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Abstract: Human pose recognition is a new field of study that promises to have widespread practical
applications. While there have been efforts to improve human position estimation with radio
frequency identification (RFID), no major research has addressed the problem of predicting full-body
poses. Therefore, a system that can determine the human pose by analyzing the entire human body,
from the head to the toes, is required. This paper presents a 3D human pose recognition framework
based on ANN for learning error estimation. A workable laboratory-based multisensory testbed
has been developed to verify the concept and validation of results. A case study was discussed
to determine the conditions under which an acceptable estimation rate can be achieved in pose
analysis. Using the Butterworth filtering technique, environmental factors are de-noised to reduce
the system’s computational cost. The acquired signal is then segmented using an adaptive moving
average technique to determine the beginning and ending points of an activity, and significant
features are extracted to estimate the activity of each human pose. Experiments demonstrate that
RFID transceiver-based solutions can be used effectively to estimate a person’s pose in real time using
the proposed method.

Keywords: 3D human pose estimation; RFID; filtering; kinematic; ANN

1. Introduction

The human activity recognition (HAR) system has shown tremendous improvement
over the past several years in terms of its ability to facilitate communication between
humans and machines. The HAR architecture introduces numerous innovations that
significantly enhance the ways in which humans and machines communicate with one
another. Because of state-of-the-art research and the expansion of a wide variety of input
devices to capture data, the process of recognition is becoming less complicated and
more useful. Input devices make possible the visualization or detection of human poses in
situations ranging from simple to complicated. Radio frequency identification (RFID)-based
devices are a good example of this type of technology. These devices are able to accurately
identify fine-grained movements despite the presence of complex backgrounds [1]. In
order to come up with new ways of making computers more interactive with minimal
physical contact, researchers have proposed RFID-based wireless sensing systems [2]. The
development of a system that is capable of identifying human poses in a three-dimensional
environment through radio frequency technology is one example of this type of progress.

Human pose estimation provides a graphical depiction of a person in a given position.
Estimating a person’s pose amounts to generating a set of coordinates that may be connected
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in various ways to give a full picture of where they are. A skeletal coordinate, or “joint,”
is any one particular place on the skeleton. A proper connection is a combination of two
components of the body that should function together. Unfortunately, not all possible
permutations of parts can produce usable pairs.

Advancements in RF sensing systems have generated growing interest in the research
and technology application of 3D human pose estimation. RF sensors, as compared with
ordinary vision sensors, are unaffected by either light or darkness and have the distinct
ability to protect user privacy. Because of their compact design, RFID tags are also consid-
ered suitable for deployment as wearable sensors as well as contactless sensing devices.
RFID systems are much cheaper than radar-based systems such as the FMCW radar [3].

However, because of the diversity and complexity of wireless channels, it is usually
hard to generalize a trained RF sensing system to new environments. RF signals propa-
gate through the air, and the receiver end needs precise signal strength of the deployed
location. The received signal strength (RSS) is dependent on many different factors, the
most important of which are the placement of the antennas, the surrounding obstacles,
the layout of the room walls, and the movement of the object being observed [3]. The
focus of the current RFID-based pose detection systems [4,5] is on tracking the movement
of a single body part at a time. These systems obtain their phase data from tags that are
attached to various parts of the body. If multiple body parts move simultaneously, it can
cause inter-tag collisions and an RFID mutual coupling effect, both of which significantly
impair the accuracy of the system. For that reason, utilizing RFID tags to track the entire
body remains a challenging task. Whenever the surrounding environment varies, identical
human subjects performing the same activity can yield RF properties that are significantly
different from one another. Even if the same person does the same activity, environmental
variations may create differing radio frequency (RF) qualities. Developing 3D human
posture estimation algorithms that are environment-aware is a challenge [6].

Many methods have been proposed over the years to improve human–computer
interaction (HCI) by researchers. Real-time human pose estimation is useful in a vari-
ety of domains, particularly healthcare. A primary motivation in the medical field is to
minimize the transmission of environmental contamination by eliminating device contact
and monitoring patients’ indoor daily activities. Depending on the information obtained
from various sensors, these procedures vary. Both fixed and moveable sensors have been
widely used for human activity recognition. Both stationary (those permanently affixed
to the ground) and mobile (those easily moved from one location to another) sensors are
employed to collect information about the study’s issue. External sensors can take the form
of anything from a camcorder to a mic to a motion sensor to an imaging system to a trigger
to an RFID tags chip. Wearable sensors can measure motion and orientation using devices
such as gyroscopes, accelerometers, and motion detectors.

Recent research on RFID-based estimation of human pose has revealed the following
limitations:

• When the receiver and transmitter are not in close proximity, the observed phase value
may not accurately reflect the relationship between path length and received phase [4].

• Recent RFID-based strategies only assess upper-body movement patterns, so it can be
difficult to track the entire body at once with them to achieve the required accuracy [5].

• Learning models may not achieve optimal results when applied to a novel RF environ-
ment due to the fact that each training variable is based on a relatively small number
of datasets. It can be difficult to reconstruct poses from a small dataset when a similar
participant is asked to perform the same task in multiple locations, resulting in vastly
different RF data [6].

• Before the system can better adapt to different environments, it must overcome the
substantial challenge of generalizing the learning model [7].

In order to evaluate the validity of the proposed system, real-time scenarios are
considered and compared to existing RFID-Pose systems. According to the findings of the
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experiments, the system is capable of accurately tracking three-dimensional human poses
for a variety of subjects and shows great subject adaptation.

This study makes several significant contributions, which are briefly summarized
below:

• This study presents an environment-adaptive 3D human pose prediction model using
transceiver-based RFID tagging on the human body to overcome the problem of only
being able to collect a single-phase sample from a single tag.

• A 3D human pose estimation framework is proposed based on the artificial neural
network (ANN) as a knowledge-level technique to estimate the learning error.

• A prototype with commercial RFID tags attached to the entire human body has been
developed to generate a dataset with ground-truth values for training and evaluating
the model.

• An analysis of the variability of RFID data is conducted using the fast Fourier transform
(FFT) that has been measured and identifies the primary difficulties associated with
generalization issues.

