence of
some outliers (Fig. 5c). Among the RNAs that showed large
deviations from the diagonal (i.e., transcripts that had dissimilar
patterns of interactions between the cell types), we selected Neat1
and Fgfr2 as representative examples of transcripts having higher
RADICL-seq counts in mOPCs and mESCs, respectively. The
nuclear lncRNA Neat1 is one of the main components of
paraspeckles, membrane-less compartments present in the
nucleus of differentiated cells31. In mESCs, Neat1 exists as a
shorter isoform, which is unable to promote the formation of
paraspeckles, whereas its longer isoform is expressed in
differentiated cells32,33. Consistent with these observations,
RADICL-seq RNA reads mapped only to the shorter isoform in
mESCs, whereas the signal covered the whole span of the longer
isoform in mOPCs (Supplementary Fig. 22a). Furthermore, the
genomic binding pattern of Neat1 exhibited dramatic differences
between the two cell types, with the lncRNA interacting mostly in
cis in mESCs as opposed to the extensive trans interactions
mediated in mOPCs (Fig. 5d, e). Analysis of the DNA-binding
regions of Neat1 confirmed the preference for binding to the 5ʹ
ends of the target genes observed previously34 (Supplementary
Fig. 22b, c). Fgfr2 is a protein-coding gene with an important role
in pluripotency; mutations affecting its expression result in early

embryonic lethality due to inner cell mass defects35. Unlike the
localized pattern exhibited in mOPCs, Fgfr2 displayed extensive
cis interactions in mESCs, covering above 30% of the chromo-
some from which it is transcribed (Fig. 5f, g and Supplementary
Fig. 11a). The RADICL-seq results thus suggest a potentially
structural role for Fgfr2 in mESCs.

Finally, we turned our attention to trans RNA–DNA interac-
tions. To compare the extent of overlap between the two cell
types, we calculated the intersection of RNA–chromatin interac-
tions categorized by linear distance in the total datasets
(Supplementary Fig. 23). To our surprise, we found 3414 unique
(12.2%) trans RNA–DNA pairs shared by both cell types; this
percentage of overlap was similar to that for cis RNA–chromatin
interactions separated by a linear distance of ≥1Mb and <10Mb
(Supplementary Fig. 23). Furthermore, these trans interactions
captured in both cell types were mediated by 14 transcripts with a
major contribution from Malat1 (Supplementary Table 6). These
results highlight the contribution of Malat1 in the organization of
general principles of RNA–chromatin interactions.

Discussion
RADICL-seq provides four main advantages over existing
methods: (i) Chromatin shearing is achieved by a controlled
DNase I digestion, which results in a greater resolution compared
with digestion with restriction enzymes. Indeed, the distribution
of cut sites for restriction enzymes is often uneven and may result
in the inability to detect important interaction chromatin regions.
The sequence-independent digestion of chromatin by DNase
I enables RADICL-seq to overcome such resolution limitations.
(ii) The use of paramagnetic carboxylated beads as carriers for the
nuclei allows additional washes to remove small genomic frag-
ments (upon DNase digestion) and the excess of biotinylated
bridge adapter, thus reducing noise. Furthermore, beads improve
visualization of the nuclear pellet when using fewer cells and can
potentially decrease the number of input cells for future appli-
cations. (iii) Digestion of RNA–DNA hybrids with RNase H
reduces the fraction of nascent RNA–chromatin interactions
captured by RADICL-seq, thereby increasing the capture rate of
other types of interaction. (iv) Use of EcoP15I to generate RNA
and DNA reads of uniform size greatly improves unique align-
ment to the genome. Furthermore, RADICL-seq uses the same
amount of input cells as GRID-seq, but it achieves a higher
detection power for uniquely mapped RNA–DNA interactions
and consequently a better performance/cost ratio.

Our results confirm previous observations regarding modality
of interaction for lncRNAs, with most noncoding transcripts
binding genomic targets locally or over short- and medium-range
distances in cis36. However, one surprising finding was the
dominant contribution of intronic RNA sequences from protein-
coding genes in cis interactions. These binding events seem to be
of stable nature, as we observe interactions mediated by intronic
RNAs following inhibition of transcription elongation for several
hours. Excised introns have been reported to exert a biological
function on growth phenotype in yeast37. We speculate the
existence of a similar mechanism in higher eukaryotes where
specific intronic RNA sequences might escape degradation and
interact with the chromatin in cis. Additionally, a subset of
interactions mediated by intronic RNAs from protein-coding
genes might be involved in the transcriptional regulation of
neighboring genes mediated by protein-coding transcripts as
previously reported38.

To test our hypothesis of the involvement of genome structure
in transcriptional regulation mediated by RNA interactions, we
used RADICL-seq to assess the frequency of RNA–DNA inter-
actions at TAD boundaries. The widespread enrichment of
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RNA–chromatin interactions at these boundaries indicates a
possible role for transcription or for its products in influencing
3D genome structure. CHAR-seq technology identified enrich-
ment of transcription-associated RNAs at TAD boundaries
in Drosophila melanogaster, suggesting an evolutionary con-
servation of this phenomenon. Intriguingly, Heinz et al.39 have
reported that transcription elongation remodels 3D chromatin
architecture by displacing TAD boundaries. Moreover, SINE
sequences have previously been found to be enriched at TAD
boundaries40. With RADICL-seq we have uncovered specific
patterns of interactions for transcripts overlapping REs, thus
suggesting that transcripts from REs might facilitate the forma-
tion of 3D structures in cells, especially after cell division when
TADs are temporarily dismantled.

