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Chapter 1

Introduction

1.1 Radio astronomy and the interference chal-
lenge

Radio astronomy is a passive service1 and is equipped to observe extremely weak
signals from outer space. Technological advances have had great influence on the
sensitivity of radio telescope systems. Since the first detection of radio emissions
from outer space in 1933 [76], and the development of the first radio telescope
[120] and radio interferometer [128], the telescope (continuum) sensitivities have
increased by five orders of magnitude [26, 30]. This corresponds to a factor of
ten sensitivity increase per decade.

The sensitivity of current state-of-the-art telescopes is over ten orders of
magnitude higher than in most communications systems [71]. This high sen-
sitivity is required because radio astronomical signals are very weak, typically
40 to over 100 dB weaker than signals from most other services. Radio astron-
omy reaches this high sensitivity as astronomical observations usually have a
duration of hours to several days as compared to only microseconds to seconds
for communications systems. Also, the receiving areas of the antennas in radio
astronomy are usually several orders of magnitude larger than in radio com-
munications systems. In addition, radio telescope receivers are often equipped
with cryogenically cooled receivers. This leads to very low receiver noise powers,
often as low as ten times the cosmic background noise levels.

For the coming two decades, the aim is to build radio telescope systems which
are one to two orders of magnitude more sensitive than the current systems. Ex-
amples are the Low Frequency Array (LOFAR) [28, 160], currently under con-
struction in the Netherlands, and the Square Kilometer Array (SKA) [2, 161],
currently in a concept study phase.

1Passive service: a service [75, 38] not involved in any man-made radio transmission but
only concerned with the reception of naturally occurring radio waves.

1



2 CHAPTER 1. INTRODUCTION

Recent technological advances in the fields of electronics and communications
systems have led to a vast increase in communication applications and systems.
These include mobile cellular telephone systems (e.g. GSM), digital radio (e.g.
DAB) and digital television (e.g. DVB), short-range devices (e.g. Bluetooth,
WiFi), ultra-wideband radar and communications (UWB), and satellite sys-
tems (e.g. GPS, GLONASS). The demand for radio spectrum has increased
dramatically, leading to scarcity in many frequency bands and in some cases to
congestion.

From a technical point of view [139], one might argue that for active ra-
dio communication services2, the current spectrum information transmission
capacity is not exploited to its limit [131]. Indeed, monitoring information
shows that not the whole allocated spectrum is occupied with transmissions
all the time [36, 7, 129, 50, 12], as many transmission systems operate only in-
termittently. New technologies and radio communication approaches, such as
described in [139], may reduce the spectrum scarcity for most of the radio
communication services. One of those techniques is applying spread-spectrum3

digitally-coded modulation schemes [176]. Another technique is “software ra-
dio” [122], which enables communication systems to transmit and receive across
a broad range of frequencies as the signal processing is done in software. Because
of the economic potential of these systems, it is likely that they will be devel-
oped further, and will be accompanied by (inter)national agreements. However,
from the point of view of the passive services these trends do not in general lead
to an improved spectrum use; often the opposite is true.

Because of the denser active use of the spectrum, and because of higher
telescope sensitivities, radio astronomy is increasingly hampered by interfer-
ence from other spectrum users. Figures 1.1 and 1.2 show how man-made radio
signals influence radio astronomy observations. Figure 1.1 shows auto- and
cross-correlation spectra (left) of an observation of OH emission lines contam-
inated with interference from the GLONASS satellite positioning system. The
correlations are between telescopes of the WSRT array. The figure also shows an
example of an astronomical pulsating star signal, a pulsar (right-hand figure).
In this particular case, a stationary interferer would reduce the signal to noise
ratio, but it would not influence the observed pulse shape. This illustrates that
interference influences observations from different observational modes in differ-
ent ways. Figure 1.2 shows astronomical images just outside the 25.55 − 25.67
MHz band allocated to radio astronomy. The images were obtained with the
LOFAR Initial Test Station (ITS), which is a LOFAR demonstration telescope
located in the Netherlands. The figure shows all-sky (“fish-eye”) observations,
showing the astronomical sources Cas.A, Vir.A, and the North Polar Spur. The
right-hand figure shows the same observation at an adjacent frequency channel,

2Active communication service: a service [75] which is based on both actively transmitting
and receiving signals

3Spread spectrum: a communication technique in which the transmitted signal bandwidth
is considerably larger than the frequency content of the original signal.
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Figure 1.1. Examples of astronomical observations in the spectral do-
main (left) showing astronomical OH emission lines contaminated with
GLONASS transmissions, and in the temporal domain (right) of a pulsar (spin-
ning/pulsating neutron star) with rotation period 0.715 s. Both datasets were
obtained with the WSRT and the NOEMI data recording system (cf. chapter
4).

occupied by a terrestrial transmitter. The spatial sidelobes of the transmitter
(point spread function) obscure the astronomical sources. In this case, spatial
filtering can reduce the transmitter signals to levels below the Cas.A flux level,
as is described in [17] [170]. For useful astronomical science, an interferer with
this power should be suppressed many more orders of magnitude. A comparison
of the transmitter flux levels versus the LOFAR telescope sensitivity is given in
chapter 10, together with some initial interference mitigation results.

Interference affects radio astronomy in several ways. Before going into more
detail in possible interference mitigation approaches in section 1.2, a few gen-
eral aspects and challenges in relation to the changes in spectrum use are briefly
discussed.

First it should be noted that protection criteria exist for radio astronomy;
see for instance [69, 72]. These norms cover both single dish telescope protec-
tion and aperture array protection criteria. Although relatively narrow bands
are allocated to the radio astronomy service (RAST), such as the 21 cm band
for neutral hydrogen, radio astronomy increasingly observes in bands in which
there is no radio astronomy allocation. The main reason for this is that the
cosmic radio signals are not limited to specific bands, but occur over the entire
spectrum. The neutral hydrogen emissions of far-away galaxies, for example,
are Doppler shifted to lower frequencies. These emissions are even observed at
frequencies far below 1 GHz. A second reason is that for continuum observations
(as opposed to narrow-band spectral line observations), the sensitivity can be
increased by using large bandwidths, thus enabling radio astronomy to observe
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Figure 1.2. Example of radio astronomical images: observation of the north-
ern sky with a test station (ITS) of the Low Frequency Array (LOFAR) in
The Netherlands, without interference (left) and with a transmitter at the
horizon (right). The ITS station is a phased array with 60 antenna elements,
configured in a 200 m diameter five-armed spiral (cf. chapter 10).

very weak and distant astronomical sources. Since a considerable fraction of the
bands below 2 GHz are only occupied with intermittent transmissions, radio as-
tronomy is able to observe in some of these bands outside the ones allocated to
radio astronomy, even in densely populated regions such as the Netherlands.

The increasing demand for spectrum in general leads to fewer time-frequency
slots unoccupied with transmitters and interference (out of band and spurious
emissions [75]). Although new modulation schemes in principle have higher
information transmission capacity than the traditional ones (e.g. AM, FM),
spectrum monitoring observations indicate that for several bands the spectrum
occupancy increases, rather than decreases. In the Netherlands this can be seen,
for example, in monitoring observations at the Westerbork Synthesis Radio
Telescope (WSRT), in the LOFAR monitoring data [12], and in observations
with the monitoring network (VMN) of the Dutch spectrum management agency
Agentschap Telecom (AT) [3]. This means that spectrum sharing between active
and passive users becomes increasingly difficult.

A consequence of the increasing spectrum demand is that in several bands
the aggregate power of transmitters increases in time. This may lead to linearity
problems in the analog part of telescope receivers: increasing intermodulation
product levels (a mixture of harmonics appearing in the band of interest), and
an increase in the noise level. These problems can often, but not always, be
reduced. However, increasing the linearity of an already well-designed receiver
system almost always leads to an increase in system noise.

Finally, digitally modulated wide-band and ultra wide-band (UWB) systems
[127] are often designed to have many transmitters simultaneously active in the
same band. Such an aggregate of transmitters does not have a specific spatial
signature, and therefore it will tend to behave like spatially white background
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noise. Due to this lack of specific spatial signatures, it is very difficult to suppress
these signals in astronomical observations, and it will lead to an increase in the
system noise. Single UWB devices may have a spectral power density which
is undetectable because it is below the background radio noise [70]. However,
an aggregate of many devices may hamper radio astronomy. Also, UWB pulses
may hamper non-imaging radio astronomy such as pulsar research [86,157], and
cosmic ray airshower research [67]. A related (EMC) issue, also potentially
dangerous for radio astronomy, is an aggregate of high speed (> 1 MHz) data
transmissions over conducting wires, such as power line communications (PLC)
[39]. There are very practical alternatives to these systems which avoid EMC
problems, but this issue is not only a technical one.

There clearly is a challenge for radio astronomy to mitigate the increasing
levels of interference. Due to the technical advances, part of the spectrum
occupied with interference and transmitters can be recovered with interference
mitigation approaches. There are, however, limits in effectiveness and cost.
Still, considering the trends mentioned, it seems reasonable to assume that the
new generation of telescopes such as LOFAR , ALMA, and SKA, can deliver
one to two orders of magnitude more sensitivity than the current systems.

1.2 Current RFI mitigation approaches

In order to mitigate interference, it must have characteristics which are in some
ways different from the cosmic signals to be detected. If the interference cannot
be distinguished, then obviously it can not be mitigated. Fortunately, there
cannot be an interferer which is in all possible domains simultaneously indistin-
guishable from cosmic sources. The effectiveness of mitigation is limited by the
estimation and detection accuracies of the signals involved. Different astronom-
ical observing modes may require different interference mitigation techniques
and approaches. Examples of these modes are spectral line observations, polar-
isation measurements, synthesis imaging, and pulsar research.

There are many ways to define categories for interference, such as narrow-
band or wideband, fixed or moving sources, categories based on statistical prop-
erties (e.g. spatial and temporal coherence) or based on modulation type [58],
distinctions based on the amount of a-priori information of the transmitter or
on differences in spatial properties or polarisation, categories based on field
strength, power [44], and temporal-spectral occupancy, and categories of over-
lapping signal parameter domains [46].

The way interference is perceived by a radio telescope system obviously also
depends on the telescope system itself and on its configuration. Interference
mitigation methods are therefore categorised, sometimes in terms of telescope
subsystems [9], and sometimes in terms of signal characteristics. Examples
of telescope-based mitigation categories are analog versus digital methods, pre-
versus post-correlation methods [8], single telescope versus array methods, adap-
tive versus non-adaptive, real-time versus off-line, aperture array versus focal
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plane array. Interference mitigation methods can of course also be applied
in multiple domains simultaneously. Depending on the interference and the
type of instrument, several kinds of RFI mitigation techniques are applicable.
Overviews of applicable methods, techniques and approaches can be found for
example in [98,53,151,88,154,40].

It is difficult to define a complete set of independent and non-overlapping
interference mitigation categories into which all of the current methods fit in a
straightforward way. In this section, the following, more or less ad hoc, cate-
gories are chosen: linearity in the analog (receiver) domain, fundamental signal
parameters (time, frequency, location, direction, polarisation), and combina-
tions of the fundamental parameters.

Linearity in the analog domain

The interference problem in the analog (receiver) domain is maintaining lin-
earity. Strong interfering signals may saturate the receiver and give a decrease
in sensitivity and a nonlinear response, so that sums of two signals will produce
intermodulation products. Issues here are the avoidance of intermodulation
products and achieving low receiver noise characteristics, even in the proxim-
ity of spatially and spectrally strong transmitters. This can be achieved by
careful receiver system design in which the receiver mixing scheme is matched
to the spectrum environment and the required bandwidths [155, 135, 107]. In
addition, the (active) antenna [34], and receiver components such as the low
noise amplifiers (LNA), need careful design [172, 173]. Here, an optimum must
be found between linearity and noise characteristics, usually two contradictory
requirements. Although intermodulation products in the band of interest can
to some extent be filtered spatially in the digital domain [17], it is much better
to suppress them at the source. Alternative receiver design studies were carried
out, using for example the feed-forward concept [171]. This study confirmed
that increased linearity to accommodate high power input signals increases the
system noise. Receiver and LNA design must meet the technical requirements,
but as the new generation of telescopes will consist of one to two orders of mag-
nitude more receivers than current systems, cost becomes a critical issue [165]
as well.

Suppressing nearby strong transmitter signals is traditionally done with con-
ventional filters [121]. A drawback of those filters for radio astronomy is that
in-band loss close to the stopband is high. In practice this means that spectrum
bands spectrally and spatially near very strong transmitters such as TV stations
and FM stations cannot be used by radio astronomy. A solution is using high
temperature superconductor (HTSC) filters [158, 178], which have a very low
passband loss. A drawback is their cost and the need for cryogenics. In the
mid- or long term, miniature cryocooler systems [31] may be developed which
could potentially be produced at low cost.

After passing the analog receiver parts, the received radio signals are digi-
tised using analog to digital converters (ADC’s). Only two-level (one bit),
three-level, or four-level (two-bit) digitisations are traditionally used in radio
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astronomical correlators [146, 24, 61]. This works well for Gaussian signals, but
if there are non-Gaussian signals present as well, for instance from radio trans-
mitters, then the digitisation process is distorted [83]. The LOFAR telescope
stations in the north-eastern part of the Netherlands, for example, would require
at most 12- to 14- bit ADC’s [27, 13]. The required number of bits depends on
the system architecture, and on the choice of the telescope site as the spectrum
occupancy is site dependent.

Time and frequency domain approaches
Radio frequency transmitters and interferers which are intermittent, such as

Time Division Multiple Access (TDMA) wireless communication (e.g. GSM),
and airplane radar (DME) can be detected and removed from contaminated
radio astronomical data without completely losing astronomical information.
Traditionally, excision, also known as flagging or blanking, is applied in radio
astronomy to post correlation data. The integration is usually of the order
of seconds or minutes. In many cases, the time scales of transmission slot
lengths during which the transmitter or interferer is active is much less than the
one-minute or one-second level, and online (real time) detection and filtering
algorithms are essential to reduce the effect of interference to an acceptable
level. The most widely implemented algorithm is a single-channel total power
change detector [82, 164, 51, 115, 49], followed by a blanking of the correlator
output. The threshold level is usually determined either experimentally, or is
based on the χ2 distribution.