• Case study results indicate that the proposed RFID system can predict 3D human
postures with ease and is also highly adaptable. In addition, these results are compared
to other published work in the same field to demonstrate their superiority and validate
the concept.

In the next sections of this study, Section 2 analyses the published research on the
proposed system’s development as well as the challenges that it needs to overcome. In
Section 3, a mathematical model is used to briefly explain the proposed framework for
recognizing human poses. The discussion of the testbed setting and the findings can be
found in Section 4. In Section 5, the conclusion and future directions are discussed.

2. Literature Review

Pose estimation has numerous potential applications in diverse fields such as medicine,
robotics, computer graphics, and video games. Existing literature on pose recognition can
be roughly divided into two categories for convenience: both device-based and device-free
pose recognition are possible [2].

Device-based recognition widely uses vision sensors such as cameras [4] and Kinect [5,6]
to capture body poses in order to interpret the pose. Among both camera and Kinect
technologies, Kinect is covering a large area of research as it provides more options to look
at the human poses for improved accuracy and efficiency. On the other hand, device-free
human pose received an increased use of the signals generated by commercial hardware
devices in order to complete the recognition task. These systems are categorized as: radar-
based [8] and received signal strength indicator (RSSI) [9]. In the study, [10] a neural
network model was adapted for use in an RFID-based wireless sensor network in an effort
to reduce the likelihood of collisions occurring within the network. The ANN adds on
layers of feature combinations; the research improves with these added layers. The obtained
results demonstrated that the ANN model was the most suitable in terms of prediction
reliability. CSI-based [11,12], and a combination of both channel state information (CSI)
and RSSI based techniques are used [13]. Other useful techniques for device-free human
pose estimation are explored in surveys [2,14]. Research in the field is important because it
offers fine-grained signal information at the subcarrier level, which has wide applications
in computer vision and human representation for semantic parsing [15].

Recent research has combined Kinect-based data with wireless signal-based data to
better recognize human poses [16,17]. Yule Ren et al. [3] presented a 3D human pose
tracking system that uses the 2D angle of arrival (AoA) of signals reflected off the human
body to estimate a 3D skeleton pose made up of a set of joints. There is only one sensor
that can provide 2D AoA to identify moving limbs, so the participant was asked to face
the sensor during evaluation. If multiple sensors are deployed at right angles, the user
can change orientations. While walking, the system may not work well. The study [1]
addressed an RFID-based 3D human pose tracking approach that integrates few-shot fine-
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tuning and meta-learning. Larger datasets sampled in new situations are needed to achieve
satisfactory fine-tuning performance, which increases training data gathering effort and
cost.

In [18], the authors combined computer vision and RFID technology in multi-person
scenarios to design a more advanced exercise monitoring system. This allowed them to
track more information about the participants’ workouts. This design was implemented in
a smart exercise equipment application by the study using commercially available Kinect
cameras and RFID devices. Using RFID phase data, the authors of [19] presented a real-time
3D pose prediction, subject-adaptive, and tracking system. This system would leverage a
unique cycle kinematic network to approximate human postures in real-time. The system
was built with commercially available RFID readers and tags, and it was evaluated with an
RFID-based comparative methodology.

In the paper [20], the author presented a vision-aided, real-time 3D pose evaluation
and tracking system. This system utilized a deep kinematic network to approximate human
poses in real-time from RFID phase data. This network was trained with the support of
computer vision data as labels gathered by Kinect 2.0. Due to the necessity of the original
subject skeleton in the training phase, the proposed methodology is compromised when the
subject is tested with an untrained subject or in a distinct standing position/environment.
In another study [21], a kinematic network is suggested as a way to train models without
having to pair RFID and Kinect data. The subject-adaptive system that came out of it
was made by learning how to turn sensors data into a skeletal system for each subject.
When tested with a known subject, the efficiency of the model is a little lower than with
the classical RFID pose tracking method. Because RFID-based pose estimation relies on
RFID tags attached to the human body, it can be classified as a device-based method. The
study [22] presents a 3D human pose estimation framework based on a relatively new
deep learning model that can encode prior knowledge of the human skeleton into the pose
construction procedure to improve the estimated joints’ match with the human body’s
skeletal structure. The system consists of nine diffused antennas and requires the subjects
to conduct activities at a fixed point. Therefore, the proposed system is restricted to specific
applications and is not suitable for daily use.

According to the available literature, the proposed posture system is the first of its
kind to use transceiver-based sensors to estimate three-dimensional human poses covering
the whole human body. The proposed system uses RFID and computer vision (CV) to
accurately estimate human 3D position across several modalities. The comprehensive
review can be found in Table 1, and it draws attention to the potential related research that
is concentrated on a variety of factors that affect human pose estimation.

Table 1. Comparison of various related work.

Paper Estimation
System Hardware # of RFID Tags Technique Tracking Error Accuracy Limitations

[1] Meta Pose 1 reader antennas,
2 RFID Readers 12 Shoulders to

knees 5.1 cm N/A Phase offset

[3] RFID Pose 1 reader antennas,
3 RFID Readers 12 Upper body 6.7 cm 95.4% Adaptability

[19] Cycle Pose 3 reader antennas,
3 RFID Readers 10 Non head, toe 4.9 cm N/A Generalization

[20] Meta-Leaning 3 antennas, 3 RFID
Readers 12 Shoulders to

knees 4.5 cm 95.8% Missing sample
Generalization

[21] Subject
adaptive

2 antennas, 3 RFID
Readers 12 Upper Body 8.6 cm N/A Phase Offset

Our work
Subject and

environment
adaptive

8 transceivers 8 Whole body
(head to toe) 3.46 cm 96.7% Discussed in future

directions section
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3. Materials and Methods

This article evaluates a real-world scenario in which a human subject was observed by
RFID-based transceivers and a Kinect device in order to construct and analyse the subject’s
3D skeleton. The data collected using RFID readers can be used to generate the 3D skeleton
of the subject, and the data acquired using the Kinect sensor can be used as ground data for
supervised learning. The feed-forward back-propagation neural network is proposed for
estimating the human poses. The proposed system consists of three primary components:
data collection, data processing, and pose estimation, as shown in Figure 1.
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3.1. Data Collection

During this phase, data is collected from each of the RFID sensors and then processed
in order to construct a three-dimensional skeleton of the subject. The RFID transceivers and
the Kinect 2.0 sensors work together to collect the necessary information for testing and
training. The data collected from the RFID tags is preprocessed before feature extraction
and pose generation. Furthermore, the kinematic information will be used as labelled
data for the purpose of conducting supervised training. The RGB camera and the infrared
sensors present in the Kinect device conduct an analysis on the three-dimensional position
of each human joint, and the findings of this analysis are then saved in a database. For
the purpose of the study, passive RFID tags were attached to each of the eight joints of the
human body. In order to collect the phase data from all of the linked RFID tags, a total of
eight transceivers are utilized as part of the data collection process.

