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Abstract. Several radii problems are considered for functions f (z) = z + a2z2 + · · · with fixed second
coeffcient a2. For 0 ≤ β < 1, sharp radius of starlikeness of order β for several subclasses of functions are
obtained. These include the class of parabolic starlike functions, the class of Janowski starlike functions, and
the class of strongly starlike functions. Sharp radius of convexity of order β for uniformly convex functions,
and sharp radius of strong-starlikeness of order γ for starlike functions associated with the lemniscate of
Bernoulli are also obtained as special cases.

1. Motivation and a survey

Let A denote the class of analytic functions f defined in the open unit disc D := {z ∈ C : |z| < 1} and
normalized by the conditions f (0) = 0 and f ′(0) = 1. Let S be its subclass consisting of univalent analytic
functions. Thus functions in S has the form f (z) = z + a2z2 + · · · . Gronwall [13] obtained lower and upper
bounds for the quantities | f (z)| and | f ′(z)| for univalent functions with preassigned second coefficient a2.
Corresponding results for convex functions were also obtained. Unaware of these results, Finkelstein [8]
investigated the problem again and obtained similar results, except for an inaccurate lower bound for | f (z)|.
Corresponding estimates for starlike functions of positive order with fixed second coefficient were obtained
by Tepper [41], while for convex functions of positive order, such estimates were derived by Padmanabhan
[24]. The problem for general classes of functions defined by subordination was investigated by Padman-
abhan [27] in 2001. For close-to-star and close-to-convex functions, such estimates were investigated by
Al-Amiri [4] and Silverman [33], respectively.

In addition to distortion and growth estimates, Tepper [41] obtained the radius of convexity for starlike
functions with fixed second coefficient. This radius result was also obtained independently by Goel
[11], whom additionally obtained the radius of starlikeness for functions f with fixed second coefficient
satisfying Re( f (z)/z) > 0 for z ∈ D. Following these works, several authors have investigated radii problems
for functions with fixed second coefficient; we provide here a brief history of these works.
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Let f and 1 be analytic inD. Then f is subordinate to 1, written f (z) ≺ 1(z) (z ∈ D), if there is an analytic
function w, with w(0) = 0 and |w(z)| < 1, such that f (z) = 1(w(z)). In particular, if 1 is univalent in D, then
f is subordinate to 1 provided f (0) = 1(0) and f (D) ⊆ 1(D). Noticing that several subclasses of univalent
functions are characterized by the quantities z f ′(z)/ f (z) or 1+ z f ′′(z)/ f ′(z) lying in a region in the right-half
plane, Ma and Minda [18] gave a unified presentation of various subclasses of convex and starlike functions
which are defined below. The region considered is the image set of an analytic function φwith positive real
part inD and normalized by the conditions φ(0) = 1 and φ′(0) > 0, and maps the unit discD onto a region
starlike with respect to 1 that is symmetric with respect to the real axis. For a fixed function φ, let

P(φ) := {p(z) = 1 + cz + · · · : p(z) ≺ φ(z)}.

Ma and Minda [18] considered the classes

ST (φ) :=
{

f ∈ A :
z f ′(z)

f (z)
∈ P(φ)

}
and CV(φ) :=

{
f ∈ A : 1 +

z f ′′(z)
f ′(z)

∈ P(φ)
}
.

For−1 ≤ B < A ≤ 1, the functionφ(z) = (1+Az)/(1+Bz) is a convex function whose image is symmetric with
respect to the real axis. For thisφ, the classST (φ) reduces to the familiar class consisting of Janowski starlike
functions denoted by ST (A,B). The corresponding class of convex functions is denoted by CV(A,B). We
shall consider these classes by relaxing the conditions on A, B to be |B| ≤ 1 with A , B. The special case
A = 1 and B = −1 leads to the usual classes ST and CV of starlike and convex functions respectively, while
A = 1 − 2α, B = −1 with 0 ≤ α < 1 yield the classes ST (α) and CV(α) of starlike and convex functions of
order α respectively. For 0 < γ ≤ 1, letSST (γ) andSCV(γ) be the classes consisting of strongly starlike and
strongly convex functions of order γ: SST (γ) = ST (((1+ z)/(1− z))γ) and SCV(γ) = CV(((1+ z)/(1− z))γ).

