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Abstract—Device authentication is essential for securing Inter-
net of things. Radio frequency fingerprint identification (RFFI)
is an emerging technique that exploits intrinsic and unique
hardware impairments as the device identifier. The existing RFFI
literature focuses on experimental exploration but comprehensive
modelling is missing. This paper systematically models impair-
ments of transmitter and receiver in narrowband systems and
carries out extensive experiments and simulations to evaluate
their effects on RFFI. The modelled impairments include os-
cillator imperfections, imbalance of inphase (I) and quadrature
(Q) branches of mixers and power amplifier (PA) nonlinearity.
We then propose a convolutional neural network-based RFFI
protocol. We carry out experimental measurements over three
months and demonstrate that oscillator imperfections are not
suitable for RFFI due to their unpredictable time variation
caused by temperature change. Our simulation results show that
our protocol can classify 50 and 200 devices with uniformly and
randomly distributed IQ imbalances and PA nonlinearities with
high accuracy, namely 99% and 89%, respectively. We also show
that the RFFI has some tolerance on different receiver imbalances
during training and classification. Specifically, the accuracy is
shown to degrade less than 20% when the residual receiver’s
gain and phase imbalances are small. Based on the experimental
and simulation results, we made recommendations for designing
a robust RFFI protocol, namely compensate carrier frequency
offset and calibrate IQ imbalances of receivers.

Index Terms—Device authentication, radio frequency finger-
print identification, RF impairment, narrowband, convolutional
neural network

I. INTRODUCTION

Internet of things (IoT) has digitally transformed our ev-

eryday life which aims to connect everything and everyone.
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Many exciting IoT applications such as smart home, smart

cities, connected healthcare, industry 4.0, etc. are enabled by

a wide range of IoT devices [1]. Cisco predicts that there

will be 300 billion IoT devices by 20301, mainly connected

wirelessly thanks to the easy installation and deployment.

However, the broadcast nature of wireless transmissions makes

device authentication challenging as any malicious users can

access the network. Devices are conventionally authenticated

by cryptographic schemes, which rely on a commonly pre-

shared key and software address. However, key management

and distribution become challenging for IoT devices, as many

of them will be low-cost and distributed in remote areas [2].

Software address, such as MAC/IP address, is not encrypted

and can be spoofed easily.

A new and secure device authentication method is thus

urgently needed and should be designed to be tamper-proof.

It should ideally be lightweight, because many IoT devices

are low-cost with limited computational and power resources

and some are required to work for over 10,000 hours on a

coin cell battery [3]. Radio frequency fingerprint identification

(RFFI) has emerged as a promising candidate [4], [5], which

exploits the unique hardware features of transceiver devices

as their identifiers. These features are produced because of

the manufacturing process variations, which cannot be elim-

inated even with advanced manufacturing technologies. The

hardware features deviate from the nominal values and will

slightly affect the waveform of wireless transmissions, but the

deviation is within such a small range that it does not affect

the normal communication operation. As these impairments

are unique, stable and difficult to tamper with, they can be

extracted as device identifiers.

Many IoT techniques, for example, ZigBee, Bluetooth,

LoRa, and Sigfox, only require a low communication rate as

the payload is short. These techniques are usually narrowband.

For example, LoRa only occupies a bandwidth of 125, 250

or 500 kHz, and supports a bit rate ranging from 0.24 - 37.5

kbps2. It can be used to transmit environmental monitoring in-

formation such as temperature. RF impairments of narrowband

techniques consist of oscillator imperfections such as carrier

frequency offset (CFO) and phase noise, mixer imperfections

including inphase (I) and quadrature (Q) imbalance, power

amplifier (PA) nonlinearity as well as antenna patterns [6]. The

1https://www.cisco.com/c/en/us/solutions/collateral/data-center-
virtualization/big-data/solution-overview-c22-740248.html

2https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1272
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emitted signal of IoT devices will be distorted by the above

transmitter impairments. A receiver will capture the physical

waveform and extract these impairments to infer the device

identity.

Modelling RF impairments is important to understand the

behavior of hardware impairments and the capacity of RFFI.

While there is detailed general RF impairments modelling [6]–

[9], the modelling for RFFI is rather limited or only partially

complete. For example, the work in [10], [11] modelled RF

impairments but did not examine their individual and overall

impacts on the RFFI. In addition, other work focused on only

one single transmitter impairment, for example, CFO [12]–

[15], IQ imbalance [11], [12], [16], PA nonlinearity [17]–[21],

antenna pattern [22], [23]. However, transmitter impairments

are twisted with each other and coexist in practical systems.

The overall effects of these impairments require further in-

vestigation. Finally, there is very limited work on receiver

impairments [11], [24]. In practice, different receivers may

be used for RFFI and their impairments will interfere with the

extraction of transmitter impairments. This important aspect is

not properly modelled and explored yet. However, if we are

to achieve progress and create a system to efficiently exploit

RFFI, we need an effective model that is backed up and based

on solid research.

In summary, this paper starts to address the need for the

design of a robust RFFI protocol by providing a compre-

hensive study of RF impairments modelling in the RFFI

context. This paper carries out a systematic modelling of both

transmitter and receiver impairments in narrowband systems as

well as comprehensive experimental and simulation validation

for their effects on RFFI. Specifically, we create a model

that involves the major RF impairments that are exploited for

RFFI in the literature, including oscillator imperfections [12]–

[15], IQ gain and phase imbalances [11], [12], [16], and PA

nonlinearity [17]–[21]. We study the impact of individual and

overall impairments as well as other relevant configurations

such as the transmission power (backoff level of PA), signal-

to-noise ratio (SNR), payload pattern and length. We finally

make design guidelines for a practical and robust RFFI system.

Our detailed contributions are as follows.