RF sensors were used at a rate of 0–1000 Hz, and each sensor was set to a certain angle
on a joint of a human body part between different points of interest. Researchers have
collected the samples at frequencies ranging from 5 Hz up to 512 Hz with, essentially, the
same test setups [7]. This study proposes a specific frequency range in order to obtain
fine-grained human pose movements. For the valid case study, data from an office and
laboratory setting were collected to make the proposed system more adaptive to varied
environments.

The antenna transmits the RF signal, which is received by the RFID tag and then
reflected back to the receiving antenna; this process is described as:

r = Hγ + n (1)

where r is the receive vector, H is the channel matrix, γ denotes the backscattering signal at
the tag and n is the noise vector.

Figure 2 shows the RFID forward and backward links. The forward link is the
transmitter-to-tag transmission channel. A reverse link propagates from the tag to the
reader’s receiver. Denote the channel gains of the forward and backward links as hf and hb,
respectively. Then, the whole channel gain can be written as:

H = hbhf γ (2)
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The relationship between hf and hb depends on the transmitter and reader locations. In
a monostatic system, transceiver antennas are close together [22]. As forward and backward
links are highly correlated, the mutual recognition rule of radio channels suggested in
Equation (3) is given by the following:

hb = hf (3)

Let us now look at the channel model of an RFID system with numerous tags and
multiple readers. Suppose that NT tags are attached to the object’s body and the reader is
equipped with Nrd antennas. So, the ith tag is equipped with Ntag,i antennas. The channel
from the reader to the ith tag and back to the reader again within a time factor can be
described using Equation (2), and matrix Hi(t) can be calculated by Equation (4).

Hi(t) = hi
b hi

f (4)

H̆i(t) :=



[
Hf

i

]
1
x(t) 0 · · · 0

0
[
Hf

i

]
2
x(t) · · · 0

...
...

. . .
...

0 0 · · ·
[
Hf

i

]
Ntag,i

x(t)


(5)

where hi
f is the forward channel matrix from the reader to the ith tag, and hi

b is the
backward channel matrix from the ith tag to the reader. Based on Equation (1), the received
signal of the reader at time tk can be written as

r(tk ) = ∑Nt
i=1 Hi(tk)γi(tk) + n(tk) (6)

where,

H (tk) = [H1(tk) H2(tk) . . . .Hn(tk), and γi(tk) =



γi
(
tk
)

γi
(
tk
)

...

...
γi
(
tk
)


To group all the received signals R of the reader and the transmitted signals S of the

tags at different time instants (t1, . . . tK) in Equation (1):

R = HS + n (7)
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where R = [r(t1), r(t2), · · · r(tK)], supposing that the channel does not change within the
considered time frame, i.e., H(t1) = H(t2) = · · · = H(tK) = H, S = [(t1), (t2),· · · (tK)], and n =
[n(t1), n(t2),· · · n(tK)].

3.2. RFID Data Preprocessing

In order to perform the data preparation, the devices first collect RFID signals, then
extract the channel information from those signals, and finally preprocess the data. In
particular, the study should begin by de-noising RFID signals in order to remove any
noise that may be present. Because the conditions of the channel change, the information
regarding the channel requires interpretation on a short-term basis. Where a known signal
is transmitted and the channel matrix H is estimated, let the training sequence be denoted
P1, . . . ., PN, where Pi is transmitted over the channel, which can be written as

r = Hpi + n (8)

To de-noise the acquired signal, this study considered the multipath effect of the RFID
signal between a pair of transceivers, which at time t and frequency f can be expressed as

H( f , t) = e−jθo f f set [Hs ( f ,t)+∑0
iεPd

αi(t)e−j2π fτi(t) ] (9)

where e−jθo f f set is the difference between two waves caused by the carrier frequency
difference in receiving and transmitting equipment, αi(t) is the reduction of the amplitude
of a signal, and τi(t) is time of flight for the ith path. Hs(f, t) represents the static reflection
signals. Pd is the collection of dynamic path components which refer to the signals reflected
from moving objects. To remove the noise, the study refers to the method proposed in [11],
applying Butterworth filtering between the RFID of multiple antennas:

H1( f , t)H2( f , t)
= H1,s( f , t)H2,s( f , t)

+ H1,s (f, t) +
0
∑

iεPd(2)
αj(t)e−j2πfτi(t)

+H2,s ( f , t) +
0
∑

iεPd(1)
αi(t)e−j2π fτi(t)

+∑0
iεPd(1) , iεPd(2)

αi(t)αj(t)e
−j2π f (τi(t)−τj(t))

(10)

3.3. Activity Segmentation

Activity segmentation mainly detects the start and end of an activity and removes
the no-activity packets from a sample that corresponds to the whole activity. Since human
activity durations are not always the same, this study proposes the adaptive moving
average (AMA) filter in order to improve the reliability and accuracy of the real-time pose
estimation. The moving average filter allows signals within a selected range of frequencies
and time to be processed while preventing unwanted parts of a signal from getting through.
The AMA filter averages subsets of the full data set to filter data points. AMA defined for a
subset of original signal s(n) is shown in Equation (11).

s(n) =
s(n− 1) + s(n) + s(n + 1)

3
(11)

The adaptive moving average technique works similarly to the sliding window tech-
nique in that the entire data set is divided into different segments or windows and the
values of each window are compared to the values of the other windows.

