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A method for conditioning electron beams is proposed, making use of

the TM210 mode of microwave cavities, to reduce the axial velocity spread

within the beam, in order to enhance gain in resonant electron beam devices,

such as the free-electron laser (FEL). Effectively, a conditioner removes the

restriction on beam emittance. The conditioner is analyzed using a simple

model for beam transport and ideal RF cavities. Analysis of an FEL is

employed to evaluate performance with reduced axial velocity spread.

Examples of FELs are presented showing the distinct advantage of

conditioning.

PACS numbers: 42.55.Tb, 41.80.Ee, 52.75.Ms



The performance of fast-wave resonant electron devices for the production of

coherent radiation, such as free-electron lasers (FEL) or cyclotron auto-resonant

masers (CARM), is limited by the intrinsic spread in longitudinal velocity of the

electrons. 1,2,3,4 For the purpose of this note we limit the discussion to FELs. In

practice, to limit the spread in longitudinal velocity the energy spread and the

emittance of the electron beam are carefully limited. In fact, it is the very difficulty

of reducing these two features of a beam, while still maintaining high beam current,

which produces the limit on gain in fast wave devices. Often electron beam sources

have the feature that the energy spread of the particles is exceedingly small. In this

work, we shall consider only this situation.

Small energy spread, alone, is not enough to make a fast-wave device work

optimally, for the non-zero angular spread of the beam, measured by its emittance,

produces longitudinal velocity spread; i.e., "effective energy spread". However, one

can consider a device, placed between the accelerator producing the electron beam

and the fast-wave coherent radiation generator, that "conditions the beam"; i.e.,

converts the beam to particles all moving with the same longitudinal velocity. Such

a device need not "cool" the beam; i.e., the phase volume after the device can equal

that before the device, but it builds upon the fact that the beam has a very small

energy spread and "pushes phase space around"; Le., introduces a tight correlation

between transverse oscillation energy and total particle energy. In this note we

analyze the performance of such a device, and show that it can significantly increase

the gain in fast-VI/ave devices.

In Ref (1) it is shown that FEL behavior is governed by the equation

(1)

(2)
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provided

~ « 1
pkw

(3)

In this formula, E is the electromagnetic field, the wiggler wave number is kw , the

betatron wave number is kfJ, and the central beam energy is Yomc2. Resonance at the

signal wave number kr occurs when y = Yr' The FEL parameter, is p and qll is the

Fourier transform variable of ~ = (kr + kw) Z - VQ t. The variables k = kfJ/ kw, r = -V2kskw

R, R is the radial coordinate, and p =dr / d(kwz).

The usual inequalities for FEL behavior are obtained from Eq. (1) by requiring

that the energy spread and the emittance effect are small. Thus

2 (r-rv)!rv « 2p, (1/4) (k2r2+p2) « 2p, or

(J

-« p ,

Y
(4)

(5)

where £. =kpR2, the emittance, and cr, the energy spread, have been introduced. Eq.

(1) now becomes

(6)

where W(r) is dependent only upon r.

Transverse effects can be ignored if V ~ « 2p, which is
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LRay » LCain (7)

where LRay = ksR2 and LCain = 1/2pkw . The usual inequalities are Eqs. (3), (4), (5), (7),

which result from taking fa = fa «Y-YO) Iyo, (1 14) (p2+k2r2» having a small spread in its

two arguments.

For a conditioner we have

(8)

still having a small spread in its two arguments, but now we have introduced a

correlation between total energy and transverse energy. In this case it is obvious,

from Eq. (2), that there is no longer a restriction on transverse energy. Thus FEL

behavior is only limited by the inequalities Eqs. (3), (4) and (7). In the microwave

range, where there is a wave guide, only the conditions of Eqs. (3) and (4) remain.

A device, or "conditioner", that introduces a correlation between transverse

oscillation amplitude and particle energy is shown in Fig. 1. It consists of a focusing

FODO channel and suitably phased RF cavities operating in the TM210 mode. For a

FODO channel, and in the thin-lens approximation, in the absence of RF cavities a

matched beam will have maximum (x2)+ at the focusing lenses and minimum (x2).

at the defocusing lenses where, in terms of the lens strength f and separation L we

have

(9)

where Ex is the beam emittance. The orthogonal (y2) will be exactly the same, but (y2)

will be largest at the defocusing lenses.
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Since in the TM210 mode, at the appropriate phase, there is predominantly Ez,

and no deflecting fields (we ignore fringe fields), to a good approximation a particle

passing through the RF cavity at the focusing lens has its transverse motion

unaffected, but gains energy /:i.y+ = a (x2 - y2), with a. a constant that depends on

cavity parameters. Similarly, with a 1800 phase change, at the defocusing lens /:i.y_ =