The observed enrichment of CHARs at TAD boundaries even
in the ActD dataset—where RNA pol II elongation is inhibited—
potentially suggests that TADs might generate a barrier effect,
which is consistent with the transcripts preferentially binding to
DNA within or outside, but not across, TADs. This observation
confirms recent evidence of a TAD-restricted genome occupancy
mediated by immune gene-priming lncRNAs41.

The NPM datasets identified reproducible RNA–chromatin
interactions that are not mediated by the presence of proteins.
Such interactions can be explained either by direct RNA–DNA
pairing or by binding of RNA to duplex DNA via the formation
of triplexes. Increased frequency of RNA–chromatin interactions
and enrichment for R-loops at TAD boundaries in NPM datasets
indicate the possible role of active transcription in partitioning
the genome, as disruption of the cohesin/CTCF complex in
mammals does not lead to disappearance of TAD boundaries42.
Although the RADICL-seq protocol includes an RNase H step to
remove RNAs paired with DNA in Watson–Crick fashion while
the sample is still crosslinked, proteins located nearby the com-
plementary RNA–DNA binding could hinder enzyme accessi-
bility, thus preventing the complete digestion of these hybrids.
Nevertheless, we were still able to observe a consistent number of
interactions that can be explained by triple helix formation.
Future extensions of the protocol could include an RNase H step
after reversal of crosslinks to enrich for triplexes structures.
Although a protein-free method that separately identifies RNA
and DNA involved in triple helix formation has been published43,
to our knowledge RADICL-seq performed in the NPM condition
is the only approach that can simultaneously link interacting
RNA and DNA to triplex structures.

Our results further show that RADICL-seq can pinpoint cell-
type-specific RNA–chromatin interactions. We uncovered an
mOPC-specific genome occupancy pattern for Neat1 RNA where
the long isoform interacts in trans with the chromatin. Recently,
Katsel et al.44 have reported down-regulation of Neat1 expression
in schizophrenia patients, which is associated with reduction in
the number of cells of the oligodendrocyte lineage.

In summary, we have developed a technology to map genome-
wide RNA–chromatin interactions that significantly improves
upon other existing technologies by reducing nascent transcrip-
tion bias and increasing genomic coverage and unique mapping
rate efficiency. Application of RADICL-seq in mESC- and
mOPC-derived cells allowed the unveiling of principles of
RNA–chromatin cis and trans interactions, and the identification
of the cell type specificity of such associations. We anticipate that
the RADICL-seq technology will pave the way for a deeper
understanding of the fine regulatory network governing gene
expression and ultimately cell identity.

Methods
Cell Culture. R08 mESCs (CIRA) were grown under feeder-free conditions in
mouse ESC medium consisting of Dulbecco’s modified Eagle’s medium

(DMEM; Wako) supplemented with 1000 U/ml leukemia inhibitory factor
(Millipore), 15% fetal bovine serum (Gibco), 2.4 mM L-glutamine (Invitrogen),
0.1 mM non-essential amino acids (Invitrogen), 0.1 mM 2-mercaptoethanol
(Gibco), 50 U/ml penicillin, and 50 μg/ml streptomycin (Gibco). Culture media
were changed daily, and cells were passaged every 2–3 days. For the ActD-treated
RADICL-seq libraries, R08 mESCs were treated with ActD (Sigma) at a final
concentration of 5 µg/ml for 4 h before crosslinking, as described below.

Oli-neu cells were grown on poly-L-lysine-coated dishes and expanded in
proliferation media consisting of DMEM (Lifetech), N2 supplement,
penicillin–streptomycin–glutamine (Lifetech), T3 (3,3′,5′-triiodo-L-thyronine;
Sigma-Aldrich) 340 ng/ml, L-thyroxine (Sigma-Aldrich) 400 ng/ml, fibroblast
growth factor-basic 10 ng/ml, and platelet-derived growth factor-BB 1 ng/ml.
Culture media were changed on alternate days and the cells were passaged every
5–6 days.

The origins, authentications, and mycoplasma-testing methods of the cell lines
used in the current study are listed in the Reporting Summary.

Crosslinking of cells. Confluent cells were rinsed with pre-warmed phosphate-
buffered saline (PBS) and trypsinized. Detached cells were pelleted, resuspended in
PBS, counted, and pelleted again. Cell pellets were then crosslinked by resuspen-
sion in freshly prepared 1% or 2% FA (Thermo Fisher Scientific) solution using
1 ml for every one million cells. Cells were incubated at room temperature for
10 min with rotation, followed by quenching with 125 mM glycine (Sigma). Cells
were pelleted at 4 °C, washed with ice-cold PBS, pelleted again, and snap frozen in
liquid nitrogen.