Detectors based on a-priori information of the transmitter have been pro-
posed, for example detectors based on cyclostationarity properties [163, 118].
Neural network theory is also applied for detection purposes [137,90]. A detec-
tor based on a probability density function (pdf) analysis was proposed [52], as
well as a detector based on wavelet decompositions [106]. All these detectors
are single-channel (i.e. non-array) detectors.

In case the interferer bandwidth is much smaller than the astronomical fea-
ture of interest, the interferer can be removed by a spectral notch filter. If
the interferer is outside the band of interest, the challenge is to design (digital)
spectral filters with low spectral sidelobes [1]. If the transmitter or interferer is
within the band of interest it can often be mitigated [43], provided that there
is a-priori knowledge of the modulation and coding scheme.

A disadvantage of detectors based on a-priori information is that they are
usually more complicated and require more processing resources. An advantage
is that these detectors are potentially more sensitive, which may yield more
effective mitigation.

Approaches based on direction
The single-channel detectors described so far do not exploit the spatial prop-

erties of the interference. A detector that considered combining multiple tele-
scopes for improved detection and blanking was proposed for low-frequency
interferometry [80]; in this study a robust data-censoring method based on the
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temporal behaviour of the cross spectrum was proposed, which requires a large
number of estimated spectra to obtain robust estimates, and only two channels
are used.

If an interferer is continuously present in time, spatial filtering is an approach
which can be used in telescope arrays. Extensive literature exists on beamform-
ing and spatial filtering, for example in the context of communications systems
and radar array signal processing [149,88,168]. In radio astronomy, research on
and application of these techniques started only around 1998.

Some spatial filtering research efforts are directed at subtraction approaches4

using two to four reference antennas, employing for example LMS-type adaptive
cancellation techniques [6] [29]. Although effective in interferer reduction capa-
bilities, these methods do not fully exploit the subspace structure5 of antenna
arrays. In astronomical SKA-related phased-array studies, however, RF beam-
forming and subspace-based interference nulling were investigated and applied
to radio astronomical demonstrators [64, 136, 43, 45]. In the digital domain, on
the other hand, subspace-based interference mitigation studies were very lim-
ited [100,147].

Wideband beamforming and nulling can be achieved in the analog domain by
using time delays or by a combination of time delays and phase rotators [136,47].
Wideband beamforming and spatial filtering can be implemented digitally in
many ways, for example as explained in [40].

Post correlation spatial filtering can be applied both to the correlation data
and to the image plane data [94]. In [151] the relation between array beam-
forming , spatial filtering, and clean [130] is described.

Approaches based on location and direction

A first measure to prevent interference is to separate telescopes from trans-
mitters and (other) interfering sources. In practice this means placing tele-
scopes at remote places, or restricting transmitters to certain areas (coordina-
tion zones). Additional methods are shielding the telescope with screens [74],
which requires propagation effects to be taken into account [73], or shielding
radiating equipment, which is an EMC problem.

Arrival time differences between telescopes in an array can be used to dis-
tinguish between cosmic signals and interference. Examples are secondary radio
emissions from high-energy cosmic particles entering the earth atmosphere [67],
or the search for extraterrestials [144].

Approaches based on polarisation

So far, not much research has been carried out on polarisation-based inter-
ference mitigation. It is difficult to define useful mitigation methods because

4Methods involving the subtraction of signals from reference antennas are here considered
as spatial filtering, as both methods are mathematically nearly identical.

5Subspace: the array output covariance matrix contains structure which can be used for
calibration and spatial filtering purposes. This structure can be estimated using eigenvalue
or factor analysis approaches [151].
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the observed interference polarisation properties may vary rapidly in time. The
telescope sidelobe structure influences the observed polarisation properties of
the interference; moreover, the sidelobes change in time because the telescope
rotates mechanically, or, for phased arrays, electronically. Also, because of lim-
ited transmitter/interferer polarisation information and because of diffraction
and multipath effects, it is difficult to separate the interferer properties from
the sidelobe properties. Moreover, it is already difficult to do polarisation work
at all in radio telescopes because of system instabilities and finite calibration
accuracies, and the fact that most astronomical sources are either unpolarised
or weakly polarised.

1.3 Scope of this thesis

The focus of this thesis is on interference mitigation techniques for synthesis
imaging, mainly exploiting the spatial signature of the interferers. In radio as-
tronomy, image formation is based on the conversion (mostly Fourier transfor-
mation) of observed covariance matrices into sky maps [113,146]. The covariance
matrices contain more structure than is traditionally used in radio astronomy.
Often optimisations are not carried out on the complete covariance matrix but
iteratively on an interferometer basis [130, 66]. These methods yield good re-
sults, but new challenges such as higher sensitivity for the new generation of
telescopes LOFAR [160] and SKA [161] utilising interference mitigation make
it worthwhile to investigate the underlying data models more closely.

A full-array covariance matrix and dual polarisation data model for radio
astronomy was presented in 1996 [63]. In this model, instrumental effects (e.g.
antenna dipole orientation) and non-instrumental effects (e.g. Faraday rotation
[113, 124], that is, rotation of the polarisation plane) are taken into account in
a straightforward and elegant way. Also, analysis of the data model is mainly
based on interferometer correlations (two by two or four by four matrices).

This thesis proposes new data models and uses them for interference mit-
igation purposes. The data models described are partly complementary, and
partly identical to the formalism defined in [63]. Modern array signal process-
ing techniques drawn from other fields are introduced here for use in interference
mitigation. These techniques are, for example, detection and estimation theory
from communications and statistical signal processing [167,81,82,104,149], and
subspace techniques such as eigen analysis [68], and factor analysis [91,105] from
econometrics [60] and psychometrics. The theoretical performance of the inter-
ference mitigation methods studied is investigated and verified experimentally
using the Westerbork Synthesis Radio Telescope (WSRT).

Until recently, multichannel interference mitigation techniques were not stud-
ied in radio astronomy. This thesis therefore focuses on multichannel detection
and the excision of interference, and on spatial filtering with and without ref-
erence antennas. An advantage of these methods is that they are blind, in the
sense that no a-priori information of the interferer is required for them to be
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effective. This means that they are relatively simple and that they will work
for a large class of interfering signals. Obviously their performance may be in-
ferior to methods in which a-priori information is used. The main advantage of
arrays is that they have more degrees of freedom than single dishes, and thus
in principle have more interference mitigation capabilities.

The performance of the interference mitigation algorithms is dependent on
the model and on system parameters such as integration time, but also on the
estimation accuracies of the model parameters such as telescope gain. This
thesis therefore also focuses on the single and dual polarisation estimation of
the complex telescope gains. The influence of bandwidth and the extendedness
of sources will be considered as well. Finally, implications of this thesis work
for future telescopes will be discussed.

1.4 Thesis layout and summary of the main re-
sults

Data model and subspace analysis
In chapter 2 discrete source models will be derived using the approach out-

lined in [93]. In addition, a dual polarisation model, a multipath model, an
intermodulation model and a multiple phased-array covariance model will be
derived. These models describe many spatio-temporal properties relevant for
(narrow-band) radio astronomy signal processing in a compact way. Chapter 3
will describe the basic signal processing tools. The influence of channel band-
width and source extendedness on the subspace structure will be estimated. The
experimental set-up for the different experiments will be described in chapter 4.

Detection and excision
It will be shown in chapter 5 (see also [98]) that by subband processing,

many narrow-band techniques available in array signal processing and detection
theory can be successfully applied to radio-astronomical observations contam-
inated with intermittent transmitter signals and interference. The benefits of
multichannel spatio-spectral detection and excision, both theoretical and exper-
imental, will be demonstrated. Finally, the theoretical limits for the maximum
attenuation numbers will be derived.

Spatial filtering
In chapter 6 [119, 11] spatial projection and subtraction filters will be anal-

ysed and applied to experimental data. It will be shown that the effectiveness
of the projection filter is limited by estimation accuracies. The advantage of
projection filters over subtraction filters is that only the spatial signature of the
interferer is needed, not an estimate of the interferer power. An advantage of
a subtraction filter is that it is a relatively simple filter, but it requires more
knowledge of the system noise power and the interference power. A property
of mitigation filters in general is that there will always be residual distortions
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of the astronomical signal. For the projection filter a distortion correction ma-
trix exists [93]. This correction matrix reduces the distortions and requires the
short-term stationarity and mid-term non-stationarity of the transmitter in-
volved. This requirement was verified experimentally at the WSRT for different
types of transmitters. In chapter 7 spatial filtering with reference antennas will
be analysed and verified experimentally. It will be shown [152] that by using
a-priori knowledge of the system an improved filter can be constructed.

Gain estimation
For a single polarisation array which observes one dominant source, be it

either an interferer or of astronomical origin, it will be shown in chapter 8 (see
also [21]) that weighted least-square gain estimators are asymptotically efficient.
Closed-form estimators, which are asymptotically efficient under certain condi-
tions, will be derived as well. The estimation accuracies are compared to the
Cramer-Rao Lower bound, a technique previously unknown in radio astronomy,
and it will be shown that the gain phase and gain magnitude estimation are
independent.

Dual polarisation gain estimation
In chapter 9 and in [20, 19] a full dual polarised array model will be pro-

posed, and factor analysis approaches are applied to estimate the model com-
ponents. The performance is studied by simulation. A closed-form solution is
found for the least squares minimisation of the model error and it turned out
that at least three sky sources with different polarisation states are needed to
find the telescope complex-gain factors. This three-source requirement follows
straightforwardly from the model solutions, a result which is difficult to achieve
otherwise.

Implications for future generation telescopes
An interference mitigation strategy for the LOFAR telescope will be given

in chapter 10 [10,17]. The interference power levels observed in spectrum mon-
itoring data will be linked to LOFAR sensitivity levels. It will be shown that
interference mitigation techniques and spatial dilution effects will reduce the
interference to levels below the integrated noise levels under certain conditions
and for moderate transmitter interference powers. The spatial dilution due to
snapshot averaging as described in chapter 10 and in [10] is, in a sense, the
two-dimensional equivalent of interference attenuation due to fringe rotation in
synthesis arrays. As both SKA and LOFAR are many-element aperture synthe-
sis arrays, the results derived for LOFAR will most likely also be applicable to
SKA.

Outreach, dissemination
The KIvI Telecommunication Section Best Thesis Award 2002 was granted

to this thesis work. A patent “Calibration method, device, and computer pro-
gramme”, based on this thesis work, was filed [14]. The patent is based on
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single- and dual-polarisation array calibration methods. The single polarisa-
tion method is based on a fast, closed form, and accurate array-gain estimation
procedure, a weighted logarithmic least square method, described in chapter
8. The polarised-array gain estimation is based on a least squares minimisa-
tion, involving a dual-polarisation gain model and a source model, described in
chapter 9. The minimisation can be carried out, for example, by a rank two
factor analysis approach. Finally, the work done for this thesis resulted in the
following publications:

International journal papers

• A.J. Boonstra and S. van der Tol. Spatial filtering of interfering signals
at the initial LOFAR phased array test station. Radio Science, special
section, accepted for publication, 2005.

• A.J. van der Veen, A. Leshem, and A.J. Boonstra. Array signal processing
for radio astronomy. Experimental Astronomy, special issue, accepted for
publication, 2005.

• S.J. Wijnholds, J.D. Bregman, and A.J. Boonstra. Sky noise limited snap-
shot imaging in the presence of RFI with the LOFAR Initial Test Station.
Experimental Astronomy, special issue, accepted for publication, 2005.

• A.J. Boonstra and A.J. van der Veen. Gain calibration methods for radio
telescope arrays. IEEE Transactions on Signal Processing, 51(1):25–38,
January 2003.

• J. Raza, A.J. Boonstra, and A.J. van der Veen. Spatial filtering of RF
interference in radio astronomy. IEEE Signal Processing Letters, 9(2):64–
67, February 2002.

• A. Leshem, A.J. van der Veen, and A.J. Boonstra. Multichannel interfer-
ence mitigation techniques in radio astronomy. The Astrophysical Journal
Supplement Series, 131(1):355–373, November 2000.

Refereed international conference papers

• A.J. Boonstra et al. Calibration, sensitivity and RFI mitigation require-
ments for LOFAR. IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Philadelphia, PA, USA, 2005.

• A.J. van der Veen, A. Leshem, and A.J. Boonstra. Signal processing for
radio astronomical arrays. IEEE Sensor Array and Multichannel Signal
Procesing workshop (SAM), Barcelona, Spain, July 2004.

• A.J. van der Veen and A.J. Boonstra. Spatial filtering of RF interference
in radio astronomy using a reference antenna. IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), Montreal,
Canada, May 2004.

• A.J. Boonstra and A.J. van der Veen. Dual-polarization gain estimation
for radio telescope arrays. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), April 2003.
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• A.J. Boonstra and A.J. van der Veen. Gain estimation for polarized radio
telescope arrays. Proc. International Union of Radio Science (URSI),
27 th General Assembly, August 2002.

• S. van der Tol, and A.J. van der Veen, and A.J. Boonstra. “Mitigation
of continuous interference in radio astronomy using spatial filtering”, In
URSI General Assembly, Maastricht (NL), August 2002.

• A.J. Boonstra, and A.J. van der Veen, and J. Raza. Spatial filtering of
continuous interference in radio astronomy, In IEEE Int. Conf. on Acous-
tics, Speech, and Signal Processing (ICASSP), pp. 2933-2936, Orlando,
Florida, USA, May 2002.

• A.J. Boonstra and A.J. van der Veen. Gain decomposition methods in sen-
sor array systems. 11th IEEE Workshop on Statistical. Signal Processing.
Singapore, August, 2001.

• A.J. Boonstra, A. Leshem, A.J. Van der Veen, A. Kokkeler, and G.
Schoonderbeek, The effect of blanking of TDMA interference on radio-
astronomical observations: experimental results, In IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 3546-3549, Is-
tanbul, Turkey, June 2000.

• A. Leshem, A-J. van der Veen, A. Kokkeler, A-J. Boonstra and G. Schoon-
derbeek, “Blanking of TDMA interference and its effect on radio-astrono-
mical correlation measurements: Experimental results”, In Proceedings of
IEEE-PRORISC workshop, November 1999.

Other publications and contributions
• A.J. van der Veen, A.J. Boonstra, and S. van der Tol. Interference re-

duction in radio astronomy, ICT congress, The Hague, The Netherlands.
September 2002.