A function f is k-fold symmetric if f (e2πi/kz) = e2πi/k f (z). It is clear that a function f ∈ A is k-fold
symmetric if and only if f (z) = z + ak+1zk+1 + a2k+1z2k+1 + · · · . Let us denote the class of functions p(z) =
1+pkzk+p2kz2k+ · · · subordinated to a function φ byPk(φ). For −1 ≤ B < A ≤ 1, and φ(z) = 1+Azk

1+Bzk , denote the
class Pk(φ) by Pk(A,B). For functions in the class Pk(A,B), it is easy to see that |pnk| ≤ (A− B). For 0 ≤ b ≤ 1,
denote the class of functions p with coefficient pk = b(A − B) by Pk,b(A,B). Also let ST k,b(A,B) denote the
class of k-fold symmetric functions f with fixed coefficient ak+1 = b(A − B)/k satisfying z f ′(z)

f (z) ∈ Pk,b(A,B).
The radius of convexity for the class ST b := ST 1,b(1,−1) of starlike functions with fixed second coeffi-

cient was extended by Tepper [41] and Goel [11], while Anh [5] determined the radius of convexity for the
class ST k,b(A,B) with certain restrictions on the parameters. The case k = 1 was earlier considered by Tuan
and Anh [43]. Earlier works in this problem include those by McCarty [21] who obtained the radius of con-
vexity for the classST 1,b(1−2α,−1) and for functions f with f ′ ∈ P1,b(1−2α,−1). The latter class was earlier
investigated by McCarty [20], and the result therein is sharp only for α = 0. For 0 ≤ α < 1, 0 < β ≤ 1, Juneja
and Mogra [15] obtained the radius of convexity for the class of functions f with fixed second coefficient
satisfying f ′ ∈ P1,b(1 − 2αβ, 1 − 2β) as well as for the class ST (1 − 2αβ, 1 − 2β).

Improving the results of Mogra and Juneja [22], Padmanabhan and Ganesan [26] obtained the radius of
convexity for functions f (z) = z+ ak+1zk+1 + ak+2zk+2 + · · · with missing initial terms and fixed ak+1 belonging
to the class ST (A,B) when A + B ≥ 0. Related results were derived by Mogra and Juneja [23] that are
generalization of the results obtained by McCarty [21] , Goel [10], Shaffer [32], Caplineger and Causey [7],
Mogra and Juneja [14], Singh [35], [36], Padmanabhan [25], and Juneja and Mogra [15].

Silverman [33] obtained distortion and covering estimates, as well as the radius of convexity for the
class of close-to-convex functions f (z) = z + a2z2 + · · · satisfying

Re
{

f ′(z)
1′(z)

}
≥ β, β ≥ 0,

for some convex function 1 of order α. Tuan and Anh [42] obtained results on certain related classes, while
Silverman and Telage [34], Umarani [44], Ahuja [1] and Aouf [6] obtained results on spirallike functions.
Kumar [16] investigated radius problems for functions

f (z) = {(γ + α)−1z1−γ(zγF(z)α)′} 1
α ,
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where α is a positive real number, γ is a complex number such that γ+ a , 0 and the function F varies over
various subclasses of univalent functions with fixed second coefficient. Ali et al. [2] recently investigated
differential subordination for functions with fixed initial coefficient.

In this paper, the radius of starlikeness of order β, 0 ≤ β < 1, for functions in ST (φ) with fixed second
coefficient is derived. As special cases, sharp radius of starlikeness of order β for several subclasses of
functions are obtained. These include the class of parabolic starlike functions, the class of Janowski starlike
functions, and the class of strongly starlike functions. Sharp radius of convexity of order β for uniformly
convex functions, and sharp radius of strong-starlikeness of order γ for starlike functions associated with
the lemniscate of Bernoulli are also obtained. We shall also make connections with several earlier works.

The following extension of Schwarz lemma will be required.

Lemma 1.1. ([8]) Let w(z) = pz + · · · be an analytic map of the unit discD into itself. Then |p| ≤ 1 and

|w(z)| ≤ r(r + |p|)
1 + |p|r , |z| = r < 1.

Equality holds at some z , 0 if and only if

w(z) =
e−itz(z + peit)

1 + pe−itz
, t ≥ 0.