We use the term biological replicates to refer to batches of cells with different
passage numbers.

Generation of RADICL-seq libraries. Adenylation of the adapter. The adapter
is a partially double-stranded DNA molecule containing chemical modifications
(5ʹ phosphorylation [5Phos] and Internal Biotin dT [ibiodT]; Integrated DNA
Technologies). The upper strand sequence is 5ʹ-/5Phos/CTGCTGCTCCTTCCCT
TTCCCCTTTTGGTCCGACGGTCCAAGTCAGCAGT-3ʹ. The lower strand
sequence is 5ʹ-/5Phos/CTGCTGACT/ibiodT/GGACCGTCGGACC-3ʹ. The upper
strand was pre-adenylated by using a DNA 5′ Adenylation Kit (New England
BioLabs). The pre-adenylated upper strand was mixed with an equimolar quantity
of the lower strand and subsequently incubated at 95 °C for 2 min, followed by
71 cycles of 20 s, with a reduction of 1 °C every cycle. Annealed pre-adenylated
adapter was then purified using a Nucleotide Removal Kit (Qiagen).

Chromatin digestion. Chromatin preparation was performed using a modified
protocol45. Briefly, cell pellets containing approximately two million crosslinked
cells were resuspended in cold lysis buffer (10 mM Tris-HCl, pH 8.0, 10 mM NaCl,
0.2% NP-40) and incubated on ice for 10 min. Nuclei were pelleted at 2500 × g for
60 s, resuspended in 100 μl of 0.5× DNase I digestion buffer (Thermo Fisher
Scientific), containing 0.5 mM MnCl2 and 0.2% sodium dodecyl sulfate (SDS), and
incubated at 37 °C for 30 min. An equal volume of 0.5× DNase I digestion buffer
containing 2% Triton X-100 was added, and then incubation at 37 °C was
continued for 10 min. Then, 1.5 U DNase I (Thermo Fisher Scientific) was
added and digestion was carried out at room temperature for 4 or 6 min for 1 and
2% FA, respectively. DNase I digestion was stopped by adding 40 μl of 6× Stop
Solution (125 mM EDTA, 2.5% SDS), followed by centrifugation at 2500 × g for
60 s. Nuclei were resuspended in 150 μl nuclease-free H2O and purified with two
volumes (300 μl) of AMPure XP magnetic beads (Beckman Coulter). After 5 min
incubation at room temperature, beads were separated using a magnetic rack,
washed twice with 80% ethanol, and air dried for 2 min.

Chromatin end-repair, dA-tailing, and RNase H treatment. The purified
bead–nuclei pellet was resuspended in 200 μl 1× T4 DNA ligase buffer (New
England Biolabs) containing 0.25mM dNTPs, 0.075 U/μl T4 DNA polymerase
(Thermo Fisher Scientific), and 0.15 U/μl Klenow fragment (Thermo Fisher
Scientific), and then incubated at room temperature for 1 h. The end-repair reaction
was stopped by adding 5 μl of 10% SDS. The bead–nuclei mixture was pelleted at
2500 × g for 60 s; resuspended in 200 μl 1× NEBuffer 2 (New England Biolabs)
containing 0.5 mM dATP, 1% Triton X-100, and 0.375 U/μl Klenow (exo-) (Thermo
Fisher Scientific), and then incubated at 37 °C for 1 h. After that, 0.122 U/μl RNase
H (New England Biolabs) was added, and the reaction was incubated at 37 °C for a
further 40 min. The dA-tailing and RNase H reactions were stopped by adding 5 μl
of 10% SDS.

Bridge adapter RNA ligation. The bead–nuclei mixture was pelleted at 2500 × g
for 60 s and then resuspended in 200 μl H2O. To remove soluble RNA, 165 μl of
20% polyethylene glycol (PEG) in 2.5 M NaCl was added to the mixture, followed
by a 5-min incubation at room temperature. Beads were collected with a magnetic
rack, washed once with 80% ethanol, and resuspended in 200 μl H2O. This
purification step was repeated once. After the second ethanol wash, the air-dried
bead–nuclei mixture was resuspended in 23 μl H2O, 3 μl 10× T4 RNA ligase buffer,
1 μl pre-adenylated and biotinylated bridge adaptor (20 μM), 1 μl RNaseOut
(Thermo Fisher Scientific), and 13.3 U/μl T4 RNA ligase 2, truncated KQ (New
England Biolabs). The mixture was incubated at 20 °C overnight to ligate the pre-
adenylated bridge adapter to the 3ʹ-OH of the RNA molecules. The reaction was
stopped by adding 5 μl 10% SDS, and the bead–nuclei mixture was then pelleted at
2,500 × g for 60 s and resuspended in 200 μl H2O. To remove excess unligated
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adapter, 165 μl of 20% PEG in 2.5 M NaCl was added to the mixture, and then the
reaction was incubated at room temperature for 5 min. Beads were then collected
with a magnetic rack, washed once with 80% ethanol, and then resuspended in
200 μl H2O. This purification was repeated once.