• A.J. Boonstra. RFI mitigation strategies, SKA Workshop, Groningen,
The Netherlands, August 2002.

• A.J. van der Veen, A.J. Boonstra, A. Leshem, J. Raza, and R. Calders,
Exploiting the spatial signature of communications signals received at the
WSRT, In IUCAF RFI Mitgation Workshop, MPIfR, Bonn, Germany,
March 2001.

• A.J. Boonstra. Interference mitigation strategies for radio astronomy: RFI
research areas for SKA, In SKA Workshop Technology Pathways to the
Square Kilometre Array. Jodrell Bank, UK, August 2000.

• A.J. Boonstra. LOFAR RFI mitigation strategy, Technical Report LO-
FAR ASTRON Doc. 5, Dwingeloo, The Netherlands, October 2002 (http://
www.lofar.org).

Patent
• A.J. Boonstra and A.J. van der Veen, “Calibration method, device, and

computer program”, ASTRON patent WO2004017090, 26 February 2002.

Award
• KIvI Telecommunication Section Best Thesis Award 2002, A.J. Boonstra,

Eindhoven, April, 2002.
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1.5 Notation and mathematical functions

The notation which is used throughout this thesis will be described in this
section. Unless stated otherwise or when evident from the context, the numbers,
vectors, and matrices are complex.

General notation
a Boldface letters denote vectors
ai The ith element of vector a, scalar
a,A Lowercase and uppercase letters which are not boldfaced denote

scalars
A Boldface capital letters denote matrices, the m × n matrix A

consists of elements Aij , or A =




A11 A12 · · · A1n

A21 A22 · · · A2n

...
. . .

...
Am1 Am2 · · · Amn




(̃·) Polarisation matrix or vector

Matrix definitions
I Identity matrix, the dimension follows from the context in which

it is used.
Ip The p × p Identity matrix
Ist,Qst,
Ust,Vst

Pauli (spin) matrices, Ist =

[
1 0
0 1

]
, Qst =

[
1 0
0 −1

]

Ust =

[
0 1
1 0

]
, Vst =

[
0 −
 0

]

ei The i-th unit vector
1 Vector containing ones

Linear algebra standard functions
(·)H Conjugate transpose (Hermitian) operator
(·)t Transpose operator

(·) Complex conjugate operator
(·)−1 Matrix inverse, A−1A = AA−1 = I

(·)† Pseudo inverse (Moore-Penrose inverse) of a full rank matrix,

for a M ×N matrix A it is defined by A† =
[
AHA

]−1
AH , for

M ≥ N , and by A† = AH
[
AAH

]−1
, for M ≤ N

tr Trace operator, tr(A) =
∑

i[A]ii, let λi be the ith eigenvalue of
A, then tr(A) =

∑
i λi

‖ · ‖F Frobenius matrix norm. Let ‖A‖F =
√∑

ij |Aij |2, let λi be

the ith eigenvalue of A, then ‖A‖2
F =

∑
i λ2

i

|A| Determinant. Let λi be the ith eigenvalue of A, then |A| =∏
i λi

|a| Vector norm, |a| =
√

aHa
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Stacking and selection operators
[a1, · · · ,aq] Stacking of length p vectors ai in a p × q matrix

Aij The ijth element of matrix A, Aij can be either a scalar or a
submatrix

[Aij ] [Aij ] denotes a matrix A which is composed of elements (either
submatrices or single components) Aij : [Aij ] ≡ A

vec Stacking of the columns of a matrix A into a vector b is denoted
by b = vec(A)

vec′ Vectorisation of a matrix, omitting the diagonal entries,
vec′(A) = Jselvec(A)

unvec Reverse operation of vec
diag The diag operator converts a vector into a diagonal matrix, with

the vector placed on the main diagonal: A = diag(a). When
operated on a matrix, it will set its off-diagonal elements to
zero: diag(A) = A ⊙ I, where ⊙ denotes element-wise matrix
multiplication

vecdiag Returns the main diagonal of a matrix stacked into a vector:
vecdiag(A) = (A ⊙ I)1, where ⊙ denotes element-wise matrix
multiplication

Ic Complement of I: Ic = 11t − I

Is A p × (p − 1) selection matrix, defined as the identity matrix
with its first column removed.

Jsel Selection matrix with dimensions ((p2 − p) × p), defined as the
p×p identity matrix with the [1, (p+1)+1, 2(p+1)+1, · · · , p2]
columns removed

Random variable functions and notation

(̂·) Estimated value
〈·〉 Time average of a random vector or a random matrix
E {·} Expected value of a random vector a random matrix
∼ Connects a (multivariate) random variable to a certain proba-

bility distribution
var(Â) Element-wise variance of the random variable or sample matrix

Â: var(Â) ≡ E{(Â − E{Â}) ⊙ (Â − E{Â})}
std(Â) Element-wise standard deviation of the random variable or sam-

ple matrix Â with elements aij :

std(âij) ≡
√

E{ (âij − E{âij}) (âij − E{âij}) }
cov(Â) Covariance of the random variable or sample matrix Â, with

E{Â} = A: covÂ ≡ E{ [vec(Â)−vec(A)] [vec(Â)−vec(A)]H }
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Matrix products and division operators
⊗ Denotes the Kronecker matrix product, defined as

A ⊗ B =




A11B A12B · · ·
A21B A22B

...
. . .




⊙ Element-wise matrix multiplication (Hadamard product),
[A ⊙ B]ij = AijBij

⊖ Element-wise matrix division, [A ⊖ B]ij = AijB
−1
ij

◦ Khatri-Rao product, which is a column-wise Kronecker product,
A ◦ B = [a1 ⊗ b1a2 ⊗ b2 · · · ]

aHb Vector inner product, aHb =
∑N

i=1 a∗
i bi

a × b,
abH

Vector outer product, a × b ≡ abH ≡




a1b̄1 · · · a1b̄p

...
. . .

...
apb̄1 · · · apb̄p




Standard mathematical functions
ea ea ≡ [ea1 , · · · , eap ]t, with p the number of elements in a

ln Natural, e-based, logarithm
ln(A) Elementwise logarithm, ln(A) ≡ [ln(Aij)]. This is a non-

standard definition, used in this thesis. The standard definition
of a function f of A is: f(A) = Udiag(f(λ1), · · · , f(λp))U

−1,
where λi is the ith eigenvalue of A; U is a unitary matrix.

10log The 10-based logarithm
2log The 2-based logarithm
≡ By definition equal to

sinc Sinc function, sinc(x) ≡ sin(x)
x

O Order function
Re Real part of complex entities
Im Imaginary part of complex entities
 Complex number,  ≡

√
−1

δij Kronecker Dirac delta function
Eigenvalue
decom-
position

Any correlation or covariance matrix R of the random process
x, with R = E{xxH} is Hermitian and positive definite. The
matrix R can be decomposed in terms of eigenvalues λi and
eigenvectors ui. Let Λ ≡ diag(λ1 · · ·λp), and U ≡ [u1, · · · ,up],
then R = UΛUH . Eigenvectors corresponding to distinct eigen-
values are orthonormal.

Singular
value
decom-
position
(SVD)

Any matrix A can be decomposed in terms of unitary matrices
U,V, and a diagonal matrix Σ with positive real entries: A ≡
UΣVH . The entries σi of Σ are the singular values of A and are
usually sorted such that σ1 ≥ σ2 ≥ · · · ≥ 0. The columns of U

and the columns of V are called left and right singular vectors.
The left singular vectors and right singular vectors form two
orthonormal sets.



Chapter 2

Data model

In this chapter1, discrete-source data models for synthesis imaging signal pro-
cessing based on the work of Leshem and van der Veen [93] and Hamaker et
al [63] will be presented . Their array vector and array covariance matrix models
will be extended with a full-array polarisation model, and with multipath and
intermodulation models. The purpose of the models is to simplify the analysis of
the effectiveness of RFI mitigation techniques, as will be discussed in the follow-
ing chapters. Existing and new models will be presented in a uniform manner,
so that similarities between the models will become apparent. Finally, the con-
ditions under which the models are valid will be described. The main focus of
the interference mitigation research in this thesis is on interference mitigation
in the image Fourier transform plane, not in the image domain itself.

2.1 Introduction

The aperture synthesis principle
In conventional optical or single-dish radio telescope systems, an image of

the sky is made by concentrating the incident electromagnetic waves on a focal
plane, where the images are captured by the placement of sensitive elements. In
optics, for example, charge coupled devices (CCDs) are placed at the focus, while
in radio astronomy a (multi-antenna) receiver is used and an image is obtained
by scanning the telescope over a region in the sky. In radio aperture synthesis,
however [113, 146, 124], sky images are not obtained by measuring on a focal
plane, but by measuring on a more or less arbitrary and usually flat aperture
plane. At this aperture plane, a spatial electromagnetic interference pattern is
present, caused by the emitting cosmic sources. This pattern can be estimated
by measuring the spatial time correlations of the electromagnetic field using
radio interferometers [124, 87]. Radio interferometers are formed by combining
or correlating signals from pairs of telescopes. Figure 2.1 shows a schematic

1Parts of this chapter were published in [98,19,20]
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picture of the radio astronomical observation process. It shows observing tele-
scopes, the output signals of which are filtered and down-converted. The re-
sulting baseband signal voltages are subsequently digitised and correlated. The
pair-wise correlation output depends on the relative telescope positions, which
are also known as baseline vectors or baselines. A sky image can be formed by
inverse Fourier transforming the correlated signals, or using techniques related
to Fourier transforms.

In radio astronomy, the spatial time correlations are known as coherencies
or visibilities. Figure 2.2 shows an example of observed coherency data, ob-
tained with the LOFAR test station ITS. The figure shows observed coherency
amplitudes (upper) and coherency phases (lower). The data are presented in a
(u, v) coordinate system, which consists of baseline direction cosines (cf. section
2.2.2). The spatial antenna configuration and corresponding baseline configu-
ration of ITS is shown in figure 10.7. Sky images are reconstructed by inverse
Fourier transforming the observed coherencies , or by techniques closely related
to the inverse Fourier transform [124]. The sky image, corresponding to the co-
herency data mentioned above, is shown in figure 1.2. The astronomical sources
Cas.A (supernova remnant) and Cyg.A (radio galaxy) are clearly visible near
the horizon. In the aperture plane in figure 2.2, these sources are visible as
phase gradients showing approximately 20 times 2π phase rotations. In the fig-
ure, these are visible as parallel line structures with about 20 lines each, which
are aligned from the upper left to the lower right.

In radio astronomy, the relation between cosmic source brightness distribu-
tion and the observed spatial coherencies is also known as the interferometer
equation or the visibility function [113,146,124]. In summary, aperture synthe-
sis is an imaging technique which solves the cosmic source brightness distribu-
tion, using measured values of the spatial correlations for several interferometer
telescope distances and orientations. The main advantage of aperture synthe-
sis interferometers over single dishes is that very large aperture areas can be
synthesised using relatively small telescopes. Imaging techniques based on the
electromagnetic field coherence function are also used in other fields such as
optical and holographic interferometry [123,23,79].

New challenges in radio aperture synthesis

Recent advances in electronics and related areas have led to a large increase
in wireless communications applications. This has resulted in a denser spec-
trum occupation and new (wideband) transmitter modulation schemes, and, as
a consequence, radio astronomical telescope systems are faced with an increas-
ing radio interference problem: it is becoming increasingly difficult to keep the
bands allocated to radio astronomy free from interference. On the other hand,
advances in electronics and computer technology also allow more sophisticated
data processing, which means that at least part of the interference effects could
be reduced using interference mitigation techniques. It is a challenge to develop
effective RFI mitigation techniques with low signal distortions in the astro-
nomical observations which can be implemented at a reasonable cost. Another
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Figure 2.1. A radio telescope array of parabolic dishes for measuring the spa-
tial coherency function. The number of telescopes is p; the telescope output
signal for telescope i in the time domain is indicated by xi(t). After filtering
and down conversion [124], the telescope signals are correlated pair-wise and
stacked in a matrix R. A sky image can be formed by inverse Fourier trans-
forming the correlated signals, or using techniques related to Fourier trans-
forms.

challenge in future aperture synthesis systems is the scale and complexity. Sev-
eral large-scale aperture synthesis telescopes haven been proposed or planned
(for example LOFAR, ATA, SKA), and these telescopes will have aperture areas
which are one to two orders of magnitude larger than current systems. Some
of these systems combine phased arrays with aperture synthesis (for example
LOFAR). Challenges for these large scale systems include calibration, imaging,
data processing, and RFI mitigation techniques.

Signal formalism
The mathematical formalism in the traditional radio astronomical calibra-

tion and imaging process is based on interferometer relations, that is, on pair-
wise telescope output correlations. In principle, all observed telescope correla-
tions can be stacked in a (hermitian) square matrix, also known as the correla-
tion or the covariance matrix. Data models based on such a “full” covariance
matrix, in which instrumental effects are modelled as matrix multiplications,
have an internal structure which can be utilised using linear algebra techniques.
This internal structure is used, for example, to estimate the telescope-based
calibration errors. Because the unknowns are telescope-based and not interfer-
ometer based, the data model can be simplified and telescope gain solutions
were readily found (self-calibration procedure) [146]. Although the calibration
methods applied so far were successful, there is structure in the full covariance
matrix model which is not (yet) utilised. The challenges mentioned in the pre-
vious section may therefore be handled better if this structure in the aperture
synthesis full covariance model is taken into account.
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Figure 2.2. Observed telescope antenna covariance data Rij or spatial co-
herencies , integrated over 6.7 s. The data was obtained with the LOFAR ITS
test station, and shown are the covariance amplitude (upper) and phase
(lower).

An example of a model which utilises more structure is the radio astro-
nomical polarimetric data model which was recently proposed [63]. The aim of
this matrix model is to form a coherent framework combining the polarisation
concepts of Stokes parameters and Wolf coherency matrices with the Jones and
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Mueller matrix calculus from optics and radio interferometry based on multiply-
ing correlators. In this framework all telescope-based and interferometer-based
effects (such as telescope gain, ionospheric rotation of the polarisation, interfer-
ometer errors) are straightforwardly modelled as multiplicative matrix opera-
tions. The advantage of this model is that it supports a better understanding of
radio interferometry, especially the polarisation properties. It also potentially
enhances the calibration accuracies, as system and instrumental errors can be
modelled more accurately.