Steps to perform the AMA filter are as follows:

• Define sliding window size, shown in Equations (12) and (13).
• Calculate the difference in average ∆A, as shown in Equation (14).
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• Calculate the time difference in ∆t, as shown in Equation (15).
• Define boundary points array bp[].

To perform the filter, the first step is to set the size of the window, calculated in
Equation (12).

w = 2f (12)

bp[j] = i + f, {∀w[i, i + 2f] ∈ signal∆A (13)

where f is the sampling frequency.
The next step is to define the start and end points of a human activity within a signal.

First, calculate the difference in averages ∆A between the first half and second half of a
sliding window.

bp[j] = i + f,

 ¯
∆A[i] =

∣∣∣∑i+f
i ∆A−∑i+2f

i+f ∆A
∣∣∣

f
≥ th1 (14)

where th1 is the threshold point.
Then, calculate the time difference ∆t between the two windows from Equation (12),

as shown in Equation (14) and Equation (15), respectively.

bp[j] = i + f, {t[i] = t[bp[j]]− t[bp[j− 1]] > 2s (15)

Here, the threshold point is set to 0.5; i = 1, . . . n, n is the length of ∆A signal; j = 1,
. . . , m, m is the length of the bp[] array

If the sliding window satisfies both Equations (14) and (15) at the same time, the center
point of the window is considered the boundary point stored in the array bp[] to determine
the boundary points.

3.4. Channel Feature Selection

The data presented in this article are collected using eight different off-the-shelf
transceivers. Let us name the antennas Nt that are used for transmitting the signal at the
transmitter’s end (Tx), and the antennas Nr that are used for receiving the signal at the
receiver’s end (Rx). As a result of RFID’s use of eight different inputs, the antenna array,
which is formed by Tx and Rx components, will generate eight separate data transmission
lines.

This study created a feature set containing all the predefined features (M1, M2, M3,
. . . . Mn) extracted from each of the eight received signals about a particular human pose.
Predefined features are the values that represent the peaks generated by human activity.
For that matter, the amplitude of 0.5 dB is set as the point of threshold. Peaks in the data
that are regarded to be the depiction of human pose activities are those that are at or above
the threshold point.

The use of amplitude and phase difference as recognition features can better show
how body movements affect wireless signals. This is because the amplitude can change,
but the phase difference can stay stable for a certain amount of time and can better describe
how the frequency of different data streams changes over time. This matrix-based feature
set (Fs) contains the number of extracted features, as expressed by Equation (16).

Feature set = [Mean(m), Variance(v), Standard deviation(sd), Average deviation(ad)]

Mean M1 = [q1 q2 q3 . . . qn]

Variance M2 = [r1 r2 r3 . . . rn]

Standard deviation M3 = [y1 y2 y3 . . . yn]

Average deviation M4 = [z1 z2 z3 . . . zn]
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Feature set (Fs) =


M1
M2
M3
M4

 ⇒


q1 q2 q3 . . . qn
r1 r2 r3 . . . rn
y1 y2 y3 . . . yn
z1 z2 z3 . . . zn

⇒


0 1 0 . . . 0
0 0 1 . . . 1
0 0 1 . . . 0
0 1 1 . . . 1

 (16)

where each entity represents the peak value corresponding to a matrix element 1 and 0.
Matrix value 1 indicates the peak value above the threshold point and 0 indicates the peak
values below the threshold point.

3.5. Skeleton Construction

This component creates a 3D model of the subject’s skeleton using RFID data. Kine-
matic visual data is used to classify supervised training. The network is trained using a loss
function that computes the difference between the estimated posture and labelled vision
data, as shown in Equation (17).

ε(T) =
1
8 ∑8

n=1

∣∣∣∣∣∣∣∣P̂T
n −

.
P

T
n

∣∣∣∣∣∣∣∣ (17)

where P̂T
n represents the estimated position,

.
P

T
n represents the ground-truth position gath-

ered in the 3D space for joint n at time T, and
∣∣∣∣∣∣∣∣P̂T

n −
.
P

T
n

∣∣∣∣∣∣∣∣ is the Euclidian distance between

these two 3D vectors.

3.6. Classification Phase

Our proposed FFBPN method for training a model, in which the iterations go both
ways (feed-forward and back-propagation) to improve the model’s performance. Feed
forward involves computing input weights in a forward step, and secondly, it adjusts
weight and calculates error in a backward step. The data used for training is adjusted to
stay between zero and one. The model was trained using 70% of the data set, with the
remaining 30% being used for testing and validating the model.

The FFBPN supervised learning begins with an input data matrix Fs denoted by X.
Each column in X represents a single observation. Each column of X indicates one predictor
or variable. Equation (18) guides model training until the desired predetermined criterion
is reached.

Xk = ∑n
j wkjxj (18)

where Xk represents the updated value of the variable, xj stands for the previous value, and
wkj is the weight link value associated with the neuron/variable. In Equation (19), logsig
used as the activation function connecting the input to the hidden layer.

f (x) = 1/
(
1 + e−x) (19)

The positive linear transfer function (POSLIN) used between the hidden layer and the
output layer is calculated in Equation (20).

f (x) = x (20)

Replace missing entries in X with NaN values. The supervised learning methods
are capable of handling NaN values, either by ignoring them or by disregarding any row
containing a NaN value. The steps for the feed-forward back-propagation network are
shown in Algorithm 1.
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Algorithm 1: Feed-forward back-propagation network (FFBPN) learning for classification

1: Input: Ds, a dataset containing the training data along with the
corresponding targeted values and the learning rate Lr

2: Output: A trained neural network
3: Initialize all weights and biases in network;
4: While terminating condition is not satisfied {
5: for each training tuple X in Ds {
6: // forward input propagation
7: for each input layer unit j {
8: // output of an input unit I its actual input value
9: Oj = Ij;
10: for each hidden or output layer unit j {
11: // compute the net input of unit j with respect to the previous