Proximity ligation. The in situ proximity ligation was carried out by
resuspending the air-dried bead–nuclei mixture in 500 μl 1× T4 DNA ligase buffer
with ATP containing 4 U/μl T4 DNA ligase (New England Biolabs) and incubating
it at room temperature for 4 h. After the incubation, bead–nuclei complexes were
pelleted at 2500 × g for 60 s and resuspended in 200 μl H2O. To remove remaining
unligated and DNA-only ligated adapter, 165 μl of 20% PEG in 2.5 M NaCl was
added to the mixture, and then purified as previously described. Beads were then
resuspended in 200 μl H2O.

Reversal of crosslinking and purification of RNA–DNA complexes. Reversal of
crosslinks was performed by adding 50 μl of proteinase K solution (10 mM Tris-
HCl, pH 7.5, 1% SDS, 15 mM EDTA) and 1.6 U/μl proteinase K (Ambion) to the
resuspended beads. The mixture was incubated overnight at 65 °C and the
RNA–DNA complexes were then precipitated with 3 μl GlycoBlue (Ambion), 28 μl
3 M sodium acetate, pH 5.2, and 303 μl isopropanol for 1 h on ice followed by
20,000 × g centrifugation at 4 °C for 30 min. The resulting bead–nucleic acids pellet
was resuspended in 100 μl H2O and further purified using 100 μl AMPure XP
beads. After 5 min incubation at room temperature, beads were separated using a
magnetic rack, washed twice with 80% ethanol, and then air dried for 2 min. DNA
was eluted using 130 μl H2O and quantified with a Qubit High Sensitivity Kit
(Thermo Fisher Scientific).

Reverse transcription and second-strand synthesis of the RNA–DNA
complexes. Since reverse transcriptase can use DNA sequences as primers for the
polymerization, the double-stranded region of the bridge adapter acts as the primer
for the reaction. The RNA ligated to the bridge adapter was reverse transcribed
after the sample was concentrated to a final volume of 12 μl. First, 1 μl of 10 mM
dNTPs was added to the sample, and the mixture was incubated at 65 °C for 5 min.
Subsequently, 4 μl of 5× first-strand buffer, 1 μl of 0.1 M dithiothreitol, and 1 μl
each of RNaseOut and SuperScript IV (both from Thermo Fisher Scientific) were
added, and the reaction was incubated at 56 °C for 10 min and 80 °C for 10 min.

Next, the generated complementary DNA (cDNA)–RNA hybrid was converted
to double-stranded DNA through a second-strand synthesis reaction by the
addition of 30 μl of 5× second-strand buffer (Thermo Fisher Scientific), 3 μl of
10 mM dNTPs (Thermo Fisher Scientific), 3 μl of RNase H (2 U/μl, Thermo Fisher
Scientific), 4 μl of Escherichia coli DNA polymerase I (New England Biolabs), 1 μl
of E. coli ligase (New England Biolabs), and H2O to the reverse transcription
sample, in a final volume of 150 μl. The mixture was incubated at 16 °C for 2 h and
the reaction was stopped by adding 10 μl of 0.5 M EDTA. The sample was purified
using a Nucleotide Removal Kit (Qiagen) by adding 1.6 ml of the buffer PNI to the
sample, with a final elution in 50 μl H2O. Sample volume was reduced to 8 μl using
a Speedvac concentrator (Tomy).

Hairpin ligation and EcoP15I digestion of the cDNA–DNA complexes. The
sample was then subjected to hairpin linker (5ʹ-/5Phos/GGCCCTCCAAAAGGA
GGGCA-3ʹ; Integrated DNA Technologies) ligation to selectively ligate the bridge
adapter that was covalently bound only to RNA and therefore prevent subsequent
ligation of sequencing adapters. A total of 100 pmol of hairpin linker was mixed
with 10 μl of 2× Quick ligase buffer (New England Biolabs), 8 μl of sample, and 1 μl
of Quick ligase (New England Biolabs). The reaction was carried out for 15 min at
room temperature and was then purified with DNA Clean & Concentrator-5 Kit
(Zymo) according to the manufacturer’s instructions. Elution was performed in
50 μl of H2O and final volume was reduced to 30 μl.

The sample concentration was measured by using a Qubit dsDNA High
Sensitivity Kit (Invitrogen). EcoP15I digestion of the double-stranded cDNA–DNA
complexes was performed by using 10 U of enzyme for 1.5 μg of DNA in the
presence of 5 μl NEBuffer 3.1 (New England Biolabs), 5 μl 10 × ATP, 0.5 μl 10 mM
sinefungin (Calbiochem), and H2O in a final reaction volume of 50 μl. The sample
was incubated at 37 °C overnight.

End preparation and sequencing linkers ligation. Each EcoP15I-digested sample
was purified using a Nucleotide Removal Kit (Qiagen) by adding 1.3 ml of PNI
buffer. The sample was eluted in 50 μl and the volume was further reduced to 20 μl.
To prepare the sample for the sequencing linkers ligation, 6.5 μl of 10× reaction
buffer, 3 μl of End Prep Enzyme Mix from NEB Next Ultra End-Repair/dA-Tailing
Module (New England Biolabs), and H2O in a final volume of 65 µl were added to
the concentrated sample, and then the reaction was incubated at 20 °C for 30 min
and 65 °C for 30 min.