• We carry out six experiments over three months using five

LoRa devices and demonstrate that CFO is time-varying

and not suitable for classifying low-cost IoT devices. In

addition, we show that CFO interferes with other RF

impairments.

• Extensive simulations are carried out to validate the

effects of transmitter impairments including IQ imbal-

ances and PA nonlinearities. We show that our RFFI

protocol can classify 50 devices of uniformly distributed

impairments with accuracies as high as 99% at SNR of

20 dB.

• Extensive simulations are carried out to study the effects

of receiver impaired by IQ imbalances. It demonstrates

that, for the first time, when the receiver IQ imbalances

are within a limited range, that is, the gain and phase

imbalances were within the range of [-0.2 0.2] dB and

[-1 1] degree, respectively, the classification accuracy is

compromised by less than 20%.

As the RF impairments cannot be reconfigured or customized,

the following recommendations have been identified for de-

signing a robust RFFI protocol:

• Estimate and compensate CFO before RFFI in order to

avoid CFO interfering with other RF impairments.

• Calibrate IQ imbalance of the receiver in advance for

obtaining low residual IQ imbalances to minimize the

impact of different receivers.

The rest of the paper is organized as follows. Section II

introduces the related work. Section III presents the overview

of RFFI systems, which consists of transmitter and receiver

impairments and the RFFI protocol. Specifically, transmitter

impairments are modelled in Section IV while Section V mod-

els the receiver impairments and introduces the RFFI protocol.

Section VI explains the simulation setup. The experimental

and simulation results are given in Section VII. Section VIII

concludes the paper.

II. RELATED WORK

RFFI research can be generally categorized into

experimental-based studies and model-based work. The

former constitutes the majority of the current literature, which

uses IoT devices as devices under test (DUTs) and software

defined radio (SDR) platforms, for example, universal

software radio peripheral (USRP) or high specification

equipment such as oscilloscope as receivers. RFFI has

been applied to ZigBee [24]–[26], WiFi [12], [14], [15],

[27]–[29], and LoRa [30]. These research efforts validate the

practicability of RFFI.

RFFI is a multi-class classification problem and state-of-

the-art machine learning and deep learning algorithms can be

leveraged. Specifically, classic machine learning algorithms

such as support vector machine (SVM) [12], [30], random

forest and decision tree [27], [31], are used. However, the

work usually relies on the handcrafted features, which will be

twisted with each other and accurate estimation of individual

feature will be challenging in some cases. It also requires a

good understanding of the underlying communication proto-

cols. On the other hand, deep learning algorithms can take the

raw signals directly and extract the hidden features, which can

significantly decrease the development overhead and difficulty.

Deep learning is hence widely used for RFFI, including

convolutional neural network (CNN) [26], [29], [30], [32],

[33], long short-term memory (LSTM) [11], [34], and gated

recurrent units (GRU) [34].

The transmitter impairments are the intrinsic and unique

features of each device that RFFI aims to exploit as device

identifiers. Specifically, CFO has been extracted to classify

WiFi devices [15]. Wong et al. [16] designed an IQ imbalance-

based RFFI. Hanna et al. [18] used the Saleh model to depict

the PA nonlinearity in narrowband systems while Polak et

al. [17] used Volterra series to represent the memory effects

of a PA in a wideband system. The Taylor polynomial model

has also been used to model the PA memory effects [19]–[21].

The radiation patterns of antennas have also been explored for

RFFI [22], [23].

The receiver impairments also affect the RFFI performance.

In practical applications, the manufacturers may carry out the
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Fig. 1. System overview.

RFFI training using a high specification receiver to capture

wireless signals, and provide the training information to cus-

tomers. The users are likely to use their own receivers for clas-

sification. Another example is that roaming IoT devices will

access the network from different base stations/access points,

hence the RFFI will be carried out via different receivers.

However, because received signals will be impacted by re-

ceiver impairments, different receivers will probably interfere

with the recognition of the transmitter impairments. There are

very few efforts on this challenge. He et al. [11] employed

multiple distorted receivers and used information fusion to

combine their results. However, the same receiver sets were

used for training and classification. Peng et al. [24] used two

different USRP SDR platforms for training and classification

and demonstrated the performance is only slightly affected.

Nevertheless, proper modelling of the receiver impairments is

missing and the effect of different receivers for training and

classification on the RFFI is not clear.

III. SYSTEM OVERVIEW

The overview of an RFFI system is shown in Fig. 1. There

are NDUT DUTs with different hardware impairments, such

as IQ mismatch and PA nonlinearity. The ith DUT will emit

modulated signals, si(t), which will be captured by a receiver.

Based on the received signal, r(t), the receiver tries to identify

the slight differences among the RF impairments and deduce

the transmitter identity using the RFFI protocol.

For each DUT, the transmitted signal is first modulated

digitally, for example, using 16 quadrature amplitude mod-

ulation (16QAM) or quadrature phase shift keying (QPSK). It

is then converted to the analog domain by a digital-to-analog

converter (DAC). The analog signal, x(t), further undergoes

upconversion and power amplification, and is finally emitted

by an antenna. The overall effects of these analog processes

can be expressed as

si(t) = Fi(x(t)), (1)

where Fi(·) denotes combined effects of the transmitter chain

of ith DUT. Each DUT is subject to hardware impairments

during the manufacturing process and this paper focuses on

modelling and analyzing oscillator imperfections, IQ mismatch

Classification

Training

Inference

Device 

Index

Signal

Preprocessing Trained 

NN Model

NN Training

Fig. 2. A deep learning-based RFFI protocol.

and PA nonlinearity as they are the most common impairments

for RFFI, which will be done in Section IV.

The signal reaching the receiver will undergo channel

effects. In a narrowband system, the received signal can be

given as

r(t) = h(t)si(t) + n(t), (2)

where h(t) is the channel effect and n(t) is the additive white

Gaussian noise (AWGN), that is, n(t) ∼ CN (0, σ2
n).