In the polarimetric data processing model, the analysis is usually applied
to interferometer equations of dimension 2 × 2 or 4 × 4, rather than to the
analysis of the full covariance matrix. Also, the polarimetric model and the
current scalar models do not take interference source modelling into consider-
ation. For these reasons, a new single-polarisation data model [93, 98], and a
new dual-polarisation data model [19, 20] were proposed. The new single po-
larisation data model is a (hermitian) matrix-based discrete source model, and
it allows interference source modelling. In several forms this data model is in
use in many other areas such as statistical signal processing, communications,
acoustics, econometrics, and psychometrics. A wide variety of methods and al-
gorithms is available for detection and parameter estimation, many of which can
be used in radio astronomy signal processing. A polarised version of the data
model was also proposed; it is a straightforward extension of the polarimetric
model in [63] in the sense that it considers the full covariance matrix rather
than submatrices of dimension 2 × 2 or 4 × 4.

Chapter outline

The purpose of this chapter is to present a new data model which allows
interference modelling and which, just as the polarimetric model [63], incorpo-
rates straightforward modelling of system and instrumental effects. Following
the introduction, section 2.2 will briefly describe the classical aperture synthe-
sis approach in radio astronomy, and the assumptions used in the modelling.
The next section, section 2.3, will describe the proposed new single-polarisation,
matrix-based, discrete sources model for the observed covariance matrix. The
polarised version of the new model will be described in section 2.4, which will
be followed by section 2.5 on alternative interference models. Although it is
only partially used in this thesis, the covariance matrix structure of a synthesis
array based on phased-array telescope stations will be described in section 2.6.
The chapter will end with concluding remarks in section 2.7.

2.2 Aperture synthesis

In this section, a brief description will be given of the relation between the
observed spatial coherencies and the cosmic source distribution, and also of the
aperture synthesis problem: how to estimate the cosmic source distribution from
the observed spatial coherencies. Following [113], relatively simple expressions



22 CHAPTER 2. DATA MODEL

for the spatial coherence function and visibility function can be derived under
certain simplifying assumptions.

2.2.1 Spatial coherence and interferometry

This section will briefly describe the relation between the observed coherencies
and the cosmic source distribution. It follows the introduction of [113]. The
purpose is to connect the discrete source matrix-based formalism to the conven-
tional continuous interferometer relations. Many details of the interferometer
relation derivations are omitted as these are not relevant to the description of
the matrix based formalism. More details can be found in [113,146,87,124].

The starting point is the definition of an arbitrary orthonormal coordinate
system in which the location of the cosmic sources is given by rs and where
the locations within the aperture array are given by the vector ri. For the
cosmic source signals it is assumed that the aperture far-field condition holds,
which implies that no information can be obtained about the cosmic source
distribution in the direction of the line of sight. As a consequence, the cosmic
source distribution may be described in terms of a source distribution located
at the celestial sphere at a fixed distance rs without any loss of generality. It is
also assumed that the space within the celestial sphere is vacuum. Let t denote
time, let s be the source direction vector, and define the time varying electric
field at a frequency ν at the cosmic source location rs as E(rs, t) and at an
earth-bound aperture location ri by E(ri, t). Define the cosmic source direction
vector s by s = rs

|rs| , let dS be an infinitesimal area on the celestial sphere,

dS = |rs|2dΩ, where dΩ is the solid angle corresponding to dS, and define the
source intensity or brightness by IB(s). Further let c denote the speed of light.
A schematic drawing of the electric fields at the mentioned locations is shown
in figure 2.3.

Figure 2.3. Electromagnetic field distribution at the aperture plane and at
the celestial sphere source locations

As it is assumed that the source signals are stationary over the period of ob-
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servation, the stochastical properties of the signals can be estimated by (spatial)
correlation of the electric fields at the aperture plane. The electric field corre-
lation between the aperture locations ri and rj , or spatial coherence function
V (ri, rj), is defined by:

V (ri, rj) = E{E(ri, t)E(rj , t)} (2.1)

where E{} denotes the expected value or ensemble average.
Under the above assumptions, the linearity properties of the Maxwell equa-

tions imply that the electromagnetic field at a point ri can be described as
the sum or integral of the contributions of all emitting sources in the sky,
taking into account geometrical path effects. This is closely related to the
Huygens-Fresnel principle in optics [79], which states that the propagation of
waves through an unobscured medium or free space can be described in terms
of oscillating virtual point sources2 located at the wavefronts, or in this case
the celestial sphere. These concepts are related to the Van Cittert-Zernike the-
orem [124] [174], which describes the relation between the scalar (sky) source
intensity distribution and the electric field coherencies at the (earth-bound)
aperture plane. The coherency function can be described in terms of the sky
source distribution Ic

B(s), which represents the intensities of the astronomical
sources in the direction s [113,146,124]:

V (ri, rj) =

∫

celestial
sphere

Ic
B(s)e−2πνc−1st(ri−rj)dΩ (2.2)

The subscript B in Ic
B refers to the brightness distribution of the celestial

sources [113]. The superscript c refers to the fact that a continuous sky source
distribution is considered, as opposed to a discrete source distribution, as will
be described in section 2.3.1. In radio astronomy, the spatial coherency function
V is measured by means of radio interferometers, which are pairs of telescopes
the outputs of which are cross-correlated. Figure 2.1 shows an interferometer
array with p telescopes. The individual telescope outputs xi are voltages which
correspond to measured electromagnetic field strength amplitudes. The tele-
scopes have a certain effective receiving area, dependent on the direction of the
incident waves, which means that a multiplicative telescope (frequency depen-
dent) antenna gain Ai(s), also known as amplitude response or primary beam,
should be introduced to the spatial coherence function to obtain a formula for
measured coherencies [113]:

V (ri, rj) =

∫

celestial
sphere

Ai(s)Aj(s)I
c
B(s)e−2πνc−1st(ri−rj)dΩ (2.3)

2A point source is defined as a source of electromagnetic radiation which has infinitesimal
spatial dimensions
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The quantity ri − rj is the distance between the two locations at which the
electric fields are measured and is called the (telescope) baseline bij : bij =
ri − rj .

The coherencies V (ri, rj) are given in terms of V 2m−2Hz−1 (or V 2m−2)
whereas practical correlators have as inputs the measured voltages at a certain
signal cable impedance, usually 50Ω. The relation between the coherencies
V (ri, rj) and the observed correlations R(ri, rj) is a telescope dependent scaling
factor Gi, which is constant over the sky:

R(ri, rj) = Gi GjV (ri, rj) (2.4)

The scaling factor Gi is due to unknown variations in electronic instrument
response, it is slowly time-varying and must be estimated in a calibration step.
The model now becomes:

R(ri, rj) = Gi Gj

∫

celestial
sphere

Ai(s)Aj(s)I
c
B(s)e−2πνc−1stbij dΩ (2.5)

Equation (2.5) is the interferometer equation, which relates the sky source distri-
bution to the observed correlations, using a multiplying correlator. Solving this
equation for Ic

B(s) for measured values of R(ri, rj) (for several baselines dij)
is aperture synthesis. This sky image reconstruction process involves inverse
Fourier transforms or related techniques. Usually, the phases of the correlation
function R(ri, rj) are expressed relative to the phase centre of the field of view.

2.2.2 Aperture synthesis and imaging

The interferometer equation (2.5) can be expressed in right-hand orthonormal
coordinate systems, both for the aperture plane (u, v, w), and for the source
plane (l,m, n). Following [146], the w and n axes are defined parallel to the
centre of the field of view (direction of view), as is shown in figure 2.4. These
coordinate systems are often used in radio astronomy. Assume that an earth
rotation aperture synthesis telescope tracks a certain point in the sky (centre
of the field of view) at a direction so. Other parts of the observable field of
view can be associated with the vector s. Both vectors are unit length vectors.
Define σ by s = so + σ. In general, in (l,m, n) coordinates:

so = (0, 0, 1)t, s = (ls,ms, ns)
t, σ = (ls,ms, ns − 1)t (2.6)

where ns =
√

1 − (l2s + m2
s) . The telescope distance vector or baseline bij is

defined as bij = ri − rj and can be expressed in (u, v, w) coordinates as:

bij = λ(uij , vij , wij)
t (2.7)
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Figure 2.4. Coordinate systems in the celestial sphere with {l,m,n} unit
vectors, and at the aperture plane with {u,v,w} unit vectors. The telescopes
i and j are located at ri

Using the new bases, the visibility function (2.3) can be expressed as [146,113]:

V (uij , vij , wij) =

∫ ∞

−∞

∫ ∞

−∞
Ai(l,m)Aj(l,m)Ic

B(l,m) ·

e−2π(uij l+vijm+wij

√
1−(l2+m2)) dldm√

1 − (l2 + m2)
(2.8)

So far, no assumption has been made limiting this expression to small fields
of view, and solving this equation in yields a (2π Sr) map of the entire visible
celestial sphere. This relation between visibility and sky brightness distribution
is not a Fourier transform relationship, but by assuming a small field of view
(l2 + m2 ≪ 1), and dropping the i, j indices, it can be written as

V (u, v) = e−2πw

∫ ∞

−∞

∫ ∞

−∞
Ai(l,m)Aj(l,m)Ic

B(l,m)e−2π(ul+vm)dldm (2.9)

The factor e−2πw is the geometric delay factor associated with the reference
location so; the reference direction so is also known as the phase tracking centre.
As the geometry of a telescope is known, the geometric delay can be compen-
sated for, leading to the following Fourier relation:

V (u, v) =

∫ ∞

−∞

∫ ∞

−∞
Ai(l,m)Aj(l,m)Ic

B(l,m)e−2π(ul+vm)dldm (2.10)

The beamshape Ai(l,m) need not be identical for all telescopes. Source
position-independent complex gain factors, such as varying atmospheric con-
ditions, and to a certain extent the telescope aperture efficiencies, can be ac-
counted for by adding a complex gain factor to the beamshape function. As the
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Figure 2.5. Fourier transform relation between distribution of astronomical
sources in the sky (left) and electromagnetic interference pattern caused by
celestial sources at the aperture plane (right). The aperture plane interference
pattern is sampled at the uv plane by the correlations Rij(t). Note that here
the term interference is not related to RFI .

visibility function is a Fourier transform of the sky source brightness distribu-
tion, the brightness distribution can be recovered by inverse Fourier transform-
ing the observed visibilities . Aperture synthesis arrays usually increase their
number of aperture plane sampling points by making use of the fact that the
interferometer coordinates change with respect to the source due to the rotation
of the earth. This principle is called earth rotation synthesis. Figure 2.5 shows a
sky source intensity image (left figure) in (l,m) coordinates, and a correspond-
ing aperture plane (right figure). For an East-West linear array, this plane is
at times tk sampled in straight lines. Earth rotation has the effect that the
telescope baseline orientation with respect to the sky changes with time, thus
gradually filling the (synthesised) aperture with coherency sampling points. For
an East-West array, the (u, v) coordinates can be expressed in terms of h and δ
coordinates:

uij =
|bij |
λ

cos(h), vij =
|bij |
λ

sin(h) cos(δ) (2.11)

The rotation angle around the earth axis is hour angle, or h, and is −90o in the
East, 0o at the meridian, and 90o in the West; δ is the declination, which is the
angle with respect to the ecliptic plane, positive in the northern direction.

Aperture synthesis: classical inverse Fourier imaging
The inverse Fourier transform of equation (2.10) yields

Ai(l,m)Aj(l,m)Ic
B(l,m) =

∫ ∞

−∞

∫ ∞

−∞
V (u, v) e2π(ul+vm)dudv (2.12)

However, in practical situations, where not the entire aperture plane is or
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can be sampled, only discrete or quasi-continuous measurements are available.
The measured visibilities vo(u, v) can be expressed as the theoretical visibilities
V (u, v) multiplied by a sampling function Ssa(u, v) which is 1 except at places
in the uv plane where there are no sample points available; at those places
Ssa(u, v) = 0. The Fourier transform of Vsa(u, v) = V (u, v)Ssa(u, v) is ID(l,m),
which is known as the dirty map,

ID(l,m) =

∫ ∞

−∞

∫ ∞

−∞
V (u, v)Ssa(u, v) e2π(ul+vm)dudv (2.13)

But, the Fourier transform of a product of V (u, v) and Ssa(u, v) is a convolution
in the transform plane. Let SF

ss(l,m) be the Fourier transform of Ssa(u, v), then:

ID(l,m) =
(
Ai(l,m)Aj(l,m)Ic

B(l,m)
)
∗ SF

ss(l,m) (2.14)

Here ∗ denotes the convolution operation. The function SF
sa(l,m) is called the

dirty beam, and can be modified by applying weights to the sampling func-
tion Ssa(u, v), for example in order to lower the sidelobe level. Given mea-
sured Vsa(u, v) data, and a known sampling and weighting function Ssa(u, v),
the dirty beam and the dirty map can be calculated. The desired function
Ai(l,m)Aj(l,m)Ic

B(l,m) can be obtained via a deconvolution process. A well-
known algorithm based on a point source model is CLEAN [66] [130]. This
algorithm contains an iterative loop in which the location and intensity of the
strongest source are found in the dirty map (correlation with dirty beam), after
which the source is subtracted. In each iteration one source location is found
and (after convolving with the dirty beam, and scaled with the estimated inten-
sity) subtracted. The aim is to minimise the residue until it converges to the
sky map noise level.

The introduction above only describes some of the basic principles of syn-
thesis imaging; more information on synthesis imaging can be found in [113,
146,124,117,130,93]

2.3 Single polarisation, discrete source formal-
ism

So far, the aperture synthesis and imaging methods were described for spa-
tially continuous celestial sources. Expressions for the coherencies , visibilities
and covariances, were given in the form of integrals. In the next section, a dis-
crete source model will be described, giving expressions in terms of summations.
These are suitable for compact matrix expressions, as is common in other fields,
such as signal processing for communications.