-a (x2 - y2). It is clear that in passing through N periods of a conditioner, a particle of

initial amplitude of oscillation characterized by emittance E and initial phase ([Jox and

<flay will gain energy

(10)

where Ji, the phase advance for a period is given by cos Ji = 1 - ~ L2 / f. If the

conditioner has an infinite number of periods, is "perfect", then

(11)

There results an averaging over oscillations, as we expected, so that energy, L1y, is

exactly correlated with amplitude of oscillation, E. The requirement for a

conditioner is given by Eq. (8) and results in

(12)

5



where the first factor only contains FEL parameters, and the second only conditioner

parameters.

In practice, a conditioner has only a finite number of periods. How many

periods are necessary to obtain a rather good averaging; i.e., for particles to be mostly

at the extreme of oscillations when going through the RF cavities? A bit of analysis

shows that for N periods the maximum deviation of L1y is:

L1y sin Nil r 11 4P. 211]1/
2

1-----'---- - 1 < 1------1 COs2 - + - SIn -

L1 I - Nsin 11 2 L2 2 '
Y perfect L

(13)

so that the spread in energy drops off inversely with N and can be made zero if Nfl is

a multiple of 1t. As a good practical example, L = 50 em, f = 100 em, fl = 0.505, f3+ =

258 em, f3- = 155 em, and for N = 6 we have L1y/L1yl perfect = 5.2 x 10-2 so that with only

6 periods the induced correlation is good to 5%, which for the examples given is a

negligible correction.

A complete analysis of an FEL with conditioner, such analysis taking into

account energy spread, emittance and focusing of the electron beam, and the

diffraction and guiding of the radiation, may be given following the work of Yu,

Krinsky and Gluckstern.5 In fact, the analysis results in the same scaling laws. The

only change is to delete the term 3is (K/D) (krE) in Eq. (0) of Ref. 5. Now Fig. 1 of

Ref. 5 is replaced with Fig. 2 of this Letter. Thus the e-folding length of the electric

field, Lc, is given by

(14)

where, in terms of the wiggler parameter K, and the beam current I
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[
2 ]1/2

o = 4eL; K L [J JJ '
""""'r2 ... rr 2 'V
/.;;,~ 1+1\. I\J

(15)

and the factor un, a difference of Besel functions is given in Ref. 5, but is close to

unity. The dependence of G upon its first three arguments is given in Fig. 2. For all

cases the detuning was taken as zero; i.e., [(w - wr) / wrD] = O. (The gain was close to

optimum for zero detuning.) With the formula for Lc and Fig. 2 one can readily

evaluate the performance of an FEL with conditioned beam.

Some examples of a conditioner are given in Table 1. The examples have

been arrived at by using the scaling laws and then checked by numerical simulation

(they gave the same result). The parameters of the examples are all realistic; the

beam current, energy spread, and emittance in the examples corresponds to less

demanding performance than that of the LANL photo cathode gun.6 The amount

of conditioning required, /j:y Ic, which is the average energy increment across the

beam, is given by !1yc = kskpEn /2 kw , and is indicated in Table 1. It can be seen that

gain from conditioning is considerable; for example, in the infra red (10 IJ.m)

example the gain length is reduced by a factor of 5, while in the ultra-violet example

the energy of the beam is reduced by a factor of 3 (thereby reducing the cost of the

accelerator by essentially the same factor) while the gain length is reduced by more

than a factor of 2 (thus reducing the cost of the wiggler by this factor). The saving in

cost is even larger than these numbers indicate, for with the shorter wiggler, magnet

errors are less important and therefore manufacturing tolerances are reduced.

In the analysis of this paper, and in all the examples, the betatron wavelength

A ~ has been determined by the "natural" focusing of the FEL. That doesn't have to

be the case and, in particular, ion focusing (the use of a plasma) can be used to

decrease Ap.3 Such reduction is quite advantageous, for FEL performance, but is

limited by the very condition, on the emittance, that a conditioner removes.

If Ap is reduced by an ion channel, one can design a conditioner so that the

average longitudinal velocity spread across the beam is zero, but there will still be

oscillations (at frequency 2kpC> in the longitudinal velocity. In Table II we have

presented examples whose performance has been evaluated under the assumption

that longitudinal velocity modulations are unimportant. (Numerical simulation

confirms the essential correctness of the assumption.) The example of the 30 A FEL
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operates in the "water window" where wet biological samples are transparent and

where an intense coherent source would be of great interest for imaging.