Next, Y-shaped sequencing linkers were prepared. The upper strand (5ʹ-/5Phos/
GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-3ʹ) and lower strand (5ʹ-C
TCGGCATTCCTGCTGAACCGCTCTTCCGATCT-3ʹ) were annealed in 1×
NEBuffer 2 (New England Biolabs) at 95 °C for 2 min, followed by 71 cycles of 20 s,
with a reduction of 1 °C every cycle.

Sequencing linkers ligation was performed with NEB Next Ultra Ligation
Module and 20 pmol of annealed Y-shaped sequencing linkers at 20 °C for 15 min.
After ligation, the sample volume was reduced to 40 μl.

Pull-down of the RNA–DNA ligated complexes and PCR titration. The
RNA–DNA ligated complexes were pulled-down with MyOne C1 Streptavidin
magnetic beads (Invitrogen). A total of 20 μl of beads were washed twice with 1×
western blot (WB) buffer (5 mM Tris-HCl, pH 7.5, 0.5 mM EDTA, 1 M NaCl,
0.02% Tween-20), once with 2× WB buffer, and finally resuspended in 40 μl of

2× WB buffer. An equal volume of sample was added to the beads, and the mixture
was incubated at room temperature for 20 min with rotation. Isolated RNA–DNA
ligated complexes were extensively washed three times with 1× WB buffer, washed
once with elution (EB) buffer (Qiagen), and finally resuspended in 30 μl of EB
buffer.

PCR cycle check was performed by using Phusion High Fidelity PCR Kit
(Thermo Fisher Scientific) with Universal FW primer (5ʹ-AATGATACGGCG
ACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3ʹ;
Invitrogen), Index RV primer (5ʹ-CAAGCAGAAGACGGCATACGAGATBBBB
BBCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT-3ʹ; Invitrogen, where
BBBBBB is a 6-nt barcode for multiplexing libraries), and 4 µl of isolated libraries.
PCR was carried out at 98 °C for 30 s, followed by 14 cycles of 98 °C for 10 s, 65 °C
for 15 s, and 72 °C for 15 s. After respectively 8, 11, and 14 cycles, 10 μl aliquots
were collected and run on a pre-cast 6% polyacrylamide gel (Invitrogen) at 145 V
for 60 min. The lowest PCR cycle where the 225-bp band representing the
RNA–DNA ligated complexes could be visualized was chosen for the final library
amplification.

Library amplification and sequencing. A total of four PCR reactions, each using
a different barcoded primer, were prepared for each library. After amplification, the
four reactions were pooled and run on a pre-cast 6% polyacrylamide gel
(Invitrogen) at 145 V for 60 min. The 225-bp band was excised and purified.

Library size was assessed using a High Sensitivity DNA Bioanalyzer Kit
(Agilent) and quantified by quantitative PCR using the Library Quantification
Kit for Illumina sequencing platforms (KAPA Biosystems) and StepOne Real-Time
PCR System (Applied Biosystems). Sequencing was performed with a Single-
End 150-bp Kit on the Illumina HiSeq 2500 platform using the sequencing primer
5ʹ-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3ʹ.

Generation of libraries capturing NPM interactions. NPM libraries were
produced following the above protocol for the generation of RADICL-seq libraries
with the modifications below. After the purification steps that followed dA-tailing
and RNase H reactions, reversal of crosslinks was performed as described above.
Samples were concentrated to a final volume of 13.9 µl, followed by the addition of
3 μl of 10× T4 RNA ligase buffer; 1 μl of 20 μM pre-adenylated and biotinylated
bridge adaptor; 1 μl of RNaseOut (Thermo Fisher Scientific); 13.3 U/μl T4 RNA
ligase 2, truncated KQ (New England Biolabs); and 9 µl of 50% PEG. The mixture
was incubated at 20 °C overnight to ligate the pre-adenylated bridge adapter to the
3ʹ-OH of the RNA molecules. Next, bridge adapter-ligated molecules were purified
with DNA Clean & Concentrator-5 Kit (Zymo) according to the manufacturer’s
instructions and eluted in 50 μl of H2O. DNA ligation was carried out by adding
450 μl of 1× T4 DNA ligase buffer with ATP containing 4 U/μl T4 DNA ligase
(New England Biolabs) and incubating the solution at room temperature for 4 h.
The RNA–DNA complexes were purified with DNA Clean & Concentrator-5 Kit
(Zymo) as described above, and then subjected to reverse transcription and
subsequent steps of RADICL-seq library preparation and sequencing.