2.3.1 Discrete source model

The sky source distribution can be approximated by a dense population of
resolved or unresolved point sources. Let qs be the number of point sources,
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and let IB(s) represent the discrete-source brightness distribution. Then the
relation between the continuous and discrete-source distributions is given by:

Ic
B(s) =

qs∑

ℓ=1

IB(s)δ(s − sℓ) (2.15)

where the delta function δ(s − sℓ) is defined in such a way that the integral
of δ(s − sℓ) over the unit sphere is 1. Define Vij = V (ri, rj). Inserting this
expression in equation (2.3) yields the following discrete visibility function:

Vij =

qs∑

ℓ=1

Ai(sℓ)Aj(sℓ)IB(sℓ)e
−2πνc−1st

ℓbij (2.16)

Let bio and bjo be defined by bij = (ri − r0)− (rj − r0) = bi0 −bj0, where the
index 0 refers to a fixed (arbitrary) reference point r0. The discrete visibility
function can then be rewritten as:

Vij =

qs∑

ℓ=1

(
e−2πνc−1st

ℓbi0Ai(sℓ)
)

IB(sℓ)
(
Aj(sℓ)e

2πνc−1st
ℓbj0

)
(2.17)

This equation describes the visibility response for source sk at a baseline bij , or
in other words, it describes the spatial electric field coherency which can be mea-
sured by means of an interferometer with a certain baseline. For p telescopes,
p× p correlation products or visibilities can be formed. These correlation prod-
ucts, and the components of the visibility function of which it is consists, can
be conveniently stacked in matrices. The advantage of the matrix formalism is
that a wide range of signal processing algorithms, originating from other fields,
becomes available to radio astronomy signal processing applications.

Define the p × p visibility or coherency matrix V in which all observed Vij

visibility points (i = 1, · · · , p, j = 1, · · · , p) are stacked as

V =




V11 . . . V1p

...
. . .

...
Vp1 . . . Vpp


 (2.18)

Define R by
R = (b1o, · · · ,bpo)

t (2.19)

and let the geometric delay vector be ad(sℓ), and the telescope beam response
of the ℓth source be ab(sℓ), then

ad(sℓ) = e−2πνc−1Rsℓ , ab(sℓ) = [A1(sℓ), · · · ,Ap(sℓ)]
t (2.20)

The geometric delay vector is time-dependent, but known; the telescope main
beam gain Ai is direction-dependent, and is assumed to be constant in time and
is now taken equal for all telescopes: Ai(sℓ) = A(sℓ) and hence ab(sℓ) = A(sℓ)1.
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The array response vector a(sℓ) is defined by the element-wise multiplication of
the vectors defined previously: a(sℓ) = ad(sℓ) ⊙ ab(sℓ). Let Bℓ = IB(sℓ), then
the p × p visibility matrix V can be expressed as

V =

qs∑

ℓ=1

a(sℓ)Bℓ a(sℓ)
H (2.21)

Define the diagonal gain matrix G by

G =




G1 0
. . .

0 Gp


 (2.22)

Because R = E{xxH}, Vij = E{E(ri)E(rj)}, and x(ri) = GiE(ri), the relation
between R and V is:

R = GVGH (2.23)

and thus
R =

∑qs

ℓ=1 G a(sℓ)Bℓ a(sℓ)
H GH (2.24)

This can be written more compactly. Let the p× qs array response matrix Abe
defined by

A = (a(s1), · · · ,a(sqs
)) (2.25)

and let the diagonal qs × qs brightness distribution matrix B be defined by

B =




B1 0
. . .

0 Bqs


 (2.26)

Straightforward verification shows that the visibility function (2.17) and the
covariance matrix can be written in compact matrix forms as:

V = ABAH (2.27)

R = G ABAH GH (2.28)

Equations (2.24) and (2.28) are discrete source versions of equation (2.5); equa-
tions (2.21) and (2.27) are discrete source versions of equation (2.3). The com-
plex gain matrix G usually slowly varies (> 1 minute), and the array response
matrix A varies with time due to source tracking. Most sources do not time
vary with time, so the brightness distribution B is usually time-invariant. Hence
equation (2.28) is more accurately written as

R(t) = G A(t)BA(t)H GH (2.29)

Following [63], a-priori knowledge of some of the telescope system parame-
ters and propagation paths can be included in the modelling in a straightforward
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way. The gain and array response vectors may be composed partly of known
and partly of unknown parameters. Assuming the number of unknowns is not
too large, they can be found. Detailed analysis of this topic is not a goal of this
thesis, but it will become an important issue for telescopes such as LOFAR [16]
and SKA .

Discrete source imaging approaches
Using a parametric point-source model, the image deconvolution problem in

the noiseless case can be interpreted as a direction-of-arrival (DOA) estimation
problem. Assuming the gains G are constant and known from calibration, they
can be omitted from the model without loss of generality. Writing the time
dependence of the model and model estimates as a discrete time index k and
assuming K measurement snapshots, a least squares covariance fitting approach
to the DOA problem is written as

[{ŝℓ}, B̂] = arg min
{sℓ},B

K∑

k=1

‖ R̂k − Ak BAH
k ‖2

F (2.30)

where {sℓ} ≡ {s1, · · · , sqs
}, and where Ak = (ak(s1), · · · ,ak(sqs

)). In the

estimation of {sℓ} and B, B̂ is constrained to be diagonal with positive entries.
This model is similar to the model used for DOA estimation in array processing.
Note that there are many more sources than the dimension of each covariance
matrix R̂k. In this notation, the image formation can be formulated as follows.
If we write ID(s) ≡ ID(l,m) and ak(s) ≡ ak(l,m), we can rewrite the dirty
image (2.13) as [151]

ID(s) =

K∑

k=1

ak(s)H Rk ak(s) (2.31)

With system noise, R̂ is replaced by R̂ − D̂, where D̂ is a diagonal covariance
noise matrix; see for instance section 2.3.2 for details. The iterative beam
removing in CLEAN can now be posed as an iterative LS fitting between the
sky model and the observed visibility [130]. Finding the brightest point s0 in
the image is equivalent to trying to find a point source using classical Fourier
beamforming, that is:

ŝ0 = arg max
s

K∑

k=1

ak(s)H R̂k ak(s) (2.32)

Thus, the CLEAN algorithm can be regarded as a generalised classical sequen-
tial beamformer, where the brightest points are found one by one, and subse-
quently removed from Rk until the LS cost function (2.30) is minimised. An
immediate consequence is that the estimated source locations will be biased, a
well-known fact in array processing. If the sources are well separated the bias
is negligible compared to the standard deviation, otherwise it might be signif-
icant. This explains the limited performance of CLEAN in imaging extended
structures (see e.g. [113]).
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An alternative solution to the deconvolution problem is to solve equation
(2.30) in closed form in the following way. Let v̂k ≡ vec(R̂k), and b ≡
vecdiag(B). Applying equation (B.22) to Ak BAH

k yields the following ex-
pression

v̂k = [Ak ◦ Ak]b (2.33)

Stacking all time sample data on top of each other yields:




v̂1

...
v̂K


 =




A1 ◦ A1

...
AK ◦ AK


b (2.34)

Define

A+ =




A1 ◦ A1

...
AK ◦ AK


 (2.35)

and v̂+ = [v̂1, · · · , v̂K ]t. Inserting these in the previous equations and solving
for b yields:

b = A
†
+v+ = (AH

+A+)−1 AH
+ v̂+ (2.36)

The factor AH
+v+ corresponds to the dirty image, and the matrix (AH

+A+)−1

to the deconvolution step. This approach will lead to a least squares solution,
but will in practice be computationally very expensive, as the matrices to be
inverted are extremely large: O(Nq × Nq) with Nq the number of pixels in the
image. The matrix inversion requires O(N3

q ) operations. An approach such as
CLEAN may lead to less optimal solutions, but the computational requirements
are much lower: for each pixel (brightest point) the beam has to be subtracted
from all pixels, requiring subtraction operations on O(N2

q ) pixels.

2.3.2 Additive interference and noise

In this section a model is described for (additive) interfering signals and noise.
Assume that the telescope signals xi are composed of qs astronomical source
signals, qr interfers, and noise. As before, the telescope output signals xi are
stacked in a vector x = (x1, x2, · · · , xp)

t
. Let xs

ℓ be the telescope array output
signal corresponding to the ℓth astronomical source in the direction sℓ, let xr

k

be the telescope array output signal corresponding to the kth interferer in the
direction sr

k, and let xn be the noise vector, then the resulting array output
signal can be expressed as

x =

qs∑

ℓ=1

xs
ℓ +

qr∑

k=1

xr
k + xn (2.37)

The noise xn is independent identically distributed (i.i.d.) Gaussian noise, so it
is uncorrelated between the array elements, or, in other words, spatially white
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at the aperture plane. The astronomical source signals are assumed to be iden-
tically distributed Gaussian noise signals. The sources are assumed to be in-
dependent, or in other words spatially white at the celestial sphere. Finally,
the interferers are assumed to be quasi stationary, Gaussian noise signals. The
interferers may either be mutually correlated (multipath) or not. Figure 2.6
schematically shows the telescope set-up with the three types of input signals.
A matrix formulation for the source contributions is already derived, so the next

Figure 2.6. Telescope array output signal vector x = (x1, · · · , xp)t contains
contributions from sky sources, from interference, and includes system noise.

step is to derive a matrix expression for the interference contributions and noise.

In case the interferers are in the far field of the telescope array, and are
stationary for the duration of the observation, and assuming that there is no
multipath, then the matrix derivations are completely analogous to the astro-
nomical sources case. However, many interferers occur in the near field of large
radio telescopes such as the WSRT and the VLA . In this case, assuming that
the narrowband condition is valid, all the formulas in the previous derivations
still hold, the only difference being that the array response vector for interferers
ar is written differently (because of the near field condition), and that the array
response vector is usually unknown.

Assume that there is an interferer with the index k, with signal yr
k(t). Be-

cause the narrowband condition holds, the telescope output signal xr
k(t) can be

written in terms of (unknown) gains ar
i . Let the array response vector ar

k be
defined by

ar
k =




ar
1e

2π 1
λ

(|rr
k−r1|)

...

ar
pe

2π 1
λ

(|rr
k−rp|)


 (2.38)

then, dropping the time dependence from yr
k(t), this yields xr

k = ar
kyr

k. Assume
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there are qr interferers, then xr =
∑

k xr
k, and

xr =

qr∑

k=1

ar
kyr

k (2.39)

The diagonal interferer power matrix Br and the array response matrix for in-
terferers Ar are defined analogously to the astronomical source definitions. The
diagonal gain matrix G for the interferers is identical to the gain matrix for
the astronomical sources, as it contains the telescope electronic gain contribu-
tions, which are source-independent. Taking into account only the interferer
contribution, the resulting covariance matrix is given by: GArBr(Ar)HGH .

Receiver noise, originating from, for example, amplifiers, is usually spatially
uncorrelated, so that it appears only on the main diagonal of the covariance
matrix: E{xn

i (xn
j )H} = 0 ∀ (i �= j). Let the channel receiver noise power

standard deviations be σni, and stacked in a vector σn = (σn1, · · · , σnp)
t. The

receiver noise covariance matrix D = E{xn(xn)H} is given by D = (diag(σn))2.
Finally, interferometer correlator errors may occur if the correlation process

is somehow affected. For example, inaccuracies in determining the threshold
values for ADC levels will generate correlator offsets which are interferometer
based and are not modelled easily. Correlator errors can be represented as an
additive term in the covariance matrix. However, if we disregard correlator
errors and instrumental crosstalk effects, we have:

R = G(ABAH + ArBrArH)GH + D (2.40)

This model also assumes that there is no correlation between the astronomical
sources, the interferers and the channel/system noise. As before, an alternative
expression for this equation is:

R = G(

qs∑

ℓ=1

a(sℓ)Bℓa(sℓ)
H +

qr∑

k=1

ar(sr
k)Br

ka
r(sr

k)H)GH + D (2.41)

For map-making, the goal is to estimate B, given that a sample estimate R̂

of R is available. The gains G and some terms in A are initially unknown but
can be estimated from R̂ using calibration schemes, such as selfcal techniques
in which the telescope based calibration errors/unknowns are found by compar-
ing measured data with expected data based on sky models [169], and by the
CLEAN process. A relatively simple calibration scheme in which one dominant
source was observed will be described and thoroughly analysed in chapter 8.

The telescope noise powers can be calibrated, for example, by comparing
the off-diagonal elements of the normalised covariance matrix, that is, a matrix
containing correlation coefficients [167]

Rcc = (diagR)−
1
2 R((diagR)−

1
2 )H , (2.42)

with the predicted values based on the sky model. For one dominant source,
this scenario is part of the calibration scheme described in chapter 8.
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Applying the discrete source model to interference mitigation tests involving
an eigenvalue decomposition of R̂ often requires that the noise matrix takes the
form D = σ2

nI or that the noise matrix is estimated and subtracted from R̂

before applying the eigenvalue decomposition technique. The reason for this is
that the subspace estimation results are changed if the diagonal noise matrix
entries are non-identical, as will be explained in the next chapter.

One approach if D �= σ2
nI would be to apply eigenvalue decomposition to

the normalised covariance matrix Rcc, and then to reverse the normalisation. A
second approach, which has already been mentioned, is to estimate and subtract
D. A third method is to pre-whiten R̂ with estimates of D̂ in the following way.
Define the pre-whitened matrix Rw by Rw = D̂− 1

2 R(D̂− 1
2 )H , then:

Rw = D̂− 1
2 G (ABAH + ArRrA

H
r )GH (D̂− 1

2 )H + I (2.43)

The noise matrix is now the identity matrix, which is advantageous for many
interference mitigation algorithms, as these often assume i.d.d. noise. More on
whitening in relation to RFI mitigation and subspace analysis can be found in
the next chapter.

2.4 Polarisation formalism

2.4.1 Discrete source model

Figure 2.7. Dual polarisation telescope array output signal vectors contain
contributions from sky sources, from interference, and from system noise.

In this section the scalar description of the coherencies is extended to a
representation in which the electric field polarisation is taken into account. It
follows the work of Hamaker et al [63] [62], which is extended in the sense that
a full covariance matrix representation is derived. At this point it is assumed
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that there is no interference. The electric field at the location ri of an antenna
element can be described by two linear polarisation components, stacked in a
2 × 1 vector: ei = (Ex(ri), Ey(ri))

t. The correlation between two different

telescopes i and j is a 2 × 2 interferometer coherency matrix defined by Ṽij =
E{eie

H
j }. If there are p telescopes, each with two polarisations, then the 2p

observed electric fields can similarly be stacked in one vector: e =
(
et
1, · · · , et

p

)t
.