Presumably such a short wavelength FEL is obtained by seeding a 1000 A FEL at (say)

3000 A with an excimer or dye laser and then cascading FELs. The second example

in Table II, based upon the proposed Brookhaven National Laboratory VUV Facility,

is a set of parameters which might be used to experimentally study conditioning and

ion focusing. Operation at very short wavelengths requires two things which have

not yet been achieved, but which appear to be possible; namely, operation of a

conditioner and operation of an FEL with ion focusing.

This work was supported by the U.s. department of Energy under Contract

Numbers DE-AC03-76SF00098 and DE-AC02-76CH00016, the Japan Society for the

Promotion of Science, and the National Laboratory for High Energy Physics (KEK).
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Table 1. Parameters for a 10 ).lm, 300 A and 500 A FEL, with, and without, a conditioner. For each case the

wiggler wavelength (Au) was varied and determined so that the growth length (Lc) was minimum.

10 ).lm 3000 A- 500 A
10 ).lm FEL with FEL with FEL with
FEL conditioner 3000 A FEL conditioner 500 A FEL conditioner

Elcctron Bcam

Energy yomc2 (MeV) 54.2 54.2 483 153 1004 304

Electron Beam ;

Peak Current I (A) 300 300 300 300 300 300

Electron Beam Normalized
Emittance En (rms) (m) 8xl0-4rc 8xl0-4rc 5xl0-5rc 5x10-5rc 2x10-5rc 2xl0-5rc

Electron Beam Betatron
Wave-length Ap (m) 8.91 8.91 20.1 12.4 33.5 19.2

'-0 Electron Beam
Radius (rms) (mm) 4.6 4.6 0.58 0.81 0.33 0.46

Electron Beam Energy
4.4xl0-4 4.4xl0-4 4.4x10-4 4.4x10-4 4.4x10-4 4.4xl0-4Spread aly (rms)

Wiggler Wave-length
2rc/kw (cm) 8.0 8.0 4.8 2.8 3.7 2.0

Maximum Magnetic
Field B (T) 0.25 0.25 1.0 0.52 1.26 0.66

Power e-folding
Length LC 12 (m) 7.95 1.58 3.09 1.38 4.64 2.12

Beam conditioning (rms)

6'YdlTlc2 iMeV) --- 0.12 --- 0.61 --- 0.67



Table II. Parameters for a "water window" FEL assuming one can have ion focusing and a conditioned beam.
Parameters are also given for an experiment at the proposed BNL facility.

30 A FEL with
Experiment 1000A

PEL with plasma

30 AFEL
plasma focusing and VUV facili ty focusing and

conditioning 1000 AFEL conditioning

Electron Beam
Energy yomc2 (MeV) 1562 1240 250 250

Electron BCLlm Pcak
Current I (A) 80 80 300 30

Electron Beam
Normalized Emi t-
tance £n (rms) (m) 2x10-6 n 2x10-6 n 8x10-6n 8x10-61t

Electron Beam
Betatron Wave-
length A ~ (m) 82.9 0.62 14.0 0.23

Electron Beam Radius
f-' (rms) (mm) 0.13 0.013 0.27 0.035
0

Electron Beam Energy
4.4x10-4 4.4x10-4 4.4x10-4 4.4x1Q-4Spread a/y (rms)

w i ~ g l e r Wavelength
2n kw (cm) 2.3 2.0 2.2 2.2

Maximum Magnetic
Field B (T) 0.79 0.66 0.75 0.75

Power e-folding Length
Lc/2 (m) 25.6 1.54 1.07 0.76

Beam condi tioning
(rms) !:!.yc/mc2 (MeV)(a) --- 17.3 --- 6.2

(i1) For strong ion focusing, c..'Yc is given by 1/2 of the formula used in Table I.



Figure Captions

Fig. 1.

Fig. 2.

A diagram showing the location of the beam conditioner Oa), and then

showing one period of the conditioner (1 b). A period consists of two

focusing lenses (each of strength //2), two defocusing lenses (each of

strength -//2), and three RF cavities each operating in the TM210 mode.

Scaling functions versus scaled emittance for several values of kfJ/ kwD

corresponding to scaled energy spreads (a) (5/ D = 0, (b) (5/ D = 0.1 and

(c) (5/ D =0.2.
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