Generation of libraries treated with different enzymes targeting the RNA.
Libraries for treatment with different enzymes were produced following the above
protocol for the generation of RADICL-seq libraries with the following exceptions:
(i) For the library with no enzymatic treatment, the RNase H digestion after
chromatin dA-tailing was omitted. (ii) For the library generated with nuclease S1
treatment, prior to the chromatin end-repair step, the purified bead–nuclei pellet
was resuspended in a 200 μl solution containing 40 mM sodium acetate (pH 4.5 at
25 °C), 300 mM NaCl, 2 mM ZnSO4, and 10 U nuclease S1 (Thermo Fisher
Scientific), and then incubated at room temperature for 30 min. The reaction was
stopped by adding 5 μl of 10% SDS, and then the RADICL-seq protocol was
followed. (iii) For the library generated with RNase V1 treatment, after the
chromatin dA-tailing step, each sample was digested with 0.01 U of RNase V1
(Ambion) at room temperature for 30 min. The reaction was stopped by adding
5 μl of 10% SDS, and then the RADICL-seq protocol was followed.

CAGE library preparation. RNAs from nuclear fractions of mESCs and mOPCs
were extracted as previously publishedl11. CAGE libraries were prepared according
to Takahashi et al. 46. Briefly, 3 μg of nuclear RNA was used for reverse
transcription with random primers. The 5ʹ end of each cDNA–RNA hybrid was
biotinylated and captured using magnetic streptavidin-coated beads. After capture,
cDNAs from cap-trapped RNAs were released, ligated to 5ʹ-barcoded linkers and
digested with EcoP15I. The cDNA tags were then ligated with a 3ʹ linker and
amplified with nine PCR cycles. Libraries were sequenced on an Illumina HiSeq
2500 system, with 50-bp single-end reads.

Data analysis. RADICL-seq mapping and processing. RNA and DNA tags at both
ends of the adapter were extracted from raw sequencing reads by using TagDust247

(ver. 2.31). Multiplexed reads were split by six nucleotide barcodes embedded in
the 3ʹ-linker sequence. Artificial sequences were removed using TagDust48 (ver.
1.1.3). We identified and removed rRNAs from the extracted RNA tags using
RNAdust49 (ver. 1.0.6) with a ribosomal DNA repeating unit (GenBank:
BK000964.2). PCR duplicates were removed from paired RNA–DNA tags using
FastUniq50. We aligned RNA and DNA tags separately to the mouse genome
(mm10 assembly) using BWA51 (ver. 0.7.15-r1140) with aln and samse functions.
Mapped RNA and DNA tags were paired with unique sequencing read IDs using
samtools52 (ver. 1.3.1) and bedtools53 (ver. 2.17.0). These processes were run on the
MOIRAI pipeline platform54.
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Reference annotation and genome binning. The comprehensive gene
annotation for mouse12 (GENCODE release M14) was downloaded and genic
transcripts (i.e., the RNA products of a gene) were divided into four major groups
of biotypes: protein_coding, long_ncRNA (defined according to GENCODE “Long
noncoding RNA gene annotation”), ncRNA (defined according to GENCODE
“Noncoding RNA predicted using sequences from Rfam and miRBase”), and other
(all remaining genes). The mouse genome binning at 25-kb resolution was
performed using bedtools53 (ver. 2.26.0) with parameter -w 25000, and 1Mb bins
for the genomic heatmap were generated using -w 1000000.

Annotated feature overlaps. RNA and DNA tags were associated
unambiguously with the corresponding annotated features. To achieve that, we
identified each fragment by the single-nucleotide position at its center to reduce the
possibility of fragments overlapping with multiple genes or bins. The strand
information was considered for RNA tags, but discarded for DNA tags. Both RNA
and DNA tags were required to map uniquely (Burrows–Wheeler Aligner
MAPping Quality (BWA MAPQ)= 37) to the genome.

Reproducibility. The summary of interactions by condition, replicate, and
RNA–DNA pairs; the calculation of pairwise Pearson’s correlation coefficients on
the counts of complete sets of observations; and the visualization of the results were
performed using the CAGEr package55.

Correlation with RNA-seq. RADICL-seq interactions were summarized per
genic transcripts and normalized to reads per kilobase (RPK) to account for over-
representation of longer transcripts. Nuclear and cytosolic RNA-seq (and CAGE-
seq) reads were mapped to the mm10 genome using STAR56 (ver. 2.5.0a) with
default parameters, and low-quality reads (MAPQ <10) were removed. The files
were similarly intersected with GENCODE ver. M14 to generate counts and then
normalized to transcripts per million (TPM). A lower threshold of 1 was applied to
both RPK and TPM to select interacting and expressed transcripts, respectively.
The square of the Pearson’s correlation coefficient was used to determine the
dependency between variables.

RADICL-seq and GRID-seq robust interactions calculation. P value calculations
were performed in R using the binom.test function with parameters N, P, and
alternative= “greater.” For any given interaction, N is the total number of
interactions of the RNA involved and P is the reciprocal of the total number of
unique genomic bins the RNA has been observed to interact with. The p value
correction was performed using the p.adjust function with method= “BH.”
Interactions with an adjusted p value < 0.05 were deemed significant. The
significant datasets were then filtered to remove any RNA–DNA contacts
intersecting blacklisted regions for the mm10 genome.