Layer, i
12: Ij = ∑ wij Oi + αj;
13: // compute the output of each unit j
14: Oj = 1/(1 + e−x j);
15: // back propagate the errors:
16: for each unit j in the output layer
17: // compute the error
18: Ej = Oj (1 − Oj) (Tj − Oj);
19: for each unit j in the hidden layers, from last to first layer
20: // compute error with respect to the next higher layer, k
21: Ej = Oj (1 − Oj) ∑ Ek wjk
22: for each weight wij in network {
23: // weight increment
24: ∆ wij = (l) Ej Oi
25: // weight update
26: wij = wij + ∆ wij
27: for each bias αj in network {
28: // bias increment
29: ∆ αj = (l) Ej
30: // bias update
31: αj = αj + ∆ αj
32: }
33: }

4. Testbed Environment and Results

Referring to Figure 1, a workable laboratory testbed was developed that consists of
eight RF smart sensor modules (XYC-WB-DC transceivers) shown in Figure 3. RF sensors
were used at a rate of 1000 Hz, and each sensor was set to a certain angle on a joint of a
human body part between different points of interest. Microsoft Kinect 2.0 is used to obtain
visual ground truth data for supervised learning and to compare the RF sensors’ results.
The data was recorded at 30 frames-per-second.
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For the valid case study, data from an office and laboratory setting were collected to
make the proposed system more adaptive to varied environments as shown in Figure 4.
There are two indoor environments, office and lab settings, where the distance between the
transceivers and the human subjects is between 1 and 2.5 m.
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As shown in Figure 5a, the points are made up of the head, right shoulder, left shoulder,
torso, left hand, right hand, right foot, and left foot. As can be seen in Figure 5b, a total
of eight RFID tags were attached to the subject’s head, right shoulder, left shoulder, torso,
left hand, right hand, right foot, and left foot joints. Even if antennas are used to scan
an individual’s entire body, all that is necessary for monitoring the majority of human
actions is a skeleton with eight joints. RFID tags ALN-9634 that make use of the ultra
frequency (UF) are utilized in research by making use of the particular targeted spots of the
human body shown in Figure 5b. Using RFID tags and transceivers, the experiments are
carried out in a laboratory environment that can be precisely controlled. In order to achieve
the highest possible level of efficiency, RFID transceivers incorporate all of the necessary
components onto a single circuit board. This enables RFID tag reconfiguration. RFID
signals are sensitive to their environment, making it difficult to duplicate and appraise past
findings [16]. This research combines RFID signals from four tasks into a dataset (stand,
walk, bend, and sit) for the development of a case study. The selected individual performs
each task fifty times at a variety of time intervals.
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Figure 5. (a) Targeted RF points (b) RFID tag deployment on subject.

In order to begin the process of data collection, eight RFID transceivers are used to
send signals toward respective configured body-connected tags and reflected back to the
transceivers. Eight transceivers are used to produce time-domain signals corresponding to
a particular human action. Eight signals generated from each transceiver for the walking
pose are shown in Figure 6. However, the same number of signals with their corresponding
amplitude and frequency are generated for all other human poses discussed in this research.
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In order to preprocess these signals efficiently, they are first merged together to form a
single signal converted to the frequency domain. Signals are merged together using the
Matlab function shown in Figure 7.
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Figure 7. All RFID tags’ merged signals.

Figure 7 shows that once the reflected signals from each tag are received at the
transceiver, all acquired signals are merged using a Matlab-Merge block script into a
signal frequency domain signal.

Here, we assume that there is noise also manifested into the merged signal, and that
the original signal may have lost its properties and the system may be confused in further
processing. The noise that is created by electrical devices is quite variable, since it is caused
by a variety of distinct processes. Figure 5b shows passive tags attached to eight human
joints. When interrogating RFID tags, the reader collects phase data using a low-level
protocol. To retain the individual identification of all tags, we need to apply an efficient
filter to extract the noise from the original signal. Some noises are higher pitched than
human poses. To remove out-of-band noise, this study used the Butterworth filter that
provides a frequency range in the band-pass filter that will not distort the poses’ gesture
signals. After that, we use the FFT to illustrate the separation of the noisy signal from the
original signal, and then we identify the relevant sideband peaks from the original signal
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in order to identify and extract the relevant features. In Figure 8, there are two colors for
the signals: red for the signal itself and green for the noise around it.
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Figure 8. Original signal with noise using FFT.

The multipath effect of RFID signals between two transceivers was treated as noise in
this investigation. It is a form of signal reception in which radio signals travel over two or
more pathways to reach the antenna. Butterworth filtering was presented as a solution to
this problem. The multipath effect was minimized by removing the phase offset data from
the merged input signal. Figure 9 shows a filtered image.
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The complete activity can be represented by tracing the beginning and ending points
of a sample. Our study presents an adaptive moving average (AMA) filter to increase
real-time pose estimation, since human activity durations fluctuate. A moving average
filter processes signals within a predetermined frequency and time range while excluding
unwanted elements of the signal. There is now a clear separation between the segmented
signal and other data, as illustrated in Figure 10.
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Figure 10. Segmented Signal.

Analyzing the peaks that remain after the segmentation procedure is complete allows
for the extraction of characteristics unique to each human activity, as demonstrated in
Figure 10. The amplitude of 0.5 dB has been chosen as the point of threshold. Peaks in the
data that are regarded to be the depiction of human pose activities are those that are at or
above the threshold point. The illustration of the item in its stationary condition is thought
to be its peaks when they are lower than the threshold point. A unique signal pattern and
a set of peaks are produced as a result of each activity carried out by the object. Both the



Electronics 2023, 12, 374 14 of 27

number of peaks and the amplitude are determined by the kind of physical activity that is
being carried out.