Once the receiver captures the signal r(t), it is processed

by the receiver chain in the analog domain such as downcon-

version and demodulation, which yields

y(t) = G(r(t)), (3)

where G(·) represents the overall receiver chain effect. The

receiver impairments are modelled in Section V-A.

Based on the received signal y(t), the receiver aims to infer

the identity of the DUT using RFFI. As shown in Fig. 2,

a deep learning-based RFFI protocol consists of two stages,

namely training and classification. During the training stage,

a receiver, acting as an authenticator, will collect sufficient

packets from each DUT and use these packets to train a neural

network (NN) model. The training only needs to be done

offline and for one time. Signal preprocessing algorithms are

adopted consisting of packet detection and synchronization,

CFO estimation and compensation. At the classification stage,

a DUT will emit a wireless signal and the receiver will classify

the origin based on the received waveform and the pre-trained

NN model. A CNN-based RFFI protocol will be designed

in Section V-B. Compared with traditional schemes, CNN-

based RFFI protocol does not need handcrafted features. In

addition, CNN has been applied with great success in image

classification, speech recognition, natural language processing,

etc. Its excellent classification capability can also be leveraged

for RFFI.

IV. TRANSMITTER IMPAIRMENTS

The architecture of the direct (homodyne) conversion trans-

mitter is portrayed in Fig. 3. The impairment modelling is

based on the general RF impairments modelling for a direct

conversion transmitter [6], [8], [35]–[37], with a special focus

on the oscillator imperfection including CFO and phase noise,

mismatch of I and Q branches, and PA nonlinearity, as they

are the main features studied for RFFI.
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A. Oscillator Imperfection

A crystal local oscillator (LO) generates sinusoidal waves

with the required carrier frequency, which is used for upcon-

version at the transmitter. It usually employs a phase-locked

loop (PLL) circuit to synthesize the carrier frequency.

The frequency stability, δf , represents the variation of the

frequency output of a LO, which can be quantified in the parts

per million (ppm). The frequency offset will satisfy [38]

−
δf

106
× f0c ≤ ∆f ≤ +

δf

106
× f0c , (4)

where f0c is the reference nominal frequency. The output

frequency can then be given as

fc = f0c +∆f. (5)

Besides the frequency offset, the LO is also affected by

the phase noise, φ(t). The phase noise can be characterized

by single sideband noise spectral density and has the unit

of decibels below the carrier per Hertz (dBc/Hz). It can be

modelled as a filtered Gaussian noise. Both CFO and phase

noise will bring a phase shift to the constellation points. For

example, the effect of phase noise is shown in Fig. 4.

Based on the above analysis, the carrier at the transmitter

side can be mathematically expressed as

Ωtx(t) = cos(ωtxt+ φtx(t)), (6)

where

ωtx = 2π(f0c +∆f tx), (7)

and ∆f tx is the frequency offset of the transmitter.

B. IQ Imbalance at Mixer

The transmitter uses a quadrature mixer to upconvert the

signals from the baseband to the RF band. There will often

be mismatch/imbalance between the I and Q branches.

The transmitter will digitally modulate the payload using,

for example, QAM, and convert the modulated signals by a

DAC to

x(t) = xI(t) + jxQ(t), (8)

where xI(t) and xQ(t) are the modulated signals at I and

Q branches, respectively. The signal is upconverted from the

baseband to the RF band. The RF band signal at the mixer in

the presence of IQ imbalance and oscillator imperfections can

be given as [39]

sRF (t) =g
tx
I xI(t) cos(ω

txt+ φtx(t) + θtx)−

gtxQ xQ(t) sin(ω
txt+ φtx(t)− θtx), (9)

where gtxI and gtxQ are the I and Q gains, respectively, ψtx =
2θtx is the IQ phase mismatch. The IQ gains in the linear

scale at the transmitter can be given as [40]

gtxI = 10

(

0.5G
tx

20

)

, (10)

gtxQ = 10

(

−0.5G
tx

20

)

, (11)

where Gtx is the gain imbalance in dB at the transmitter.

The equivalent baseband signal of sBB(t) can be given as

sBB(t) = sI(t) + jsQ(t). (12)

The signal in (9) can be rewritten as

sRF (t) = sI(t) cos(ω
txt+ φtx(t))− sQ(t) sin(ω

txt+ φtx(t))

= ℜ{sBB(t)e
j(ωtxt+φtx(t))}, (13)

where ℜ{·} denotes the real part operation, and

sI(t) =g
tx
I xI(t) cos(θ

tx) + gtxQ xQ(t) sin(θ
tx), (14)

sQ(t) =g
tx
I xI(t) sin(θ

tx) + gtxQ xQ(t) cos(θ
tx). (15)

The baseband signal can be rearranged as

sBB(t) = gtxI xI(t)e
jθtx + jgtxQ xQ(t)e

−jθtx . (16)

In the simulation of wireless transmissions, complex forms

of the signal and channel are more commonly used because

of the elegant mathematical expression. Therefore, from now

on, we denote the signal of the RF band as

sRF (t) = sBB(t)e
j(ωtxt+φtx(t)). (17)

The effect of the IQ imbalance is illustrated in Fig. 5.

As shown in Fig. 5(a), a positive/negative gain imbalance

will bring a horizontal/vertical stretch. The phase imbalance

will result in constellation rotation, which can be observed in

Fig. 5(b).