Genome-wide RNA–DNA interaction plots. For the genome-wide interaction
plots, the genome was divided into 25-kb bins, and each interaction was assigned to
these bins for both the RNA and DNA end of the tag. For each unique combination
of the two bins (RNA and DNA coordinates), all interactions were collapsed into
one value to avoid overplotting. The plot was produced in R using the ggplot2
package57 where each value is colored by the most-represented RNA region or
RNA class if more than one individual interaction was assigned to these
coordinates. All interactions were then divided into six classes of genomic distance
between the RNA and DNA end of the tag, and the proportion of interactions
derived from specific RNA regions and RNA classes were visualized in barplots.

RNA–DNA interactions with respect to TAD boundaries. To investigate any
relationship between RNA–DNA binding and TAD boundaries, published mESC
and mouse neural progenitor cell TADs were retrieved28. For all cell types and
conditions, the coverage of RNA and DNA tags was visualized at the boundaries of
TADs in the form of a metaplot.

To further investigate the effects of TAD boundaries on the spread of
RNA–DNA interactions, interactions were split into those that originated within a
TAD and those that did not. This was performed on a TAD-by-TAD basis, because
interactions that originate outside one TAD may originate within a neighboring
TAD. The coverage of DNA-binding locations for each set of interactions was
visualized in windows around TADs as metaplots.

The metadata profiles were generated using the ScoreMatrixBin function from
the genomation R package58. This function divides the genomic regions of interest
into an equal number of bins, and then it calculates the mean scores for each bin
across regions. In our case, each TAD region was extended by the same size both
upstream and downstream, and the resulting region was chopped into 300 bins and
averaged per position by the ScoreMatrixBin function to generate the average
profile of tags coverage.

Comparison of RADICL-seq data with DRIP-seq data. To compare DRIP-seq
and RADICL-seq DNA-binding patterns in the significant datasets, mESC DRIP-
seq data were retrieved from the Gene Expression Omnibus (GEO) database
(accession no. GSM1720620)25. As with RADICL-seq RNA and DNA tags, the
average coverage of DRIP-seq reads in bins around TAD boundaries was visualized
in the form of a metaplot. To investigate whether there was enrichment for
RADICL-seq interactions binding within R-loops, the average coverage of
RADICL-seq DNA tags within DRIP-seq peaks was visualized in the form of a
metaplot for the total and NPM datasets.

Correlation of differences in gene expression and genome-wide DNA binding
profiles between mESCs and mOPCs. To explore the relationship between gene
expression and RNA–DNA binding, the binding pattern and expression level of all
genes were compared between the mESC and mOPC total datasets. To compare
gene expression between the cell types, the difference in normalized counts

between cell types was calculated as a percentage of the maximum expression in
either condition. To compare the DNA-binding profiles between the cell types, the
genome was divided into 5-kb bins, and each bin was assigned a value of 1 or 0
depending on whether there was a DNA tag present in that bin. This was
performed for all genes. The binary vectors produced in this way were then
compared by calculating the Jaccard distance between the vectors derived from
each cell type. The resulting data from each analysis was visualized as a scatterplot.

Comparison of RADICL-seq with RAP-DNA for Malat1. Malat1 RAP-DNA
data was obtained from GEO (accession no. GSE55914). The raw reads were
processed with TrimGalore!59 (ver. 0.4.5) with parameters --paired --trim1 and
aligned to the mm10 genome by using Bowtie260 (ver. 2.3.3.1) with parameters
--no-mixed --no-discordant. Samtools52 (ver. 1.5) was employed to select uniquely
mapping fragments and Picard MarkDuplicates (ver. 2.9.0.21, http://broadinstitute.
github.io/picard/) was used to remove PCR duplicates. Peak calling was performed
using macs261 with parameters --broad --nolambda –nomodel. We employed
featureCounts62 to summarize the gene reads from RAP-DNA and Malat1-DNA
tags from GRID-seq and RADICL-seq. Gene counts were normalized to RPK and
sorted according to the normalized values. The top 10,000 genes from each dataset
were used to generate the Venn diagram with the VennDiagram package63 in R.
Linear distance to nearest peak was calculated using the peaks output file obtained
from macs2 and the distanceToNearest function from the GenomicRanges
package64 in R. SPRITE RNA and DNA clusters were retrieved from GEO
(accession no. GSE114242), and only DNA coordinates present within the same
cluster as Malat1 RNA were selected for the analysis.

Comparison of RADICL-seq with ChIRP-seq for Rn7sk. The list of Rn7sk
genomic target locations in the mm9 genome was retrieved from Flynn et al. 18.
Peak coordinates were lifted from the mm9 genome to the mm10 genome by using
LiftOver, and genes overlapping these peaks were considered as targeted by Rn7sk.
We employed featureCounts62 to summarize by gene the Rn7sk-DNA tags from
GRID-seq and RADICL-seq data. Counts were normalized to count per million
and averaged across replicates. The Venn diagram was generated using the
VennDiagram R package. Linear distance to nearest peak was calculated using the
peaks output file obtained from LiftOver and the distanceToNearest function from
the GenomicRanges package64 in R. SPRITE RNA and DNA clusters were retrieved
from GEO (accession no. GSE114242), and only DNA coordinates present within
the same cluster as Rn7sk RNA were selected for the analysis.