As shown in the following Figure 11a, the walking activity of the item produced at least
seven peaks of varying amplitudes over the predetermined threshold. Walking engages
more muscle joints than standing, and hence generates more peaks than standing. As
illustrated in Figure 11b, the standing position produces four peaks, and the low amplitude
peaks are disregarded because they do not correspond to any human stance. Figure 11c
depicts the relative characteristics of the object’s bending activity as measured by the
created peak. The activity of bending caused four peaks to appear that were higher than the
predetermined threshold point. As illustrated in Figure 11d, the sitting posture created the
fewest number of peaks since it required the least amount of physical movement compared
to the other poses studied.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 28 
 

 

The complete activity can be represented by tracing the beginning and ending points 
of a sample. Our study presents an adaptive moving average (AMA) filter to increase real-
time pose estimation, since human activity durations fluctuate. A moving average filter 
processes signals within a predetermined frequency and time range while excluding un-
wanted elements of the signal. There is now a clear separation between the segmented 
signal and other data, as illustrated in Figure 10. 

 
Figure 10. Segmented Signal. 

Analyzing the peaks that remain after the segmentation procedure is complete allows 
for the extraction of characteristics unique to each human activity, as demonstrated in 
Figure 10. The amplitude of 0.5 dB has been chosen as the point of threshold. Peaks in the 
data that are regarded to be the depiction of human pose activities are those that are at or 
above the threshold point. The illustration of the item in its stationary condition is thought 
to be its peaks when they are lower than the threshold point. A unique signal pattern and 
a set of peaks are produced as a result of each activity carried out by the object. Both the 
number of peaks and the amplitude are determined by the kind of physical activity that 
is being carried out. 

As shown in the following Figure 11a, the walking activity of the item produced at 
least seven peaks of varying amplitudes over the predetermined threshold. Walking en-
gages more muscle joints than standing, and hence generates more peaks than standing. 
As illustrated in Figure 11b, the standing position produces four peaks, and the low am-
plitude peaks are disregarded because they do not correspond to any human stance. Fig-
ure 11c depicts the relative characteristics of the object’s bending activity as measured by 
the created peak. The activity of bending caused four peaks to appear that were higher 
than the predetermined threshold point. As illustrated in Figure 11d, the sitting posture 
created the fewest number of peaks since it required the least amount of physical move-
ment compared to the other poses studied. 

 
(a) 

 
(b) 

Electronics 2023, 12, x FOR PEER REVIEW 15 of 28 
 

 

 
(c) 

 
(d) 

Figure 11. Identification of sideband peaks for pose estimation while (a) walking (b) standing (c) 
bending (d) sitting. 

After estimating the pose using RFID signals, they evaluate its precision. The Kinect 
has the potential to perform 3D bone analysis with significantly greater precision. For the 
construction of the skeleton, a 320-by-240-pixel image with centimeter-precise depth data 
is taken and employed. This instrument is totally automated and requires no operator 
interaction, calibration, or correction. In experiments, a single Kinect camera was posi-
tioned around 3 m away from the participant, the minimal distance required to observe 
the entire human body. Pose data was recorded at 30 Hz. Figure 11 depicts how vision-
based data is generated as the ground truth for supervised training. 

The kinematic models generated four distinct human activity poses and skeletons, 
which are depicted in Figure 12a-d. The number of joints formed and their positions 
change throughout all of the activities. The measurements of human bodies are used in 
the creation of joints, particularly for the purpose of comparative study. The skeleton that 
was developed for a body configuration representing walking is depicted in Figure 12a. 
The skeleton that was obtained for the standing body stance can be seen in Figure 12b. 
The skeleton that was obtained while the object was in the bending stance is shown in 
Figure 12c. In addition, Figure 12d illustrates the skeleton that was derived for the seated 
posture. There is no mechanism for calibrating the Kinect, so the limb lengths are not con-
sistent from frame-to-frame. 

  
(a) (b) 

Figure 11. Identification of sideband peaks for pose estimation while (a) walking (b) standing (c)
bending (d) sitting.

After estimating the pose using RFID signals, they evaluate its precision. The Kinect
has the potential to perform 3D bone analysis with significantly greater precision. For the
construction of the skeleton, a 320-by-240-pixel image with centimeter-precise depth data
is taken and employed. This instrument is totally automated and requires no operator
interaction, calibration, or correction. In experiments, a single Kinect camera was positioned
around 3 m away from the participant, the minimal distance required to observe the entire
human body. Pose data was recorded at 30 Hz. Figure 11 depicts how vision-based data is
generated as the ground truth for supervised training.
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The kinematic models generated four distinct human activity poses and skeletons,
which are depicted in Figure 12a–d. The number of joints formed and their positions
change throughout all of the activities. The measurements of human bodies are used in
the creation of joints, particularly for the purpose of comparative study. The skeleton that
was developed for a body configuration representing walking is depicted in Figure 12a.
The skeleton that was obtained for the standing body stance can be seen in Figure 12b.
The skeleton that was obtained while the object was in the bending stance is shown in
Figure 12c. In addition, Figure 12d illustrates the skeleton that was derived for the seated
posture. There is no mechanism for calibrating the Kinect, so the limb lengths are not
consistent from frame-to-frame.
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Figure 16. Pose estimation of sitting position.

In Figures 13–16, the skeleton in red represents an entity that was generated in 3D
format using RFID data, and the skeleton in green represents data from a Kinect sensor
to determine the error estimation differences between the two types of data. Both of
these images illustrate that the skeletons that were reconstructed using RFID and vision-
based approaches were extremely comparable to the corresponding ground-truth data.
The training data includes validation on four activities that correspond to the following
different human poses: walking, standing, bending, and sitting. As seen in Figure 17, the
green circles are the reconstructed RFID data, whereas the red dots are the supervised
training data.
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Figure 17. Comparison of reconstructed RFID data and supervised training data.

Illustration of the estimation inaccuracy for different body positions, including walk-
ing, standing, bending, and sitting, are shown in Figure 18. The performance was judged
based on the nature of this inaccuracy. The precision of the pose estimate depends on the
motion being tracked, as indicated in the figure. The biggest inaccuracy occurred when
tracking walking action (3.46 cm), while the lowest error was encountered when analyzing
sitting position (3.00 cm). The fact that the model has various issues with the joints in its
torso is the key factor that contributes to these defects in the model. However, RFID-based
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Pose is still accurate for all activities, and the biggest error throughout all tests is relatively
smaller than the biggest error that the emerging RFID pose approximation technique can
produce. This demonstrates that RFID-Pose is an advancement above the technique that
was used previously, i.e., 4.55 cm [20]. The estimation demonstrates that the new RFID-
based Pose system can more accurately forecast joint angles and reconstitute the whole
body’s pose in motion by using RFID phase data. This is reflected in the fact that the device
is capable of carrying out the task in question without any problems. The RFID-Pose system
had fewer estimation errors than the old method for most motions during validation. This
was the situation with every single one of the moves, with the exception of one.
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Figure 18. Error estimation for different human poses.