The 2p × 2p Hermitian coherency matrix Ṽ is defined by Ṽ = E{eeH} which

can be written in terms of interferometer coherency matrices Ṽij as

Ṽij = E{eie
H
j } =

(
E{Ex(ri)Ex(rj)} E{Ex(ri)Ey(rj)}
E{Ey(ri)Ex(rj)} E{Ey(ri)Ey(rj)}

)
(2.44)

and

Ṽ = E{eeH} =




Ṽ11 · · · Ṽ1p

...
. . .

...

Ṽp1 · · · Ṽpp


 (2.45)

Note that each Ṽij is non-Hermitian for i �= j, but that Ṽij = ṼH
ji so that Ṽ

is Hermitian. Ṽ is dependent on frequency and time, but for the analysis it is
assumed that the narrow-band assumption is valid.

Suppose that the ℓth source has sky brightness B̃ℓ, which is a 2 × 2 matrix
specifying the source flux polarisation components or Stokes parameters [62].

Let Ãiℓ be the source dependent polarisation multiplication matrix. This is
the array response matrix, or in the Hamaker formalism [63], a Jones matrix
or a combination of Jones matrices. Furthermore let the source brightness be
defined in terms of Stokes parameters :

B̃ℓ = Iℓ
sIs + Qℓ

sQs + U ℓ
sUs + V ℓ

s Vs (2.46)

with Iℓ
s , Qℓ

s, U ℓ
s , and V ℓ

s real scalars (Stokes parameters of the ℓth source), and

Is =

(
1 0
0 1

)
,Qs =

(
1 0
0 −1

)
,Us =

(
0 1
1 0

)
,Vs =

(
0 −ı
ı 0

)
(2.47)

which are known in physics as Pauli spin matrices. Then for each of the four
Ṽij coherency components, for each interferometer ij, for each source ℓ, the
following relation, consisting of 2 × 2 matrices, holds.

Ṽijℓ = ÃiℓB̃ℓÃ
H
jℓ (2.48)

The source-dependent polarisation multiplication matrix Ãiℓ represents differ-
ent physical and instrumental effects. All of these effects are represented by
matrices, also known as Jones matrices [63], and correspond to transformations

due to ionospheric polarisation rotation or Faraday rotation Ã
f
ℓ , parallactic off-

sets due to the orientation of the antenna with respect to the source Ã
p
ℓ , the
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geometric delay offsets Ãd
iℓ, and source-dependent telescope gain Ã

g
ℓ which is

assumed to be the same for all telescopes: Ãiℓ = Ã
g
ℓ Ã

d
iℓÃ

p
ℓÃ

f
ℓ .

Following the derivations in the non-polarised case, the factors in Ãil can
be expressed as

Ã
f
ℓ =

(
cos(φℓ) − sin(φℓ)
sin(φℓ) cos(φℓ)

)

Ã
p
ℓ =

(
cos(αℓ) − sin(αℓ)
sin(αℓ) cos(αℓ)

)

Ãd
iℓ = e−2πλ−1bt

iosℓ

[
1 0
0 1

]

Ãd
ℓ =

[
Ax 0
0 Ay

]
(2.49)

The Faraday rotation φℓ is assumed to be constant over the array and is initially
unknown. The parallactic offset phase αℓ is known from the telescope geometry.
The delay matrix is telescope-dependent, and is determined by the geometry as
well. Finally, assuming that there is no crosstalk, the telescope gain matrix Ã

g
ℓ is

diagonal and assumed to be the same for all telescopes. Initially it is unknown,
but it can be calibrated. Using the following definitions for the polarisation
brightness and polarisation array response matrices

B̃ ≡




B̃1 0
. . .

0 B̃qs


 , Ãℓ =




Ã1ℓ

...

Ãpℓ


 , Ã = (Ã1, · · · , Ãqs

) (2.50)

Ṽ can be expressed as

Ṽ =

qs∑

ℓ=1

ÃℓB̃ℓÃ
H
ℓ = ÃB̃ÃH (2.51)

Instead of the field strengths, each telescope measures a voltage vector x̃i,
where x̃i = (xix, xij)

t. Their relation is given by x̃i = G̃iei, where G̃i is a 2× 2
telescope gain matrix The observed voltages of the dual polarisation output
signals of the telescopes i and j are cross-correlated into covariance matrices
R̃ij , for which R̃ij = E{x̃ix̃

H
j } = G̃iṼijG̃

H
j . The telescope output voltages x̃i

are stacked into a 2p-dimensional vector x̃ = [x̃t
1, · · · , x̃t

p]
t and subsequently R̃

is defined by R̃ = E{x̃x̃H}:

R̃ =




R̃11 · · · R̃1p

...
. . .

...

R̃p1 · · · R̃pp


 (2.52)
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Next, the block diagonal gain matrix is defined by

G̃ = blockdiag(G̃1, · · · , G̃p) (2.53)

The G̃i matrices are also called Jones matrices, and in our definition they were
astronomical source-independent. Ideally, the two polarisation signal paths of a
telescope are the same, leading to diagonal matrices G̃i. Now it can easily be
seen that the 2p × 2p covariance matrix R̃ can be expressed as

R̃ = G̃ṼG̃H (2.54)

Note that these expressions are nearly the same as for the non-polarised case,
and that the matrix dimensions are twice the dimensions of the non-polarised
case. By inserting the expression for Ṽ in the equation above, the polarisation
covariance matrices are given by

R̃ =
∑qs

ℓ=1 G̃ Ãℓ B̃ℓ ÃH
ℓ G̃H (2.55)

R̃ = G̃ Ã B̃ ÃH G̃H (2.56)

2.4.2 Additive noise and interference

In practice the observations are influenced by noise. The system noise signals of
each of the two polarisation channels ñi ≡ [nix, niy]t are stacked into a vector:

ñ ≡
(
ñt

1, · · · , ñt
p

)t
. The noise signals are uncorrelated between the telescopes,

and up to a certain level also uncorrelated between the two polarisations of a
telescope.

If the noise between the two polarisations of a single telescope is uncorrelated
then the noise matrix D̃ ≡ E{ññH} is diagonal:

D̃ = diag(σ2
n1x, σ2

n1y, · · · , σ2
npx, σ2

npy) (2.57)

where σ2
nix and σ2

niy are the channel noise variances of the x- and y- polarisation
respectively. On the other hand, if the noise between the two polarisations of
a single telescope is correlated then the noise matrix is blockdiagonal. Let D̃ij

be E{ñiñ
H
j }, then:

D̃ =




D̃11 0
. . .

0 D̃pp


 (2.58)

The system noise can be considered additive, so that the covariance matrix of
the received data can be written as

R̃ = G̃ ṼG̃H + D̃ (2.59)
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If interferers are in the far field of a telescope and are stationary, then the
model derivations are analogous to the astronomical source derivations. In case
the interferes are in the far field of the telescope antennas (dishes), but in
the near field of the array, then the model is still valid, but the gain matrices
Ãr, and Ãr

ℓ will have to be adapted. This is a straightforward operation, and
is not included here. Ignoring correlator errors, the resulting two equivalent
expressions for R̃ are:

R̃ = G̃ (
∑qs

ℓ=1 Ãℓ B̃ℓ ÃH
ℓ +

∑qr

k=1 Ãr
k B̃r

k ÃrH
k ) G̃H + D̃ (2.60)

R̃ = G̃ ( Ã B̃ ÃH + Ãr B̃r ÃrH ) G̃H + D̃ (2.61)

As in the non-polarised case, a difference between astronomical and man-made
interferers is that the properties of the interferers (direction, distance, antenna
sidelobe level) are usually not known.

2.5 Interference models

2.5.1 Multipath model

The interference model derived in the previous section assumed that the in-
terferers were mutually independent. In the non-polarisation case this led to
the model with the p × qr array response matrix and the diagonal matrix Br

corresponding to the interferers. In the polarisation case it would lead to a
2p × 2qr array response matrix, and to the 2qr × 2qr blockdiagonal matrix B̃r.
Now the question is how these models will change when there is multipath. The
effect of multipath is that there are copies of the original signal which are time-
delayed and attenuated. This section is limited to the non-polarised case, but
the model is easily extended to polarisation. Let Rr be the covariance matrix of
the telescope array output signals only taking into account the interferers and
disregarding the astronomical sources and noise for the moment. Let the num-
ber of interferers be qr and the number of multipaths, including the main path,
for each interferer k be Lk. Then the telescope output vector with multipaths
taken into account is given by:

xr(t) =

qr∑

k=1

(
Lk∑

l=1

ar
kl yk(t − τkl)

)
(2.62)

where ar
kl is the array response vector of an interferer multipath , and yk(t−τkl)

is the corresponding signal with a multipath time delay τkl. The relative path
differences to all telescopes for any interferer-path combination is absorbed in
akl, so that the time delay τkl does not require a telescope index i. Let the
array response vector, including multipath directions, be defined by

Ar = [(ar
11, · · · ,ar

1L1
), · · · , (ar

qr1, · · · ,ar
qrLqr

)] (2.63)
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and stack the interferer signals in a vector y(t)

y(t) = [ [y1(t − τ11), · · · , y1(t − τ1l1)], · · · , [yqs
(t − τqr1), · · · , yqr

(t − τqrLqr
)] ]t

(2.64)
This yields

xr(t) = Ary(t) (2.65)

Let the covariance matrix Rr be defined by Rr = E{xr(t)(xr(t))H}, and define
the interferer multipath spatial correlation σll′

kk′ for paths (k, l) and (k′, l′) by

(σll′

kk′)2 = E{yk(t − τkl)yk′(t − τk′l′)} (2.66)

Note that the correlations between different statistically independent interferers
are zero, so that σll′

kk′ = 0 ∀ k �= k′. Straightforward manipulation shows that
the covariance matrix Rr can be written as

Rr = ArBrAH (2.67)

where

Br =




(σ11
11)2 · · · (σ1L1

11 )2 0 · · · 0
...

. . .
... · · ·

...
. . .

...

(σL11
11 )2 · · · (σL1L1

11 )2 0 · · · 0

...
. . .

...

0 · · · 0 (σ11
Lqr Lqr

)2 · · · (σ
1Lqr

Lqr Lqr
)2

...
. . .

... · · · · · ·
...

. . .
...

0 · · · 0 (σ
Lqr 1
Lqr Lqr

)2 · · · (σ
Lqr Lqr

Lqr Lqr
)2




(2.68)
In this model it is assumed that there is no correlation between different interfer-
ers k. A main difference between this model and the model without multipaths
for interferers is that in the multipath case not all off-diagonal elements of Rr

are zero. The model can straightforwardly be extended to a polarisation model,
but that is omitted here. The next step is to verify the structure and determine
the rank of the model in case of full and partial correlation between the different
interferers k.

Fully correlated interferers
Suppose there is only one interferer y(t−τl) with L multipaths with signature

vector ar
l , and assume that all L multipath signals are fully correlated with

observed signal power σ2. Fully correlated means that the propagation delay
differences τl between all multipaths and all telescopes are much smaller than
the inverse bandwidth (2π∆ν)−1 of the frequency channel under consideration:

|τl − τl′ | ≪
1

2π∆ν
(2.69)
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If this condition holds, then the delay can be represented as phase shifts which
can be absorbed in the array response vectors, and the signal (envelope) y(t−τl)
can be replaced by y(t). This criterion is further explained in chapter 3. Defining

ar
o =

∑L
l=1 ar

l yields

xr(t) =

L∑

l=1

(ar
l y(t)) =

(
L∑

l=1

ar
l

)
y(t) = ar

oy(t) (2.70)

for the array output signal vector, which means that in this case Rr = E{xr(t)
(xr(t))H} = ar

o(a
r
o)

Hσ2, so that this interference model has rank one. This can
also be seen directly from the equation Rr = ArBr(Ar)H , where Rr for fully
correlated signals with covariance σ2, can be written as Br = σ211H . The
covariance Rr can then be written as Rr = σ2(Ar1)(Ar1)H , which is a multi-
plication of two vectors, and thus has rank one.

Partially correlated interferers
Suppose that there is only one interferer with two multipaths : y(t − τ1)

and y(t − τ2). The two paths correspond to array signature vectors ar
1 and ar

2

respectively, and the array output vector is given by

xr(t) = ar
1y(t − τ1) + ar

2y(t − τ2) (2.71)

The covariance of xr(t) is defined by Rr = E{xr(t)(xr(t))H}, let σ2
ij ≡ E{y(t−

τi)y(t − τj)}, and define Br =

[
σ2

11 σ2
12

σ2
21 σ2

22

]
, then:

Rr = [a1 a2]

[
σ2

11 σ2
12

σ2
21 σ2

22

] [
aH

1

aH
2

]
(2.72)

In this case, for partial correlation, i.e. σ2
11 = σ2

22 = 1, |σ12|2 = |σ21|2 < 1 the
rank of Rr is two. In general:

rank(Rr) = min(p, rank(Br)) (2.73)

This formula leads to table 2.1, in which an overview is given of the rank of qs

interferers, each with Mk multipaths and varying degrees of correlation. The
second and third rows in the table correspond to a situation where the propa-
gation delay differences are larger than the narrowband criterium requires. If
the channel bandwidth is reduced in a system, then the rank of Rr reduces and
the system rank tends towards the situation in the first row of the table. See
chapter 3 for further details on the narrowband assumption.

2.5.2 Intermodulation product model

When linear devices, such as low-noise amplifiers in the first stages of radio
astronomical receivers, are exposed to very high input signals, these devices
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Multipath correlation rank(Rr)

All paths full correlation, no cor-
relation between different trans-
mitters

rank(Rr) = min(p, qr)

All paths partial (arbitrary) cor-
relations, no correlation between
different transmitters

rank(Rr) = min(p,
∑qr

k=1 Mk)

No correlation between paths or
transmitters

rank(Rr) = min(p,
∑qr

k=1 Mk)

Table 2.1. Rank of Rr for different degrees of multipath correlation, for
k = 1 · · · qr interferers, each with Mk multipaths .

usually show nonlinear behaviour. In some cases this is advantageous, for ex-
ample for mixer devices [124], where a strong constant reference signal (local
oscillator signal) is added to the receiving signal. The nonlinearity generates
higher harmonics both for the received signal and for the local oscillator signal.
Systems are usually designed such that the frequency difference between the
local oscillator signal and the received signal fall within the pass-band of the
system, usually at lower frequencies. The original signals and harmonics, and
all other sum and difference frequencies (intermodulation products) are filtered
out.