2. Radii of convexity and starlikeness

Ma and Minda [18, Theorem 3, p. 164] showed that for a function f ∈ CV(φ), the absolute value of the
second coefficient of f is bounded by φ′(0)/2. As a consequence of Alexander’s relation between the classes
ST (φ) and CV(φ), it follows that the second coefficient of f ∈ ST (φ) is bounded by φ′(0). Therefore, for
f ∈ ST (φ), |a2| = φ′(0)b for some 0 ≤ b ≤ 1. For b in this range, the class ST b(φ) is defined to be the subclass
of ST (φ) consisting of functions f (z) = z + a2z2 + · · · where the second coefficient is given by a2 = φ′(0)b.
Let CVb(φ) be the subclass of CV(φ) consisting of functions f (z) = z + a2z2 + · · · with a2 = φ′(0)b/2.

Theorem 2.1. Let φ be an analytic function with positive real part inD, φ(0) = 1, φ′(0) > 0, and φ maps the unit
discD onto a region starlike with respect to 1 and symmetric with respect to the real axis. Further suppose that

min
|z|=r

Reφ(z) = φ(−r).

Then the radius of starlikeness of order β, 0 ≤ β < 1, for the class ST b(φ) is Rβ, where

Rβ =

1 if φ(−1) ≥ β
−2φ−1(β)

b(1+φ−1(β))+
√

b2(1+φ−1(β))2−4φ−1(β)
if φ(−1) ≤ β.

The result is sharp. (Here and elsewhere φ(−1) = limr→1− φ(r).)

Proof. Let f ∈ ST b(φ) so that z f ′(z)/ f (z) ≺ φ(z). From the definition of subordination, it follows that there
is an analytic function w with w(0) = 0 and |w(z)| < 1 inD satisfying

z f ′(z)
f (z)

= φ(w(z)) (z ∈ D).

Since f (z) = z + φ′(0)bz2 + · · · , a calculation shows that

φ(w(z)) =
z f ′(z)

f (z)
= 1 + φ′(0)bz + · · · ,
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and hence φ′(w(z))w′(z) = φ′(0)b + · · · . Since w(0) = 0, the above equation yields w′(0) = b and hence it
takes the form w(z) = bz + · · · .

For a given 0 ≤ r < 1, let r1 be defined by

r1 :=
r(r + b)
1 + br

. (1)

Since w maps D onto itself, Lemma 1.1 yields |w(z)| ≤ r1, |z| = r. It follows that |w(z)| ≤ r1 if |z| ≤ r, and
therefore {φ(w(z)) : |z| ≤ r} ⊆ {

φ(ξ) : |ξ| ≤ r1
}
. Consequently, for |z| ≤ r < 1,

Re
{

z f ′(z)
f (z)

}
= Re(φ(w(z))) ≥ min

|z|≤r
Reφ(w(z)) ≥ min

|z|≤r1

Reφ(z) = min
|z|=r1

Reφ(z) = φ(−r1).

The last equality follows from the hypothesis that min|z|=r Reφ(z) = φ(−r).
Since the function φ is starlike, φ is univalent and hence φ′(z) , 0 for all z ∈ D; in particular, the

restriction of φ to the interval (−1, 1) has non-vanishing derivative φ′(r) for r ∈ (−1, 1). Since φ′(0) > 0, it
follows that φ′(r) > 0 and hence φ is strictly increasing on (−1, 1). If φ(−1) ≥ β, then

Re
{

z f ′(z)
f (z)

}
≥ φ(−r1) ≥ φ(−1) ≥ β

for |z| < 1, and thus in this case, Rβ = 1.
Let us now assume that φ(−1) ≤ β. Since φ(D) is symmetric, it maps (−1, 1) into the real axis. Since φ is

strictly increasing, the inverse function φ−1 : φ(D) ∩R → R exists and is also increasing. Thus φ(−r1) ≥ β
holds if and only if −r1 ≥ φ−1(β). The desired expression for Rβ now readily follows by solving −r1 = φ−1(β)
for r.

To verify sharpness, consider the function f0 : D→ C defined by

f0(z) = z exp
(∫ z

0

(
1
s
φ

(
− s(s + b)

1 + bs

)
− 1

s

)
ds

)
, 0 ≤ b ≤ 1.