As shown in Figs. 5(c) and 5(d), when the gain imbalance of

a transmitter, Gtx, is within [-5 5] dB, or the phase imbalance,

ψtx, is within [-30 30] degree, these imbalances do not cause a

severe impact on the bit error rate (BER) for a 16QAM system

at an SNR of 10 dB. In addition, the BER when there are both

gain and phase imbalances is given in Figs. 5(e) and 5(f). The
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Fig. 5. IQ imbalance of mixers impairment. (a) Constellation change with gain
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BER is only compromised by 1% when IQ compensation is

adopted [41].

It should be noted that IQ compensation will always be

adopted by a receiver in practical systems [41]. However,

as the IQ imbalances are part of the intrinsic hardware

impairments that we aim to exploit for RFFI, we employ raw

signals without IQ compensation, which can be implemented

independently from, and in parallel with, normal receiver

operations.

C. Power Amplifier Nonlinearity

The PA is an indispensable part of the transmitter that ampli-

fies a low-power signal to a higher power one. It is, however,

usually nonlinear. The memoryless nonlinear effects of a PA in

a narrowband system can be modelled as amplitude/amplitude

(AM/AM) and amplitude/phase (AM/PM) characteristics [6].
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Fig. 6. AM/AM and AM/PM characteristics of the Saleh model. [αA =
2.1587, βA = 1.1517, αΦ = 4.0033, βΦ = 9.1040].

As the relation |sRF (t)| = |sBB(t)| holds, where |·| calculates

the amplitude, the combined effects of the PA can be written

as

s(t) = A(|sBB(t)|)e
j(ϕ+Φ(|sBB(t)|)), (18)

where A(·) and Φ(·) denote the AM/AM and AM/PM effects,

respectively, ϕ = ∠sBB(t) + ωtxt+ φtx(t).
There have been several behavioural models proposed, such

as the Saleh, Rapp and Ghorbani models, etc. [6]. For example,

the AM/AM and AM/PM characteristics of the Saleh model

can then be defined as

A(|sBB(t)|) =
αA|sBB(t)|

1 + βA|sBB(t)|2
, (19)

Φ(|sBB(t)|) =
αΦ|sBB(t)|

2

1 + βΦ|sBB(t)|2
, (20)

respectively, where αA, βA, αΦ, and βΦ are the corresponding

coefficients. The AM/AM and AM/PM characteristics are

shown in Fig. 6. When the input power increases to a certain

level, the PA enters the non-linear region, which should be

avoided. The backoff is a level below the saturation point. The

larger it is, the further the PA is from the saturation point.

The effect of the PA is given in Fig. 7. Regarding the same

Saleh model used for Fig. 6, the constellation is rotated about

10 degrees due to the AM/PM effect, when the input power

is 20 dBm, as shown in Fig. 7(a). This matches Fig. 6 as the

AM/PM effect is 12.01 degrees for a 20 dBm input power.

As can be observed in Fig. 7(b), BER for a 16QAM system

at 10 dB SNR significantly decreases with the backoff level,

especially when the PA leaves away from the nonlinear region.

We further configured different PA models by setting their

parameters with a change of ±10% to the default values, that

is, [αA = 2.1587, βA = 1.1517, αΦ = 4.0033, βΦ = 9.1040].
Fig. 7(c) demonstrates that the BER remains stable for differ-

ent PA parameters when the backoff level is fixed.

D. Summary

After the above hardware modulation and processing, the

transmitted signal is ready and will be emitted by an antenna.

For the simplification of notation, we rewrite (18) as

s(t) = s′(t)ej(ω
txt+φtx(t)), (21)
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Fig. 8. Receiver chain with hardware impairments.

where

s′(t) = A(|sBB(t)|)e
j(∠sBB(t)+Φ(|sBB(t)|)). (22)

This completes the transmitter modulation and processing.

V. RFFI SYSTEM

As shown in Fig. 8, the receiver will capture the signal via

an antenna, downconvert it from the RF band to the baseband,

and carry out IQ demodulation, which will be introduced in

Section V-A. The processed analog signals are then converted

to digital sequences and fed into the RFFI protocol, which will

be explained in Section V-B.

A. Receiver Chain With RF Impairments

Similar to the transmitter, the receiver will also have RF

impairments. The receiver oscillator is subject to frequency

offset, ∆frx, and phase noise, φrx(t). The receiver uses a

mixer to downconvert received signals from the RF band to the

baseband, which will also have imbalanced I and Q branches.

The gains of I and Q branches in the linear scale at the receiver

can be defined as [40]

grxI = 10

(

0.5G
rx

20

)

, (23)

grxQ = 10

(

−0.5G
rx

20

)

, (24)

respectively, where Grx is the gain imbalance in dB at the

receiver.

Considering these effects, the receiver’s carrier can be given

as

Ωrx(t) = Krx
1 e−j(ω

rxt+φrx(t)) +Krx
2 ej(ω

rxt+φrx(t)), (25)

where

Krx
1 =

grxI e
−jθrx + grxQ e

jθrx

2
, (26)

Krx
2 =

grxI e
jθrx − grxQ e

−jθrx

2
, (27)

and

ωrx = 2π(f0c +∆frx), (28)

and θrx = ψrx

2 , ψrx is the IQ phase mismatch at the receiver.

The received signal at the antenna (RF band) can be written

as

r(t) = h(t)s(t) = h(t)s′(t)ej(ω
txt+φtx(t)). (29)

After the downconversion and low pass filter, the received

signal (baseband) becomes

y(t) = r(t)Ωrx(t)

= Krx
1 h(t)s′(t)ej∆C +Krx

2 (h(t)s′(t))∗e−j∆C , (30)

where

∆C = 2π(∆f tx −∆frx)t+ φtx(t)− φrx(t). (31)

It can be observed that the signal y(t) possesses all the RF

impairments of both the transmitter and receiver.

When a receiver without gain and phase imbalances is

considered, (30) can be simplified as

y(t) = h(t)s′(t)ej∆C . (32)

Finally, y(t) is sampled by the analog-to-digital converter

(ADC), which produces a complex sequence, y[n], with Ns
symbols. The sequence is fed into the RFFI protocol for

training and classification.