Referring to Equation (16), we calculated the features corresponding to each human
pose. The features are mean (m), variance (v), standard deviation (sd), and average
deviation (ad) calculation based on peak values as shown in Table 2. The features data are
than fed into our neural network as an input, as shown in Figure 19.

Table 2. Feature values calculation.

Features Walking Standing Bending Sitting

M1

m 326.35 313.90 256.15 211.70
v 16544 12851 13789 18356
sd 114.79 185.72 193.35 146.17
ad 106.42 74.89 99.60 103.07

M2

m 362.96 317.5 332.49 303.35
v 16387 14658 10525 13107
sd 110.18 81.52 104.78 76.63
ad 112.61 80.53 96.15 73.10

M3

m 434.90 370.25 435.07 409.23
v 5625 9320 8287 7440
sd 73.00 89.46 85.96 74.12
ad 69.78 81.66 70.85 61.80

M4

m 472.01 505.33 507.75 520.77
v 5157 4899 3547 6015
sd 75.03 71.54 61.29 79.71
ad 72.92 65.56 57.88 71.11
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Figure 19. Architecture of proposed artificial neural network-based pose classification.

To validate our model, a number of the hidden layer neurons are selected for the
desired result at the output layer. For human pose estimation, the defined output vector
classes are written as follows:

• [1; 0; 0; 0]: Human Natural Activity;
• [0; 1; 0; 0]: Human Pose Activity;
• [0; 0; 1; 0]: Unknown Human Pose;
• [0; 0; 0; 1]: No Activity.

A multi-layer feed-forward neural network (FFNN) method is used in this paper for
the estimation of human poses. The proposed architecture of ANN for a single hand gesture
is presented in Figure 20. Whereas, Table 3 shows the brief explanation and ANN layer
setup information.
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Table 3. Description of the implemented ANN.

NN Steps Artificial Neural Network Structure for
Performance Matrices

Network Model Feedforward neural network

Training Pattern Back propagation

Learning Goal 0.001

Input data Four 1D matrix arrays with data of each class are
presented for human pose estimation

Hidden layer neurons
Multiple architectures with different neuron values

inside the hidden layer. [4 × 10 × 3], [4 × 20 × 3], and
[4 × 30 × 3] (Figure 21).

Target outputs Mathematical matrices refer to the classified vector
classes with value 0 or 1.
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In this research, three distinct ANN architectures ([4 × 10 × 3], [4 × 20 × 3], and [4 ×
30 × 3]) were tested as training tools with the aim of selecting the most suitable hidden
layer neuronsas shown in Figure 21. In order to attain the desired result at an acceptable
error rate, the hidden layer weights were adjusted until the end result was reached at a
reasonable epoch number, as shown in Table 4.

Table 4. Different ANN architecture for classification performance.

Arch Sample MSE No. of Epoch Accuracy Classification Error

[4 × 10 × 3]

M1 7.34 × 10−2 80 91.4 8.6
M2 7.03 × 10−2 72 93.9 6.1
M3 6.37 × 10−2 70 92.5 7.5
M4 7.69 × 10−2 99 92.7 7.3

[4 × 20 × 3]

M1 8.74 × 10−2 125 97.9 2.1
M2 8.53 × 10−2 131 96.4 3.6
M3 7.49 × 10−2 139 96.9 3.1
M4 9.06 × 10−2 147 97.4 2.6

[4 × 30 × 3]

M1 7.43 × 10−2 250 94.5 5.5
M2 6.00 × 10−2 284 93.7 6.3
M3 7.70 × 10−2 301 92.8 7.2
M4 7.41 × 10−2 325 92.4 7.6
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Table 4 demonstrates that, when compared to alternative ANN architectures, the one
chosen [4 × 20 × 3] has higher mean squared error (MSE) efficiency at a suitable number
of epochs and error rate.

After the selection of suitable architecture, we can calculate the accuracy using the
confusion matrix (CM). Adjusting the hidden layer in the ANN architecture allows the
features’ input values to be incorporated into the CM’s construction. Figure 22 depicts the
confusion matrices for walking, sitting, standing, and bending activities.
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Figure 22. Confusion matrices for walking, standing, sitting, and bending activities.

Each corner cell in the preceding figure depicts a pattern case of an activity that
was successfully tested through the proposed ANN architecture used to determine the
estimation of human poses. The confusion grid in the confusion matrices graph stores the
features-processed training data between the target and output classes, with each of the
three phases (preparation, testing, and training) of human pose estimation and individual
performance measurement of the ANN architecture comprising its own confusion matrix.
From Figure 22, we can see that the walking activity achieved a maximum accuracy rate
of 97.8% with only a 2.2% error rate, demonstrating the processing time efficiency of the
ANN architecture. Whereas, standing activity achieved a maximum accuracy rate of 97.2%
with only a 2.8% error rate, bending activity achieved a maximum accuracy rate of 96.3%
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with only a 3.7% error rate, and sitting activity achieved a maximum accuracy rate of 96.3%
with only a 3.7% error rate.

Figure 23 shows the overall confusion matrix across all activities. To illustrate the
thoroughness of the testing procedure for data validity, four target and vertical output
classes were defined to cover the variety of attainable values for the sampled features.
Groups of data that have been correctly classified after going through the CM grid’s
training process are represented by green cells. Each horizontal grey corner cell represents
a set of training data that has been successfully tested for its ability to be classified into one
of several predefined classes. The red cell displays the data sets that have been incorrectly
classified or may not have been adequately validated during the testing phase.
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As a final measure, the blue cell displays the sum of all test cases from activities that
were correctly classified. Confusion matrices diagrams make it clear that all classes were
tested on at least 1200 test instances, with error rates of less than 1% across all trained
datasets, as indicated by the percentages displayed in the green cells. Overall, the blue cell
achieved a maximum accuracy rate of 96.7% with only a 3.3% error rate, demonstrating the
processing time efficiency of the ANN architecture.