The complex number −z(z+ b)/(1+ bz) ∈ D and hence the function f0 is well-defined. Clearly f0(0) = 0 and
f ′0(0) = 1. A calculation shows that

z f ′0(z)
f0(z)

= φ

(
−z(z + b)

1 + bz

)
∈ φ(D),

that is, f0 ∈ ST b(φ). At z = Rβ, clearly

Re
z f ′0(z)
f0(z)

= φ

(
−

Rβ(Rβ + b)
1 + bRβ

)
= β,

and this shows that the result is sharp.

Remark 2.2. Under the conditions of Theorem 2.1, it is clear from the proof that the order of starlikeness
for functions in the class ST b(φ) is φ(−1).

Remark 2.3. When b = 1, Theorem 2.1 reduces to a result in [9, Theorem 2.2, p. 304] for functions (with
varying second coefficient) belonging to the class ST (φ).

Remark 2.4. In view of Alexander’s relation between the classes ST b(φ) and CVb(φ), it follows that
Theorem 2.1 holds for the class CVb(φ) if we replace the phrase “radius of starlikeness” by “radius of
convexity”.
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Every convex function f in D maps the circle |z| = r < 1 onto a convex arc. However, it need not map
every circular arc about a center in D onto a convex arc. This motivated the investigation of uniformly
convex functions. A function f ∈ S is uniformly convex [12] if f maps every circular arc γ contained inD
with center ζ ∈ D, onto a convex arc. Denote byUCV the class of all uniformly convex functions. Ma and
Minda [19] and Ronning [30], independently showed that a function f is uniformly convex if and only if

Re
(
1 +

z f ′′(z)
f ′(z)

)
>

∣∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣∣ (z ∈ D).

Thus, f ∈ UCV if 1 + z f ′′(z)/ f ′(z) lies in the parabolic region Ω := {u + iv : v2 < 2u − 1}. A corresponding
class PS consisting of parabolic starlike functions f , where f (z) = z1′(z) for 1 inUCV, was introduced in
[30]. Clearly a function f is in PS if and only if

Re
(

z f ′(z)
f (z)

)
>

∣∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣∣ (z ∈ D).

A survey of these functions may be found in [3] (see also [31]), while some radius problems associated with
the classesUCV and PS can be found in [9, 29].

Ma and Minda [19, Theorem 4, p. 171] (see also Rønning [30, Theorem 5, p. 194]) proved that the second
coefficient of functions inUCV is bounded by 4/π2. Hence we shall consider the classUCVb of functions
f ∈ UCV of the form f (z) = z + a2z2 + · · · with fixed second coefficient a2 = a given by a = 4b/π2, 0 ≤ b ≤ 1.
Similarly, the class PSb consists of functions f ∈ SP of the form f (z) = z + a2z2 + · · · with fixed second
coefficient a2 = a given by a = 8b/π2, 0 ≤ b ≤ 1.

Corollary 2.5. The radius of starlikeness of order β, 0 ≤ β < 1, for the class PSb is Rβ, where

Rβ =

1 if 0 ≤ β ≤ 1
2

2ρ

(1−ρ)b+
√

(1−ρ)2b2+4ρ
if 1

2 ≤ β < 1,

with

ρ = tan2


√

1 − βπ
2
√

2

 .
The radius of convexity of order β, 0 ≤ β < 1, for the classUCVb is also Rβ. These results are sharp.

Proof. Since f is uniformly convex, it follows (see Ma and Minda [19], Rønning [30]) that

1 +
z f ′′(z)
f ′(z)

≺ φPAR(z),

where

φPAR(z) = 1 +
2
π2

[
log

(
1 +
√

z
1 −
√

z

)]2

= 1 +
8
π2

∞∑
n=1

1
n

n−1∑
k=0

1
2k + 1

 zn.

Since φPAR(D) is the parabolic regionΩ, it is clear that φPAR is a convex function (and therefore starlike with
respect to 1). Further φPAR(D) is symmetric with respect to the real axis and φ′PAR(0) > 0. A calculation
shows that

min
|z|=r

ReφPAR(z) = φPAR(−r) = 1 − 8
π2 (arctan

√
r)2.
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The proof now follows from Theorem 2.1 by noting that the inverse of the function φPAR is

φ−1
PAR(w) = − tan2

( √
1 − wπ

2
√

2

)
,

and hence

φ−1
PAR(β) = − tan2


√

1 − βπ
2
√

2

 = −ρ.
The result now follows from Theorem 2.1.