B. A CNN-based RFFI Protocol

As RFFI is a multi-class classification problem, we can

leverage state-of-the-art deep learning algorithms to classify

these devices. Specifically, CNN has been widely used in RFFI

to learn the correlation within the IQ samples [26], [29], [30],

[32], [33], which is also adopted in this paper.

The CNN architecture is shown in Fig. 9, which is designed

based on the famous AlexNet CNN architecture [42]. AlexNet

has five convolutional layers and achieves excellent perfor-

mance on the ImageNet dataset. The complex IQ samples,
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Fig. 9. The architecture of the adopted CNN model.

y[n], are stacked as a new matrix,

(

yI [n]
yQ[n]

)

, with a size of

2 × Ns. The sequences are then fed into the CNN model.

Each convolutional layer contains batch normalization and

uses ReLU as the activation function. The number of filters

and size of the filter are marked in Fig. 9.

Following the configurations of other similar deep learning-

based RFFI work [29], [33], we used the Adam optimizer with

an initial learning rate of 1 × 10−4 for training CNN. The

maximum number of epochs is 100 but the training will stop

when the condition for patience of validation stopping is met,

which is set to 20 in this paper. MATLAB Deep Learning

Toolbox3 was used to build the CNN model. The simulation

was carried out on a node powered with two Nvidia Quadro

P4000 GPUs, which is part of the high performance computing

facilities at the University of Liverpool.

VI. SIMULATION SETUP

This section will introduce the simulation setup in terms of

the transmitter and receiver impairments as well as the channel

model.

A. Transmitter

We configure NDUT DUTs with different IQ imbalance and

PA nonlinearity. Oscillator imperfection was not included as

a suitable impairment for RFFI, which will be explained in

Section VII-A.

As shown in Table I, we considered five cases. Cases T1-

T4 represented individual transmitter impairment, namely gain

imbalance, phase imbalance, gain & phase imbalances, and

PA nonlinearities, respectively, while case T5 included all the

above impairments. The ranges of the impairments are selected

as follows.

• IQ Imbalance: From the literature, the absolute gain

imbalance ranges from 0.02 to 0.82 and the phase imbal-

ance varies from 2 degrees to 11.42 degrees [16], [34].

Therefore, we set the ranges of gain and phase imbalances

as [-1 1] dB and [-5 5] degree, respectively. Based on the

BER simulation results in Fig. 5, the IQ mismatches in

the above ranges do not impact the BER.

• PA nonlinearity: The Saleh model was used. Each param-

eter, namely [αA, βA, αΦ, βΦ], was varied within ±5% of

the default values, [αA = 2.1587, βA = 1.1517, αΦ =
4.0033, βΦ = 9.1040].

For cases T1, T2 and T3, the same Saleh PA model with the

default values were used.

3https://mathworks.com/help/deeplearning/

TABLE I
TRANSMITTER AND RECEIVER IMPAIRMENTS

Transmitter

Case T1: All the DUTs have gain imbalances, Gtx, which
follows a uniform random distribution within the range [-1

1] dB.

Case T2: All the DUTs have phase imbalances ψtx,
which follows a uniform random distribution within the
range [-5 5] degree.

Case T3: All the DUTs have both gain and phase
imbalances. Gtx and ψtx follow the same distributions as

the cases T1 and T2.

Case T4: All the DUTs have PA nonlinearities. Saleh
model was used. Each parameter, namely
[αA, βA, αΦ, βΦ], was varied within ±5% of the default
values, [αA = 2.1587, βA = 1.1517, αΦ =

4.0033, βΦ = 9.1040].

Case T5: All the DUTs have gain and phase imbalances
as well as PA nonlinearities. Their parameters follow the

same distributions as the case T3 and T4.

Receiver

Case R0: The classification receiver has no RF
impairment.

Case R1: The classification receiver has gain imbalances

within the range [-1 1] dB.

Case R2: The classification receiver has phase imbalances

within the range [-5 5] degree.

Case R3: The classification receiver has both gain and
phase imbalances whose ranges are [-1 1] dB and [-5 5]

degree, respectively.

We also studied the effect of the payload pattern on classi-

fication performance. The payload, x(t), is not part of RF

impairments, but will lead to different modulated signals,

hence affect the extraction of RF impairments. We simulated

both the same data payload and random data payload to study

the effect of the data pattern. All the data was modulated by

QPSK.

B. Channel

As shown in (30), the channel effect will interfere with RF

impairments, which has been experimentally validated by [43].

As this paper focuses on the device-specific hardware features,

we adopted an AWGN channel. The channel impairments can

be potentially solved by data augmentation [44], [45] or using

channel-independent features [29].

Different SNR levels were simulated to evaluate the noise

effects.

C. Receiver

The training and classification stages of RFFI require a

receiver to capture wireless transmissions. RFFI with the same

receiver at these stages allows us to investigate the effects of

the hardware impairments at DUTs.

However, RFFI may not use the same receiver for these

stages in practice, as we discussed in Section II. Hence, RFFI

with different receivers is a more practical setup, which has not

been comprehensively investigated. In this paper, we simulated

both scenarios, that is, RFFI with the same receiver and RFFI

with different receivers of varied IQ imbalances. Specifically,

we considered the receiver at the training stage has no RF
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impairment. Regarding the receiver at the classification stage,

the cases in Table I were considered.

We built our RF impairments model using the MATLAB

Communications Toolbox and based on a MATLAB example

simulating a QAM system with RF impairments4.