Analysis of repetitive elements. The significant RNA–DNA pairs in this dataset
were generated by using the same approach described above for the other
RADICL-seq significant datasets. RNA and DNA tags with MAPQ ≥37 were
processed using bedtools53 (ver. 2.26.0) and RepeatMasker30 (ver. 4.0.6) to generate
the dataset of RADICL-seq RNAs intersecting (with options -s -wb) and not
intersecting (with option -v) with REs annotated in the mm10 genome. Self-
interactions were removed from the datasets by comparing the GENCODE Gene
ID associated with both the RNA and the DNA tags of the same pair. The relative
percentage of interactions across different intervals of RNA–DNA distance was
calculated by dividing the number of significant interactions in a given RNA–DNA
distance interval by the total number of RNA tags intersecting a given repeat family
for each experimental condition. P values were calculated by two-sided Student’s
t test.

Transcript-specific genomic interactions. The significant interactions for the
transcripts under analysis were summarized by DNA bins, and reported as counts
associated with genomic coordinates. The circlize package65 in R was used to
visualize the results genome wide and in greater detail for cis interactions, and the
log2 of counts were used to color the connecting lines of the RNA–DNA pairs.

High-throughput Chromosome Conformation Capture (Hi-C) paired-end
reads processing. Publicly available Hi-C sequencing paired-end reads for mESCs
and neural progenitor cells were obtained from Bonev et al. 28 and processed using
the Hi-C User Pipeline (HiCUP)66 (ver. 0.5.3). Using this pipeline, we mapped Hi-
C paired-end reads to the mm10 genome and filtered reads for expected artifacts
resulting from the sonication and ligation steps (e.g., circularized reads, reads with
dangling ends) of the Hi-C protocol. Data from different biological replicates were
then pooled together. HOMER67 (ver. 4.7.2) software was used to filter HiCUP-
processed Hi-C paired-end reads with MAPQ= 30 (following recommendations
described in Yaffe and Tanay20) and other HOMER recommended settings (e.g.,
PCR duplicates, expected HindIII restriction sites, self-ligation events). HOMER-
filtered Hi-C-mapped paired-end reads were then binned at a fixed resolution of
25 kb and normalized for restriction fragment bias using HOMER’s simpleNorm
algorithm.

Density plots. Data for density plots were extracted from RADICL-seq RNA
and DNA processed data. Random regions were extracted using bedtools random.
Peak information for histone modifications and DHS-seq and ATAC-seq data was
downloaded from ENCODE. Only H3K4me3 and H3K9ac peaks positioned
outside the first exon and intron were used for the analysis. Data of density plots
were calculated using makeTagDirectory followed by annotatedPeaks in HOMER67

(ver. 4.9) with parameters -size 10000 -hist 1 -histNorm 100. Finally, data were
divided by the mean of values of ±5000 bp to align baselines. Plots were generated
by ggplot257 with the geom smooth option.

Triple helix search. To computationally determine the location of triplex
helices in Meg3 and Malat1 trans contacts, we used the spliced transcripts
ENSMUST00000146701.7 and ENSMUST00000172812.2, respectively. We
assessed the enrichment in triple helices in NPM trans contacts expanded by
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1000 bp over genomic average. To do so, the Triplex Domain Finder (TDF) region
test68 was used (triple helix parameters: 12 bp, 1 mismatch) with 1000 random
genomic background sets.

Distribution of unique interacting RNAs at gene promoters. DNA tags from the
mESC and mOPC total datasets were mapped to de novo CAGE-derived gene
promoters by using intersectBed in bedtools, allowing for a 2-kb window around
the actual promoter coordinates. The number of RNA tags originating from unique
genes was then calculated for each promoter. Promoters were ranked from highest
to lowest number of unique interactions, and additional information (gene name,
nuclear CAGE expression, locus, biotype) was collated for use in further analyses.

CAGE data mapping and processing. Multiplexed sequencing reads were split
by barcode sequences. Reads with ambiguous bases “N” were removed, and linker
sequences were trimmed from the 3′ end to create reads of length 21–27 nts. The
reads were mapped to the mm10 genome (GENCODE release M14) using bowtie69

(ver. 1.2.2) with up to two mismatches, only keeping unique alignments with
MAPQ= 20. The CAGEr55 (ver. 1.20.0) R package was used to extract TSSs,
normalize counts, and define transcriptional clusters. Briefly, the most 5′ position
of a CAGE tag represents a TSS; the 5′ coordinates were extracted from the tags,
and a genome-wide TSS map was generated at single-nucleotide resolution. The
raw counts for the CAGE tag starting site were normalized to expression per
million tags using a power-law distribution, and used as proxy for the expression of
the corresponding genic transcript. We clustered the tags to define distinct CAGE
peaks that occurred within 20 bp and expression was summed per transcriptional
cluster.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RADICL-seq and CAGE-seq data were deposited in the GEO database under accession

number GSE132192. Source Data for the Figures and Supplementary Figures are

available in the Supplementary Data file. All other data are available from the authors

upon reasonable request.

Code availability
The custom scripts for data analysis are available at RADICL_analysis [https://github.

com/fagostini/RADICL_analysis].
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