Remark 2.6. When b = 1, Corollary 2.5 reduces to a result in [9, Theorem 2.1, p. 303] for functions (with
varying second coefficient) belonging to the classUCV.

For real numbers A,B with |B| ≤ 1, B < A, the function φA,B(z) = (1 + Az)/(1 + Bz) is a convex function
whose range is symmetric with respect to the real axis and φ′A,B(0) = A − B > 0. Further φ−1

A,B(w) =
(w − 1)/(A − Bw), and so −φ−1

A,B(β) = (1 − β)/(A − Bβ). The following corollary now readily follows from
Theorem 2.1.

Corollary 2.7. The radius of starlikeness of order β, 0 ≤ β < 1, for the class ST b(A,B) is Rβ, where Rβ is given by

Rβ =

1 if 0 ≤ β ≤ 1−A
1−B

2ρ

(1−ρ)b+
√

(1−ρ)2b2+4ρ
if 1−A

1−B ≤ β < 1,

with ρ = (1 − β)/(A − Bβ). This result is sharp.

For 0 ≤ b ≤ 1, let SST b(γ) = ST b(((1 + z)/(1 − z))γ). An application of Theorem 2.1 yields the following
corollary.

Corollary 2.8. The radius of starlikeness of order β, 0 ≤ β < 1, for the class SST b(γ), 0 < γ ≤ 1, is Rβ, where

Rβ =
2ρ

(1 − ρ)b +
√

(1 − ρ)2b2 + 4ρ
(2)

with ρ = (1 − β1/γ)/(1 + β1/γ). This result is sharp.

Remark 2.9. Stankiewicz [40, Theorem 6, p. 105] obtained the radius of starlikeness of order β for strongly
starlike functions of order α for functions with varying second coefficient. This is precisely Corollary 2.8
with b = 1. (Note that there is a typographical error in his result.)

Let SL be the class of functions defined by

SL :=

 f ∈ A :

∣∣∣∣∣∣
(

z f ′(z)
f (z)

)2

− 1

∣∣∣∣∣∣ < 1 (z ∈ D).


Thus a function f ∈ SL if z f ′(z)/ f (z) lies in the region bounded by the right-half of the lemniscate of
Bernoulli given by |w2 − 1| < 1. This class SLwas introduced by Sokół and Stankiewicz [37]. Paprocki and
Sokół [28] discussed a more general class S∗(a, b) consisting of normalized analytic functions f satisfying∣∣∣[z f ′(z)/ f (z)]a − b

∣∣∣ < b, b ≥ 1
2 , a ≥ 1. Some results for functions belonging to this class can be found in [38]

and [39]. In particular, we like to mention that Sokół [39, Theorem 2 (2), p. 571] has shown that the radius
of starlikeness of order β for functions in SL is 1 − β2. Letting SLb = ST b(

√
1 + z), we extend this result of

Sokół for functions with fixed second coefficient in SL in the following corollary.
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Corollary 2.10. The radius of starlikeness of order β, 0 ≤ β < 1, for the class SLb is Rβ given by equation (2) with
ρ = 1 − β2. This result is sharp.

Proof. Let f ∈ SL so that z f ′(z)/ f (z) ≺
√

1 + z =: φSL(z). It is easy to see that

Re
√

1 + reit =
1√
2

(
√

1 + r2 + 2r cos t + 1 + r cos t)1/2,

and it attains its minimum at t = π. Thus

min
|z|=r

ReφSL(z) =
√

1 − r = φSL(−r).

Also φSL(D) is the right-half of the interior of the lemniscate of Bernoulli |w2 − 1| = 1; therefore it is convex
(and hence starlike with respect to 1), and symmetric with respect to the real line. Notice thatφ−1

SL(w) = w2−1
and hence ρ := −φ−1

SL(β) = 1 − β2. The result now follows from Theorem 2.1.

Remark 2.11. When b = 1, the above corollary reduces to a result of Sokół [39, Theorem 2 (2), p. 571].

3. Radius of strong starlikeness

In [9], the radius of strong starlikeness for Janowski starlike functions is computed by first finding
the disk in which w = z f ′(z)/ f (z) lies and next subjecting the disk to be contained within the sector
| arg w| ≤ γπ/2. It is shown in [9] that the disk |w− a| ≤ Ra is contained in the sector | arg w| ≤ πγ/2 provided
Ra ≤ (Re a) sin(πγ/2) − (Im a) cos(πγ/2), Im a ≥ 0. This section is devoted to finding the radius of strong
starlikeness for certain classes of functions with fixed second coefficient.