D. Metric

We used the overall classification accuracy and confusion

matrix to evaluate the RFFI performance during the classifi-

cation stage. In particular, classification accuracy is defined

as the percentage of correctly identified packets over the

total packets. Confusion matrix is an effective method to

visualize the machine learning classification results. The row

and column of the matrix represent the instances in a predicted

class and the ones in an actual class, respectively.

VII. EXPERIMENTAL AND SIMULATION RESULTS

This section will present the experimental and simulation

results of RFFI with different transmitter and receiver impair-

ments. The system configurations differ in the number of DUT,

NDUT, transmitter impairments (case T1 to T5), SNR, data pat-

tern and length, as well as the receiver impairments (case R0

to R3). For each configuration, we train a CNN model whose

architecture is shown in Fig. 9. We generate 1,000 packets for

each DUT, among which 90% are used for CNN training and

the rest 10% are for validation; we further generate another

1,000 packets for CNN testing (classification).

In order to exclusively study the transmitter impairments,

Section VII-A and Section VII-B considers the same receiver

for both training and classification stages, that is, Grx = 0
and ψrx = 0. Frequency offset is affected by working envi-

ronmental conditions such as temperature. There is no suitable

mathematical expression to describe the variation of frequency

offset against temperature. Hence we designed experiments to

estimate the frequency offset, and demonstrated oscillator im-

perfections are not suitable for RFFI due to their time-varying

nature in Section VII-A. On the other hand, IQ imbalance

and PA nonlinearity are time-invariant and can be described

mathematically. In order to carry out comprehensive studies

on their individual and overall effects, simulation allows us to

tune the parameters. Hence, Section VII-B presents the effects

of IQ imbalance and PA nonlinearity using simulation. Finally,

Section VII-C evaluates the impact of different receivers for

training and classification stages by simulation.

A. RFFI Experiments with Oscillator Imperfections

The oscillator imperfections are not ideal for RFFI as

they are not stable and may interfere with other transmitter

impairments. We use NDUT = 5 DUTs as a case study to

investigate the CFO effect in this section.

4https://uk.mathworks.com/help/comm/examples/end-to-end-qam-
simulation-with-rf-impairments-and-corrections.html

USRP N210 

SDR

SX1272MB2xAS 

LoRa Device
Attenuator

Fig. 10. Experimental setup for measuring CFO. The LoRa device and USRP
SDR were connected using an attenuator.

1) CFO Variation: Oscillators are subject to temperature

change and aging. For example, FTR5123-B is a crystal

oscillator used in LoRa devices5; its frequency variation over

-20 to +70 ◦C is ±10 ppm and its aging effect is ±10 ppm

over 10 years.

As it is difficult to get mathematical expressions of the os-

cillator drift, we carried out measurements to obtain CFO vari-

ations using five SX1272MB2xAS LoRa shields6, which are

equipped with FTR5123-B oscillators. As shown in Fig. 10,

we connected each LoRa end device with a USRP N210

SDR platform using an attenuator, which brought a 40 dB

power attenuation but had no effect on the frequency offset,

hence the channel effect was avoided. USRP SDR platforms

are commonly used for RFFI as a receiver to collect raw

IQ samples [10], [14], [26], [29]. The frequency accuracy of

the USRP N210 platform is 2.5 ppm7, which is smaller than

that of the LoRa devices. In addition, the same USRP board

was always used to minimize its effect on the estimation of

the transmitter frequency offset. Compared to sophisticated

equipment such as spectrum analyzers, USRP N210 is a low-

end receiver. Using USRP as the testbed will provide insights

into whether low-end receivers will be eligible for RFFI. High-

end receivers will be too expensive to be widely used in

practical applications.

We carried out six measurements over three months, with

two tests each in August, September and October 2020. Each

measurement lasted about one hour and 1,000 packets were

collected. The CFOs estimated from these packets are shown

in Fig. 11, which shows that CFO is not stable in neither

short nor long term. Within the one hour collection on each

day, CFOs of each DUT were varying, perhaps due to the

self-heating. They also varied over three months, especially

DUT4 and DUT5, which is probably due to the environmental

temperature changes.

2) CFO-based RFFI: As shown in (32), the varying CFO

and phase noise will cause phase rotation to the signal. In

order to evaluate the CFO effect on the RFFI, we adopted a

hybrid method of integrating experimentally estimated CFO

with the simulation model. We first generated 1,000 packets

without any RF impairments, by configuring Gtx = 0, ψtx =
0, and PA with the default parameter in the simulation. We

5https://lora-alliance.org/sites/default/files/showcase-documents/FTR5123-
B0.pdf

6https://os.mbed.com/components/SX1272MB2xAS/
7https://www.ettus.com/wp-content/uploads/2019/01/07495 Ettus

N200-210 DS Flyer HR 1.pdf
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Fig. 12. Confusion matrix of CFO-based RFFI. CFOs from Day 1 were used
for training. (a) Overall accuracy, 89.76%. CFOs from Day 2 as test data. (b)
Overall accuracy, 59.86%. CFOs from Day 3 as test data. (c) Overall accuracy,
54.66%. CFOs from Day 4 as test data.

converted the estimated CFOs from day 1 in August to ∆C
and applied them to packets one by one using (32). These CFO

impaired packets were used as the training data. The test data

was generated similarly but the estimated CFOs were from a

different day. Fig. 12 shows the confusion matrices when the

test data was generated using CFOs from day 2 in August,

day 3 and 4 in September 2020.

As can be observed from Figs. 12(b) and 12(c), the results

are not promising as some DUTs are completely misclassified.

Take DUT3 as an example. As the CFOs of DUT3 on day 3,

August are very similar to the CFO of DUT2 on day 1, August,

they cannot represent reliable device identifier anymore. The

CNN thus made a wrong classification, as shown in Fig. 12(b).

3) CFO Interference to Other RF Impairments: While

Section VII-A2 only involved CFO impairment, this section

will investigate CFO co-existence with other transmitter im-

pairments to explore whether CFO will interfere with them.