In some cases, interference which may initially fall outside the band of in-
terest may be so strong that it generates nonlinearities in the receiving system.
The resulting frequency of the sum or difference of the harmonics of two or more
interferers may fold into the pass-band of the system, thereby causing in-band
interference. The unwanted interference caused by this nonlinear effect is called
an intermodulation product. Now the question is, what data model is suitable
for such an interferer, and what properties the resulting interferer has. The
effect of the higher-order intermodulation terms on the array response matrix
is especially interesting.

Consider two interferers impinging on a telescope i with sky frequencies
ν1 and ν2, and narrowband real signals m1(t) and m2(t) which are spectrally
centred at the sky frequencies. As will be described in the section on narrow-
band assumptions in chapter 3, the geometric time-shift of the signal envelope
m1i(t − τ1i) and m2i(t − τ2i) can be represented as a geometric phase shift of
the interfering signal, assuming that the narrowband condition holds. At ra-
dio frequencies therefore, the real signal xi(t) which enters the first low-noise
amplifier (LNA ) of telescope i can be described as

xi(t) = m1i(t) cos(2πν1(t − τ1i)) + m2i(t) cos(2πν1(t − τ2i)) (2.74)
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Figure 2.8. Spectrum showing two strong transmitters with angular fre-
quencies ω1 and ω2. If these transmitters drive an amplifier into nonlinear
operation, then higher order harmonics and difference and summing frequen-
cies (intermodulation products) are generated. The figure shows some of the
corresponding occupied frequency bands.

The terms 2πν1τ1i and 2πν2τ2i can also be written as phase offsets φ1i and
φ2i respectively. Now suppose that the interferers are strong enough to drive
the LNA into nonlinear behaviour. Then the output signal yi(t) of the LNA of
the ith telescope can be described as a power series of the input signal, with
(unknown) coefficients:

yi(t) =

N∑

k=0

ckxi(t)
k (2.75)

Using the binomial theorem and an expansion for cosn(.) the formula for yi(t)
can be expanded. In this expansion there are higher order factors of m1i(t) and
ml

2i, and harmonics of the two impinging signals. This expansion is straight-
forward but tedious, and is omitted here. Of all the (real) generated intermod-
ulation products only those which fall within the band of interest are selected.
Assume that there is only one such product, with orders n1 and n2, then yi(t)
can be written as:

yi(t) = αi cos((2πn1ν1 ± 2πn2ν2)t + (n1φ1i ± n2φ2i))m
′(t) (2.76)

where m′(t) is the higher order signal envelope product of the two interfer-
ers (non-Gaussian), and αi is an (unknown) real scaling or gain factor. This
formula was explicitly derived in [17] for a second order product. In order to
obtain this expression for the entire array the following vectors are formed: y =
(y1, · · · , yp)

t, α = (α1, · · · , αp)
t, φ1 = (φ11, · · · , φ1p)t, and φ2 = (φ21, · · · , φ2p)t.

The array signal vector of the intermodulation product is

y(t) = α ⊙ cos[ (2πn1ν1 ± 2πn2ν2) t1 + (n1φ1 ± n2φ2) ]m′(t) (2.77)

From this expression it is clear that the rank of R = E{y(t)y(t)H} is one. On
the basis of this model, and verified experimentally using LOFAR data, in [17]
it was shown that the second order intermodulation product of point sources
in a sky map remain point sources. After downconversion, the array response
vector takes the form

ar = γ ⊙ e(n1φ1±n2φ2) (2.78)
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where γ is a scaling vector, and the phase delays φj are related to the RFI source
direction and array geometry by φj = 2πλ−1Rsj (as before). It is obvious (cf.
the next chapter) that the earth rotation-related fringe frequency for the inter-
modulation product scales with the orders n1 and n2. This, together with the
fact that the rank of the covariance matrix is one, means that intermodulation
products behave as ordinary sources and can be filtered with the same methods
as single in-band interferers, at least when the transmitters are spatial point
sources, and stationary for the duration of the processing interval. If there are
more than two interferers and/or products, the rank of the covariance matrix
in general will increase.

2.6 Phased array covariance model

In this section, expressions will be derived for the covariance matrices of out-
puts of phased array systems. The results will be used in the chapter on spatial
filtering using a phased-array reference antenna. The model described in this
section will be made more general: every telescope will be considered a phased
array with mi phased-array antennas, where mi = 1 for each of the WSRT tele-
scopes. This extended model will describe the (non-polarised) next-generation
telescope LOFAR , and the model will be used in the chapter on implications
for next generation telescopes.

Figure 2.9. Telescope system with p telescopes, each based on subarrays
consisting of mi antenna elements. The number of antenna elements mi in
each subarray i may be different.

Subarray model.
Figure 2.9 schematically shows p telescopes, where each telescope is a sub-

array composed of mi antennas, and where i is the telescope index number.
Assume that the narrowband assumption holds, and that the complex signals
impinging on a subarray i are multiplied by the complex adjustable weights
wij , where j denotes the subarray antenna index. The adjustable weight vector

wi is defined by wi = [wi1, · · · , wim]
t
. Let sk be the kth impinging source,
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and define s = [s1, · · · sq]
t
. Further let rij be the location of antenna ij, then

the geometric delay-phase factor aijk for the kth source is defined as before:

aijk = e−2πλ−1rt
ijsk . Let the subarray vector ai for q sources be defined by

a1 = [ai1, · · · , aim]
t
, and define the subarray array response matrix Ai by

Ai = [ai1, · · · ,aiq]
t. Furthermore, also stack the subarray antenna noise powers

nij in a vector: ni = [ni1, · · · , nim]t. Finally, define the subarray output vector

yi by yi = [yi1, · · · , yim]
t
, which can also be written as yi = diag(wi)Ais + ni.

The phased array summed output xi can be written as xi = 1t
mi

yi. Using
1t

mi
diag(wi) = wt

i , this is equal to:

xi = wt
iAis + 1t

mi
ni (2.79)

Correlation of subarrays.
The summed subarray signals defined above can be correlated with each

other. Define the array output signal vector x by x = (x1, · · ·xp)
t as before.

The overall array response matrix A and noise vector n are defined by respec-
tively A = ((wt

1A1)
t, · · · (wt

pAp)
t)t and n = (1t

m1
n1, · · ·1t

mp
np)

t. Using these
definitions, the output vector x can be expressed by

x = As + n (2.80)

Let G be the matrix describing the electronic gains gi after the subarray sum-
mation: G = diag [(g1, · · · , gp)

t]. Define the source coherency matrix by Bs =
E{ssH}, and define the noise matrix D by D = E{nnH}, then the subarray’s
output covariance matrix R = GE{xxH}GH can be written as

R = GABsA
HGH + GDGH (2.81)

The elements Dij of the noise matrix D are given by Dij = 1t
mi

E{nin
H
j }1mj

.
This means that if the system noise powers among the subarrays are not corre-
lated, the matrix D is diagonal: D = diag(D11, · · · , Dpp).

2.7 Concluding remarks

In this chapter compact, consistent, discrete source algebraic models have been
presented. The models are narrow-band representations for array output vectors
and covariance matrices, applied to (polarised or scalar) astronomical sources
and man-made radio interference.

The models are limited to radio interferometry; an interesting future ex-
tension would be to include the correlation of telescopes which are composed
of phased arrays with beamforming capabilities. Another interesting extension
would be to model focal plane arrays, which are beamforming arrays at the focus
of parabolic dishes. A minor extension of the model is the addition of a small
reference antenna; this will be described in the chapter on spatial filtering.
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Both astronomical sources and interferer sources have been assumed to be
at least quasi-stationary. The astronomical sources have been assumed to be
mutually uncorrelated. In some limited cases, the astronomical sources may
be correlated, and therefore the model should be adapted for those cases. The
coherent RFI model (RFI model with fully correlated multipath) could be used
as a starting point.

The models presented are narrow-band, but for the new generation of radio
telescopes a broad-band approach could be fruitful as well. Broad-band mod-
elling and broadband RFI mitigation are more complicated than narrowband
work, but will be worthwhile.





Chapter 3

Data analysis

The topic of this chapter is the data analysis of experimental data. The chapter
will start with an overview of assumptions on which the models described in
chapter 2 are based. It will be followed by a description of the data acquisition
and subsequent data processing steps, starting from the reception of radio waves
at the antenna elements to digitisation of the telescope baseband signals up to
the creation of covariance matrices. In the section after that, a short description
will be given of the covariance matrix subspace estimation techniques used in
this thesis. These techniques will be described in some detail as they will be used
in chapters 5, 6 and 7 for interference mitigation. The chapter concludes with
a description of the influence of the bandwidth and of the spatial extendedness
of a source on the covariance matrix subspace structure. As this structure is
used explicitly for interference mitigation, the influence of deviations from the
narrow-band criterion and from the point-source assumption on the subspace
structure needs to estimated.

3.1 Experimental considerations

3.1.1 Assumptions

Statistical independence and stationarity
Although some cosmic source signals are non-stationary, such as pulsars,

Jovian radio emissions or supernovae, most cosmic signals are stationary due to
the underlying stochastic physical processes. The analysis in this thesis will be
limited to the class of signals which are stationary for the duration of an astro-
nomical observation. It is assumed that the cosmic source signals are temporally
independent and identically distributed (i.d.d.) Gaussian random wide-band
signals, which may contain narrow-band or wide-band emission and absorption
lines. The cosmic source signals are also assumed to be mutually independent
(temporally and spatially white). The processes are also assumed to be ergodic,
so that ensemble parameters can be estimated by their corresponding time av-

47
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erages [112]. For interfering signals quasi stationarity is assumed, which means
that the signal statistical parameters may vary over long time intervals, whereas
over short observation intervals (usually of order 10 ms) the statistical param-
eters are constant.

Narrowband condition
Cosmic signals usually span the entire spectral band under consideration or

at least several frequency bins in the case of spectral line studies. For convenient
modelling it is assumed that the narrowband condition holds and that both the
cosmic source signals and the interference signals can be described as a sum
of narrowband or quasi-monochromatic signals. Several narrowband conditions
can be defined, of which two are used throughout this thesis. The first condition
states that the source signals are band-limited (either by their nature or by
sub-band filtering) to a frequency range ∆ν centred at a frequency νc, with
the property ∆ν ≪ νc [116]. In such a case, a complex signal y(t) can be
described as a product of a complex band-limited baseband signal m(t) and a
monochromatic signal e2πνct with frequency νc :

y(t) = m(t)e2πνct (3.1)

The signal m(t) is also known as the complex envelope of the real-valued band-
pass signal z(t) = Re(y(t)). The second narrowband assumption [167] [68] is an
extension of the first, and it is said to hold when the propagation delay differ-
ences τij = τi − τj between the array elements i and j are small relative to the
inverse bandwidth ∆ν−1of the signal y(t):

∆ν ≪ (2πτij)
−1 (3.2)

When this inequality holds, time delays across the telescope array can be ap-
proximated by phase shifts of the baseband signal, as will be explained next.

The signal z(t) = Re{m(t)e2πνct} as was defined above can also be written
as

z(t) = Re{m(t)} cos(2πνct) − Im{m(t)} sin(2πνct) (3.3)

The real and imaginary parts of m(t) are called the in-phase and quadrature
components of z(t) and are obtained in practical systems by multiplying the
received signals with cos(2πνct) and sin(2πνct) followed by low-pass filtering.
Now suppose that the bandpass signal z(t) is delayed in time by an amount τ .
This can be written as

z(t − τ) = Re{m(t − τ)e−2πνcτe2πνct} (3.4)

which implies that the complex envelope mτ (t) of the delayed signal z(t− τ) is
mτ (t) = m(t − τ)e−2πνcτ . Let M(ν) be the Fourier transform of the complex
envelope m(t), and let ∆ν be the bandwidth of the complex envelope. The
complex envelope signals can then be expressed as inverse Fourier transforms,
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using the time-shift theorem for the time-delayed version

m(t) =

∫ 1
2∆ν

− 1
2∆ν

M(ν)e2πνtdν (3.5)

m(t − τ) =

∫ 1
2∆ν

− 1
2∆ν

M(ν)e−2πντe2πνtdν (3.6)

If condition (3.2) is satisfied then both integrals are approximately the same
and m(t) ≈ m(t − τ), hence

mτ (t) ≈ m(t)e−2πνcτ (3.7)

which means that if the narrowband condition holds, a time delay of the band-
pass signal z(t) can be represented by a phase shift e2πνct. Note that this
criterion is independent of frequency.

Suppose that the telescope gains A are the same for all telescopes and assume
further that the telescope signal delay offsets τi are determined by a source in
direction sℓ and a telescope array geometry matrix R (cf. equation (2.19).
Then stacking all telescope signals yi(t) in a vector y(t) = [y1(t), · · · , yp(t)]

t,
and realising that c[τ1, · · · , τp]

t = Rsℓ yields

y(t) = Ae−2πνcc−1Rsℓ m(t) e2πνct (3.8)

This equation shows how the sky-signal time delays are converted to complex
phase offsets for narrowband time signals. The first and second factor in this
equation are consistent with the definitions in equation (2.20).

As an example the narrow-band condition for the WSRT at 21 cm wave-
length is estimated. The WSRT has a maximum baseline length bmax of 3 km,
and therefore has a maximum geometric time delay of τ = bmax/c = 10 µs,
where c is the speed of light. This corresponds to the narrow-band condition
∆ν ≪ 16 kHz.

Near-field and far-field assumptions
It is assumed that the individual-telescope far-field condition for astronom-

ical sources holds [87, 124]. This means that the sources are at a distance at
which an increase in the source distance does not lead to a change in the (ap-
parent) telescope beam shape. In other words, the emitted spherical wavefronts
at the telescope antenna can be considered flat: the relative phases at different
locations within the antenna aperture should be much less than 2π. Let Drt

be the telescope aperture diameter, r be the distance between telescope and
source, and let λ be the signal wavelength, then the telescope far field criterion
is given by [124]:

r >
2D2

rt

λ
(3.9)

For example, a cosmic source emitting at 1 GHz and entering via the telescope
mainbeam can be considered in the far field of a single WSRT telescope dish
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(diameter 25 m) at a distance d > 4 km. This condition is valid and useful only
for the cosmic sources. Interferers are different in the sense that they mostly
enter the telescope via the sidelobes, not the main beam. In that case, the signal
will reach the antenna via a sidelobe of the antenna element itself and possibly
via multiple reflections at the dish. The signals will not arrive within 2π phase
differences whatever the distance.