Theorem 3.1. Let φ be an analytic function with positive real part in D with φ(0) = 1 and φ′(0) > 0. Further let
φ map the unit disc D onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the
radius of strong starlikeness of order γ, 0 < γ ≤ 1, for functions f ∈ ST b(φ) is Rγ, where Rγ is the solution of the
following equation in r:

max{argφ(r1z) : |z| = 1} = γπ
2
,

with r1 given by (1). The result is sharp.

Proof. The proof follows along similar lines as in the proof of Theorem 2.1, and hence many of the details are
omitted here. LetDr = {z ∈ C : |z| ≤ r}. We claim thatφmapsDr onto a region symmetric with respect to the
real line. To see this, first note that since φmapsD onto a region symmetric with respect to the real line, the
Taylor’s coefficients ofφ are real and henceφ(z) = 1+B1z+B2z2+ · · · , Bi ∈ R. Let w ∈ φ(Dr) so that w = φ(rz),
z ∈ D. Then w = φ(rz) = φ(rz) ∈ φ(Dr). Hence max{| argφ(r1z)| : |z| = 1} = max{argφ(r1z) : |z| = 1}.

Theorem 3.1 is next applied to certain special cases. Our first result is for the case of starlike functions.

Corollary 3.2. The radius of strong starlikeness of order γ, 0 < γ ≤ 1, for starlike functions in ST b is the number
Rβ given in equation (2) with ρ = tan(πγ/4).

Proof. Let f be a normalized starlike function so that

z f ′(z)
f (z)

≺ 1 + z
1 − z

=: φ(z).

Since

φ(reit) =
1 − r2 + 2ri sin t
1 + r2 − 2r cos t

,
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it follows that

max{argφ(r1z) : |z| = 1} = arctan

 2r1

1 − r2
1

 .
Then the equation max{argφ(r1z) : |z| = 1} = γπ/2 becomes

2r1

1 − r2
1

= tan
(γπ

2

)
, 0 < γ < 1,

while Rβ = 1 if γ = 1. The former case leads to

r1 = ρ = csc(πγ/2) − cot(πγ/2) = tan
(πγ

4

)
.

Solving r1 = ρ for r yields the desired result.

The next result is for the class SL. Sokół [39, Theorem 2 (4), p. 571] obtained the radius of strong
starlikeness of order γ for functions in SL to be sin(πγ). We extend this result for starlike functions with
fixed second coefficient in the following corollary.

Corollary 3.3. The radius of strong starlikeness of order γ, 0 < γ ≤ 1, for functions in the class SLb is the number
Rβ given by equation (2) with ρ = sin(πγ).

Proof. Let f ∈ SLb so that

z f ′(z)
f (z)

≺
√

1 + z =: φ(z).

Then

argφ(reit) =
1
2

arctan
( r sin t

1 + r cos t

)
≤ 1

2
arctan

r√
1 − r2

.

The equation max{argφ(r1z) : |z| = 1} = γπ/2 becomes

r1√
1 − r2

1

= tan
(
γπ

)
, γ ,

1
2
,

and thus r1 = ρ = sin(πγ). Solving r1 = ρ for r yields the desired result. The case γ = 1/2 yields Rβ = 1.
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[28] E. Paprocki, J. Sokół, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej

Mat. 20 (1996) 89–94.
[29] V. Ravichandran, F. Rønning, T. N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic

functions, Complex Variables Theory Appl. 33(1-4) (1997) 265–280.
[30] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118(1) (1993)

189–196.
[31] F. Rønning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47

(1993) 123–134.
[32] D. B. Shaffer, Distortion theorems for a special class of analytic functions, Proc. Amer. Math. Soc. 39 (1973) 281–287.
[33] H. Silverman, On a class of close-to-convex functions, Proc. Amer. Math. Soc. 36 (1972) 477–484.
[34] H. Silverman, D. N. Telage, Spiral functions and related classes with fixed second coefficient, Rocky Mountain J. Math. 7(1)

(1977) 111–116.
[35] R. Singh, On a class of star-like functions, Compositio Math. 19 (1967) 78–82.
[36] R. Singh, On a class of starlike functions. II, Ganita 19(2) (1968) 103–110.
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