Similar to Section VII-A2, we combined the simulation

data with different RF impairments and CFO estimated from

experiments. Regarding training data, we generated 1,000

packets with RF impairments and applied the CFO from day

1, August. Another 1,000 packets were generated and applied

with the CFOs from day 2 to day 6 as the test data. We

carried out the above process for the cases T1 to T5 involving

different transmitter impairments. We also did the simulation

when there was no CFO impairment which can be regarded

as references. The results are given in Fig. 13.
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Fig. 13. CFO Interference. “No CFO Impairment” means no CFO applied to
training and test data. “Day n” indicates that the Day 1 CFO was applied to
the training data and the CFO from the Day n was applied to the test data.
NDUT = 5, SNR, γ = 10 dB. Ns = 600. (a) Same data payload. (b) Random
data payload.

As can be observed, the CFO effect on RFFI is not stable.

For some cases and test data, for example, cases T1, T2 and

T4 of day 2 in Fig 13(a), the classification accuracies were

improved. This is probably because these RF impairments are

distinguishable and CFO adds another dimension of feature

variations, even though CFOs of several devices are quite

similar. On the other hand, CFO may compromise RFFI, for

example, cases T1 to T5 with day 3 - day 6 test data as

shown in Fig. 13(a) and all the results in Fig. 13(b). As

we are not able to predict the CFO effect in advance, it

is suggested to compensate the CFO impairment to avoid

potential performance reduction.

4) Discussion: More CFO measurement results and its

effect on RFFI have been experimentally shown in [46].

This paper advances the work in [46] by taking a hybrid

method to combine experimentally measured CFO with the

simulated RF impairments, which allows the investigation of

CFO interfering with other RF impairments.

As many IoT devices use cheaply made components in order

to reduce the cost and we are not able to control environmental

temperature, frequency drift of an oscillator may not be a

stable parameter for RFFI. In addition, apart from the oscillator

drift, the estimated CFO may also include Doppler shift in

a mobile channel, although its value may be small in slow

fading channels. For example, it has been analyzed in [13]

that the Doppler shift is only about 1% of oscillator frequency

drift. Phase noise changes quickly from packet to packet.

While it is possible to calculate the statistical features of the

phase noise as the device characteristics [47], this method

requires collecting numerous signals, which cannot be done
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on a per-packet basis. Finally, it should be noted both CFO

and phase noise can be estimated and compensated for reliable

communications. However, their time-varying nature makes

them not suitable for RFFI.

While there is existing work exploiting CFO and phase

noise for RFFI [15], [48], we reckon their oscillators may

be more sophisticated, which is not the case for low-cost IoT.

In addition, long-term experiments involving temperature and

aging are not available. Hence, their stability over time and

environment changes are unknown, which is one of the most

essential metrics for a device authentication scheme.

Recommendation One: Always estimate and compensate

CFO before RFFI. In any practical wireless communication

systems, we will often employ repeated preambles for CFO es-

timation and compensation, for example, the popular Schmidl-

Cox algorithm [49]. Hence, we do not consider the oscillator

imperfections in the following of this paper.

B. RFFI Simulation with IQ Imbalance and PA Nonlinearity

In the simulation of this subsection, we simulated NDUT =
50 DUTs with RF impairments, except in Section VII-B5. The

same receiver without RF impairments is used for training and

classification, that is, case R0.

1) IQ Imbalance (T1 - T3 & R0): As shown in Fig. 14,

the classification accuracies of case T3 (with both gain and

phase imbalances) with the same data are about three times

of the accuracies of case T1 (with gain imbalance only) and

case T2 (with phase imbalance only). The effects of gain and

phase imbalances are complementary, and their co-existence

can significantly increase the feature space.

The effect of the number of symbols of each packet is

shown in Fig. 14(a). Intuitively, more symbols will lead to

higher classification accuracy, as the packet contains more

information, which is validated by the simulation results. A

physical layer waveform usually has much more than 800

symbols. For example, a ZigBee physical layer packet with

120 bytes will be modulated into about 16,000 symbols.

The effect of SNR on RFFI accuracy is given in Fig. 14(b).

When the SNR increases, the signal has a better quality.

Hence, the small variations among devices are more visible

and can be learned easier by CNN. The accuracy is not

promising in low SNR scenarios as the signal is swamped

by noise. Signal pre-processing algorithms can be adopted

to improve the SNR, for example, the denoising algorithm

in [50].

2) Power Amplifier Nonlinearity (T4 & R0): Figs. 14(a)

and 14(b) show the classification accuracies of PA nonlinear-

ities regarding number of symbols and SNR, respectively.

Fig. 15 demonstrates that a smaller backoff level will have

a better classification accuracy, because the nonlinear effect is

more severe. However, as shown in Fig. 7(b), backoff level

that is too small will result in a higher BER, which should be

avoided. We used a 30 dB backoff level in this paper, which

is the worst case for RFFI as the PA nonlinearity is the least.

3) Overall Effect (T5 & R0): We consider the case T5 that

NDUT = 50 DUTs have both gain & phase imbalances and PA

nonlinearities. As shown in Fig. 14(a), the accuracy with the
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Fig. 14. Effects of different transmitter impairments on classification accuracy.
Number of devicesNDUT = 50 . (a) Classification accuracy versus the number
of symbols per packet. SNR, γ = 10 dB. (b) Classification accuracy versus
SNR. Number of symbols per packet, Ns = 600.

same data payload becomes relatively stable when there are

800 symbols.

As can be observed from Fig. 14(b), with a packet length of

600 symbols, the classification accuracy is 87.1% when SNR

is 10 dB, which is a reasonable level for a practical system.