Comparison with Baseline Scheme

Finally, a cutting-edge baseline method, namely a meta-learning-based RFID pose
tracking system [20], was used to conduct a comparative study. Our research uses the
laboratory-collected training and testing dataset. Figure 24 shows the estimation error for
each of the different poses. The graph verifies that the performance of both systems is
comparable. However, the Meta-learning Pose, when applied to the three unknown poses
(i.e., standing, sitting, and bending), generates relatively larger errors. These findings show
that the proposed estimation method identifies more accurate initial estimation variables
for the new data domains than Meta-Pose.

Figure 24 demonstrates, in addition, that RFID-based pose estimation was able to
obtain a greater level of precision while tracking the whole human body than the con-
ventional methods. This is because, when testing different people, the RFID-Pose system
works better when cross-skeleton training is used. However, sometimes, traditional joint
estimation methods compromise pose recognition accuracy when used to identify skeleton
foot position.

The mean estimation error in each untrained data domain is shown in Table 5. The
table shows that Meta-Pose has an average error of 4.28 cm across all of the new data
domains, while the proposed RFID-based method has an average error of 3.19 cm. In
addition, we find that the Meta-Pose estimation error for untrained data domains is still
larger.
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Table 5. Performance comparison with mean estimation error.

Poses RFID-Pose [3] Cycle-Pose [19] Meta-Pose [20] Our Proposed
RFID System

Walking 6.72 cm 4.12 cm 4.0 cm 3.46 cm
Sitting 7.62 cm 4.43 cm 4.2 cm 3.0 cm

Standing 5.46 cm 4.51 cm 4.4 cm 3.1 cm
Bending 4.62 cm 4.97 cm 4.55 cm 3.2 cm

Mean Error 6.27 cm 4.50 cm 4.28 cm 3.19 cm

The estimation error for each tagged joint is shown in Figure 25. The joints were
numbered from 1 to 8 in the following order: head, right shoulder, left shoulder, torso,
left hand, right hand, right foot, and left foot joints. The left and right foot estimation
errors were over 3.9 cm for both approaches. This significantly higher set of errors can
be attributed, in large part, to the kinematic technique as well as the positioning of the
sensors. When computing the location of a joint based on the position of its parent joint,
the mistakes from the previous joints will accrue. Because of this, the estimation error of
the torso will affect the accuracy of both feet.
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5. Conclusions and Future Directions

This paper presented an environment-adaptive 3D human pose estimation method
employing transceiver-based RFID tagging on the human body. This study conducts an
analysis of the variability of the measured RFID data and identifies the primary difficulties
associated with generalization issues. At the preprocessing stage, Butterworth filtering is
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used to reduce the computational cost by de-noising environmental factors, and adaptive
moving average segmentation is used to determine the start and end of an activity. For
the valid case study, two kinds of data were gathered from this setup. RF sensors were
used at a rate of 1000 Hz, and each sensor was set to a certain angle on a joint of a human
body part between different points of interest. Microsoft Kinect 2.0 is used to obtain visual
ground truth data for supervised learning and to compare the RF sensors’ final results.
The data was recorded at 30 frames per second. Data is collected from each of the RFID
transceivers and then processed in order to construct a three-dimensional skeleton of the
subject. The RFID transceivers and the Kinect 2.0 sensors work together to collect the
necessary information for testing and training. The data collected from the RFID tags are
preprocessed before feature extraction and pose generation. Furthermore, the kinematic
information will be used as labelled data for the purpose of conducting supervised training.
The RGB camera and the infrared sensors present in the Kinect device conduct an analysis
on the three-dimensional position of each human joint, and the findings of this analysis
are then saved in a database. A 3D human pose estimation model is proposed based on
artificial neural network (ANN) learning error estimation. The results of a case study
demonstrate that the proposed RFID system is able to predict 3D human postures with
ease and is extremely adaptable. This research combines RFID signals from four tasks into
a dataset (stand, walk, bend, and sit) for the development of a case study. The selected
individual performs each task fifty times at a variety of time intervals. After that, we use
the FFT to illustrate the separation of the noisy signal from the original signal, and then
we identify the relevant sideband peaks from the original signal in order to identify and
extract the relevant features. The results demonstrate the estimation inaccuracy for different
body positions, including walking, standing, bending, and sitting. The performance was
evaluated according to the nature of this error. The precision of the estimated pose is
dependent on the tracked motion, as indicated by the provided results. The maximum
error (3.46 cm) was encountered when analyzing walking action, while the smallest error
was met when analyzing sitting posture (3.00 cm). As shown by the results, the proposed
model addresses a variety of issues, including those pertaining to its joints and torso, which
is the most important contribution made by other authors. Still, the RFID-based Pose is
reliable across the board, and even the largest error observed across all tests is smaller
than what can be achieved with the current state-of-the-art in RFID pose approximation.
This demonstrates that RFID-Pose is an advancement above the technique that was used
previously, i.e., 4.55 cm [20]. The estimation demonstrates that the new RFID-based Pose
system can more accurately forecast joint angles and reconstitutes the whole body’s pose
in motion by using RFID phase data. Furthermore, these results are compared with other
related published work to show better efficiency and prove the concept.

In terms of future 3D human pose estimation improvements, the following additional
advancements could be researched to improve overall system operation:

• This study analyses RFID data variability and generalization concerns. The general-
ization issue could be reduced by expanding the training dataset to include additional
subjects and positions. Future study will continue to address the generality challenges
of RFID-based pose monitoring systems.

• It is important to sample a larger dataset of multiple objects with diverse poses in the
different environments in order to obtain a level of performance in fine-tuning that is
considered to be satisfactory.

• The 3D human posture estimation system that is built on a cloud-edge framework
could potentially be enhanced with the addition of hybrid artificial intelligence ap-
proaches.

• Multiple human objects must be considered concurrently with additional poses and
machine learning techniques.
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