It can be boosted to 99% for a 20 dB SNR. These accuracies

are quite high and very promising for developing RFFI as a

matured solution.

4) Data Pattern: From Figs. 14(a) and 14(b), it can be

observed that the same data payload always achieves better

accuracy than random data payload, which is not surprising.

Random payload brings another dimension of the variation,
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Fig. 15. Effects of PA nonlinearity, classification accuracy versus backoff
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600. SNR, γ = 20 dB.

TABLE II
CLASSIFICATION ACCURACY AND INITIAL LEARNING RATE VERSUS

NUMBER OF DUT. NUMBER OF SYMBOLS PER PACKET, Ns = 600. SNR,
γ = 20 DB.

NDUT = 50 NDUT = 100 NDUT = 200

Same
Data

Classification
Accuracy

99.0% 94.8% 89.3%

Initial
Learning Rate

1× 10−4 3× 10−5 1× 10−5

Random
Data

Classification
Accuracy

74.7% 81.1% 64.3%

Initial
Learning Rate

1× 10−4 1× 10−4 3× 10−5

hence it is more difficult for CNN to find patterns incurred by

the RF impairments. The simulation results in Fig. 14 matches

those in [18], regarding the observation that the same data

payload achieves better classification accuracy than random

payload for classifying PA nonlinearities.

5) Number of DUT (T5 & R0): Intuitively, it is more

difficult to classify more DUTs when their RF impairments are

within the same range, because their features will be closer to

each other. We carried out more simulation with NDUT = 100
and NDUT = 200 with all the transmitter impairments and the

results are shown in Table II. When there are more DUTs,

smaller initial learning rates are used.

As can be observed, when there are 200 DUT with the same

data payload and 20 dB SNR, the classification accuracy is

only slightly decreased to 89.3%.

C. RFFI Simulation with Different Receivers

This section will demonstrate the effects of different re-

ceivers used for training and classification stages, that is,

cases R1, R2 and R3. Specifically, in the simulation setup,

we configure the receiver at the training stage as Grxtrain = 0
and ψrxtrain = 0. We consider the receiver at the classification

stage with IQ imbalances, Grxtest and ψrxtest.

1) Receiver Gain and Phase Imbalance (T1 - T5 & R1

and R2): We first investigated the individual effects of gain

and phase imbalances of receivers. Specifically, we considered

NDUT = 50 DUTs with impairments configured as cases T1 to

T5 and the receiver cases R1 and R2 in order to independently

study receiver’s gain and phase imbalances.
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Fig. 16. Effects of a different classification receiver on classification accuracy.
Number of devices NDUT = 50. Number of symbols per packet, Ns = 600.
SNR, γ = 20 dB. (a) R1, classification accuracy versus gain imbalances of
receivers. ψrx

test
= 0. (b) R2, classification accuracy versus phase imbalances

of receivers. Grx
test

= 0.

As shown in Fig. 16, the effects of the gain and phase

imbalances are complementary. For example, when there are

only gain imbalances at DUTs (case T1), that is, ψtx = 0:

• the gain imbalances at the receiver (R1) will affect the

classification accuracy, as shown in Fig 16(a);

• the phase imbalances at the receiver (R2) will affect the

classification accuracy in a slighter manner, as shown in

Fig 16(b). There is no effect when random data is used.

This is because the gain and phase imbalances affect the signal

modulation and constellation differently, as shown in (16) and

Figs. 5(c) and 5(d).

2) Overall Effect (T5 & R3): In practice, DUTs will include

all the impairments and the receiver will also have both

gain and phase imbalances. Hence, we carried out further

simulations with DUTs configured with IQ imbalances and PA

nonlinearities, that is, case T5, and the classification receiver

with both gain and phase imbalances, that is, case R3.

As shown in Fig. 17, the accuracy gradually drops when
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Fig. 17. R3, effects of a different classification receiver on classification
accuracy. Number of devices NDUT = 50. Number of symbols per packet,
Ns = 600. SNR, γ = 20 dB (a) Same data payload. (b) Random data
payload.

the classification receiver deviates from the training receiver

in terms of the gain and phase imbalances. The accuracies

dropped less than 20%, when the gain and imbalances were

in a small range, for example, Grxtest and ψrxtest within the range

of [-0.2 0.2] dB and [-1 1] degree, respectively.

Recommendation Two: The receiver should carry out IQ

estimation and calibration in advance before RFFI [51]–

[53]. Hence, when the residual imbalances after calibration

are limited to a small range, the classification performance

will not be significantly compromised.

VIII. CONCLUSION

This paper carried out systematic modelling on the hardware

impairments of a narrowband transmitter and receiver as well

as extensive experimental and simulation validation of their ef-

fects on the RFFI. Specifically, hardware impairments involve

oscillator imperfections, phase and gain imbalances at mixer

and PA nonlinearity. Through our experimental campaign over

three months, we found that oscillator imperfections are not

stable and interfere with other impairments. Our extensive sim-

ulations demonstrated phase and gain imbalances, as well as

PA nonlinearities, are suitable for RFFI and we should exploit

all of them to achieve the optimal classification accuracy. Our

proposed protocol can classify 50 and 200 DUTs that have

uniformly and randomly distributed transmitter impairments

with high accuracy, namely 99.0% and 89.3%, respectively, at

SNR of 20 dB when the same data payload was used. We

also modelled the receiver impairments and analyzed their

effect on the RFFI when different receivers were used for

training and classification stages. The accuracy dropped less

than 20% when the residual gain and phase imbalances of the

classification receiver were within the range of [-0.2 0.2] dB

and [-1 1] degree, respectively. Based on the experimental and

simulation results, we recommend that we should compensate

CFO and calibrate IQ imbalances at receivers in order to

design a robust RFFI protocol. Our future work will study

the effect of different modulation schemes on the RFFI.
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