An additional aperture array far-field requirement for emitting sources is
that the spherical wave fronts impinging on an aperture array have curvatures
corresponding to phase differences much less than 2π over the array. Let Dap

be the diameter of the aperture array, then straightforward geometry leads to
the aperture array far-field condition:

r ≫ D2
ap

λ
(3.10)

The far field condition for the WSRT array at 1 GHz for example is r ≫ 30 000
km, a distance close to the geostationary orbits. Interference sources for the
WSRT will in most cases be in the near-field of the aperture array. For the
LOFAR ITS test station however, with its 200 m diameter and at a frequency
of 30 MHz, the array far-field condition is reached when r ≫ 4 km. This means
that for the WSRT in most cases the array response vector in (2.38) must be
used, and that in most cases both response vector representations (2.20) and
(2.38) can be used for LOFAR ITS. The later assumes that the interferers are
at distances r ≫ 4 km.

Aperture plane sampling

In the modelling to be presented, the aperture array is in principle assumed
to be a three-dimensional, non-coplanar array with an arbitrary configuration.
Often the dimension is removed in the direction of the astronomical sources to
be observed by compensating for the geometric path delay differences between
telescopes. This can be done by modelling time delays as phase shifts if the nar-
rowband condition holds, as is done in this thesis. Alternatively the path delays
can be corrected by applying time delays, or by a combination of time delays and
phase corrections, as is done, for example, in the WSRT telescope systems [117].
It is important to note that, although the WSRT is an East-West array and is
used in this thesis for testing the RFI mitigation algorithms, the general mod-
els to be presented do not assume the telescope array to be a spatial linear array.

Mutual coupling and multipath effects

Methods exist to incorporate mutual coupling effects [56,103,143] in (phased)
array signal processing models. In most radio telescope systems based on large
parabolic dishes, however, there is no significant antenna coupling between tele-
scopes because the relative telescope distances ri − rj are large (|ri − rj | ≫ λ),
and the telescope antenna sidelobe levels are low, usually at levels close to those
of an isotropic radiator [87,108,126].
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In this thesis it is assumed that there are no multipaths for astronomical
sources, or that they are at a level where they cannot be detected. In a worst-
case situation of a flat and perfectly conductive ground plane under a telescope,
the sky sources would be reflected in this “mirror”. The reflected astronomical
signals would enter the telescope via the sidelobes , and would be attenuated
with respect to the main beam with the antenna gain: G = 4π

λ2 Aeff , where
Aeff is the effective telescope receiving area. For a 25-m diameter WSRT dish
at 21 cm wavelengths this yields approximately G = 50 dB. In practice the
ground plane is not flat, nor perfectly conductive, and the multipath phase
changes erratically due to the telescope rotations, leading to an additional large
attenuation factor. The astronomical multipath can therefore be neglected.

For interferers there may be multipaths, but the models to be presented can
take this into account; see, for instance, section 2.5.

Field of view
In principle, the aperture synthesis is a wide field-of-view technique. Both

the continuous and discrete source and interferer models are wide field-of-view
models, up to (at least) 2π Sr solid angle. However, in signal and image pro-
cessing, there may be limiting assumptions. In the Fourier imaging method,
for example, an approximation is often used to simplify the calculations [124],
which limits the imaging to a narrow field of view.

3.1.2 Obtaining spatial coherence data

Figure 3.1. Schematic overview of the data processing steps in obtaining
coherency data at the WSRT for interference mitigation tests.

Before describing the experimental set-ups used at the WSRT for obtaining
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experimental data in the next chapter, this section will describe the way in which
coherency data were obtained at the WSRT. It will also describe how telescope
delay offset affects the array response vectors. Figure 3.1 shows a schematic
picture of the data processing steps which were used to obtain coherency data
at the WSRT for interference mitigation tests. The WSRT telescopes receive
astronomical radio signals at high RF (sky) frequencies (110 MHz - 8.6 GHz),
which are down-converted to baseband (0-10 MHz). Each of the telescope signals
xi(t) is digitised, and after narrow-band filtering, the telescope signals of each
of the narrow-band frequency channels xi(t) are stacked in a vector

x(t) =




x1(t)
...

xp(t)


 (3.11)

were p is the number of telescopes. For each frequency channel all telescopes are
cross-correlated and averaged, yielding a p× p correlation or covariance matrix
R̂10ms.

R(t) = E{x(t)x(t)H} (3.12)

R̂10ms(t) =
1

N

N−1∑

k=0

x(t + kT )x(t + kT )H (3.13)

The true covariance matrix is R(t), its estimate at NT = 10 ms scales is given

by R̂. At this time scale the interferers are assumed to be stationary. The
astronomical sources are assumed to be stationary throughout the entire ob-
servation (which may take several hours). After this correlation and averaging
stage, there is an optional interference filtering stage. It is followed by a sec-
ond integrator, averaging the (filtered) covariance matrices further to 0.5-10 s.
These 10 s covariance matrix elements correspond to sampling points in the
synthesised aperture plane; they contain the desired coherencies , which can be
used for imaging. Usually radio astronomical observations take several hours,
thus increasing the number of 10 s aperture samples, which leads to an increase
in the signal-to-noise ratio in the sky map. Due to earth rotation this also leads
to a denser sampling of the synthesised aperture plane. The interferers may or
may not be stationary at 10 s scales. A correlator scheme in which a subband
filtering stage is applied before correlation is called FX correlation. An alterna-
tive scenario would be correlation at several time lags before subband filtering
(Fourier transform), and is known as XF correlation. The WSRT correlator , for
example, is of the XF type. Actual receiving systems and correlators contain
many signal processing details which are not discussed here; a more detailed
description can be found, for example, in [113, 146, 124, 117, 87]. However, one
of the details which is relevant for this thesis is fringe rotation or natural fringe
which is explained next.
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Figure 3.2. Signal down-conversion after applying geometric delay compen-
sation (left) and before applying delay compensation(right).

Geometric delay compensation and natural fringe
Let the received signal of telescope i at sky frequency νc be given by yi(t)

and the signal of telescope j by yj(t). Assume that the signal from an astro-
nomical source at telescope j has a geometric delay offset τg. This delay needs
to be compensated for in order to avoid signal decorrelation for bandwidths not
satisfying the narrowband condition: the WSRT standard operational mode
includes geometric delay compensation. This situation is drawn in figure 3.2,
where two different scenarios are depicted for geometric delay compensation. In
one scenario (left figure) the delay compensation with τd is applied before the
frequency down-conversion stage, and in the second scenario (right) the com-
pensation is applied after the down-conversion stage (right). For both scenarios
the signals at the antenna outputs yi(t) and yj(t) of telescopes i and j can be
written as

yi(t) = A(so)m(t)e2πνct (3.14)

yj(t) = A(so)m(t − τg)e
2πνc(t−τg) (3.15)

where τg is the geometric time delay difference between telescopes i and j, and
where A(so) is the telescope gain in the source direction so. Let the down-
conversion process be represented by multiplication with e−2πνot, where νo is
the local oscillator frequency of the mixer [124]: xi(t) = yi(t)e

−2πνot, where
xi(t) is the baseband signal. If the geometric delay compensation τd = τg of
telescope i is applied before the first down-conversion stage, then it is easily
seen that

Rij = E{xi(t)xj(t)} = |A(so)|2E{m(t)m(t)} (3.16)

However, in most cases the delay is applied after (several) mixer stages. If the
signal is down-converted after one mixer stage with local oscillator frequency
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νo, then the output signals are equal to

xi(t) = A(so)m(t − τd) e2π(νc−νo)t e−2π(νc−νo)τd (3.17)

xj(t) = A(so)m(t − τg) e2π(νc−νo)t e−2πνcτg (3.18)

and the covariance matrix elements Rij(t) for τd = τg is given by

Rij(t) = |A(so)|2E{m(t)m(t)} e2πνoτd (3.19)

The slowly varying phase 2πνoτd is an instrumental effect and is called the
natural fringe. In radio telescopes, this effect is usually cancelled by applying a
signal with opposite sign (phase) to the local oscillator signal. In order to derive
a fringe-array vector, the delayed time signal for telescope i can be expressed
more generally. Let the ith telescope output signal for an astronomical source
be denoted by xi(t) and for an interferer by xr

i (t). Further let the interferer
baseband (envelope) signal be denoted by mr(t), and the interferer geometric
time delay by τ r

gi
. Straightforwardly applying the delay and down-conversion

steps to the time signals yields, for the ith telescope:

xi(t) = A(so)m(t − (τdi
+ τgi

)) e2π(νc−νo)t e−2π(νc(τdi
+τgi

)−νoτdi
)

xr
i (t) = mr(t − (τdi

+ τgr
i
)) e2π(νc−νo)t e

−2π(νc(τdi
+τgr

i
)−νoτdi

)
(3.20)

The sidelobe gain Arfor the interfering signal can be absorbed in mr(t) without
loss of generality. It is further assumed that the narrow-band condition holds,
which means (cf. section 3.1.1) that m(t − (τdi

+ τgi
)) = m(t) ∀i and that

m(t − (τdr
i

+ τgi
)) = m(t) ∀i. It is also assumed that νo = νc. In order to

compensate for the geometric delays τgi
for all telescopes, τdi

is chosen such
that τdi

+ τgi
is constant, or τ0 = τdi

+ τgi
∀i. This leads to the simplified

expressions

xi(t) = A(so)m(t) e−2πνo((τo−τdi
))

xr
i (t) = mr(t) e−2πνo((τo−τdi

)+(τr
gi

−τgi
)) (3.21)

The geometric delays τgi
for a source so can be expressed in terms of Rso

by: [τg1
, · · · , τgp

]t = Rsoc
−1. Now stack the signals xi(t) and xr

i (t) in the
vectors: x(t) = [x1(t), · · · , xp(t)]

t and xr(t) = [xr
1(t), · · · , xr

p(t)]
t, and define

x(t) = a(so)m(t) and xr(t) = ar(so)m
r(t). Further let the natural fringe vector

af (so) and the interferer fringe vector afr(so) be defined by

af (so) =




e2πνoτd1

...
e2πνoτdp


 , afr(so) =




e−2πνo(τr
g1

−τg1
)

...

e
−2πνo(τr

gp
−τgp )


 (3.22)

Then the array response vector a(so) corresponding to the direction so being
“tracked”, and the resulting interferer response vector ar(so) can be written as

a(so) = A(so) e−2πνoτ01 ⊙ af (so) (3.23)

ar(so) = γ ⊙φ ⊙ e−2πνoτ01 ⊙ afr ⊙ af (so) (3.24)
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Fringe compensation is obtained by (element-wise) multiplying both expressions

with af (so). This “stops” the astronomical fringe af (so) in (3.23)and (3.24), as

af (so)af (so) = 1 but not the “interferer” fringe afr in (3.24). Note that for a
source in the direction sℓ, with “fringe-stopping” carried out at the field-of-view
centre so, equation (3.23) takes the form

a(sℓ) = A(sℓ) e2πνoc−1R(sℓ−so) ⊙ e−2πνcτ01 (3.25)

To illustrate the different signal processing steps involved in the process
of measuring coherencies and to illustrate the different time scales at which
they operate, the signal waveforms of observed television stereo sound carrier
waves (TV Lingen, channel 59) superimposed onto the signal of the astronomi-
cal source 3C48 are given in figure 3.3. The observed astronomical source power
is 13 dB lower than the system noise and the observed sound carrier power is
about 15 dB higher than the system noise, which means that the sound carriers
are dominant. Clearly visible is the beating of the two sound carrier waves.
Figure (a) shows what the electric field of the signal impinging on the telescope
would look like. Figure (b) shows the time behaviour of the down-converted and
digitised signal, as observed with one of the WSRT telescopes. Comparison of
figure (a) and (b) shows that down-conversion reduces the signal processing load
by a factor 1000. 1 After baseband conversion and digitisation, the next step is
Fourier transforming the data. Figures (c1) and (c2) show the resulting signal
power and signal phase of one telescope for a single-frequency bin centred at one
of the two sound carriers. The observed signal power in figure (c1) is roughly
constant, which is to be expected as most of the modulated signal power of the
audio signal falls within the 78 kHz band. The signal phase changes rapidly, as is
also expected. The next signal processing step is to cross-correlate the telescope
signals. Figures (d1) and (d2) show the magnitude and phase for eight inter-
ferometer pairs: one autocorrelation (baseline 0m) and seven cross-correlations
with baselines up to 1008 m. The fast phase-drift in figure (c2) disappears be-
cause an interferometer measures relative phases between telescopes, not the
absolute phase of the impinging wave. The phase slopes as a function of time
in figure (d2) are caused by the instrumental phase correction (primary fringe
correction) which was described in the previous sections. The dashed lines show
the expected baseline-dependent phase slopes. The fluctuation of observed sig-
nal power and phase are caused by several effects, such as non-stationarity of
the sound carriers and multipath effects. The correlation signals in figures (d1)
and (d2) are the observed coherencies , which are used in the imaging process.

1The signal in (a) is not actually measured; it is the up-converted (frequency shifted)
version of the received signal in (b).
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Figure 3.3. Signal waveforms of the stereo sound carrier waves of the televi-
sion transmitter TV Lingen (channel 59) present in observations of the astro-
nomical source 3C48 (telescope pointing at HA=57o, δ = 33o) as observed with
the WSRT at different stages in the signal processing chain. More information
is given in section 3.1.2.

3.2 Subspace analysis

The RFI mitigation algorithms described in this thesis are based on the struc-
ture of telescope output covariance matrices. The noise, astronomical signal
properties, and interferer characteristics each create different structures in the
covariance matrices. This difference in structure can be used for separation (and
mitigation) of the interfering signals. The following two subsections briefly de-
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scribe two linear algebra approaches to characterise the eigen-structure of the
covariance matrices: eigenvalue decomposition and factor analysis decompo-
sition. The subsequent subsection describes the estimation variance of some
of the eigen-structure parameters. Finally, an eigenvalue decomposition is de-
scribed for a noiseless rank two model, which is subsequently used to estimate
the effect of bandwidth and extendedness of sources on the covariance matrix
eigen-structure. The influence of bandwidth and source extendedness on the
eigen-structure is relevant as the effect of interference mitigation depends on it,
as will be explained in chapters 5-7.

3.2.1 Eigenvalue decomposition

In this section a brief introduction is given of the subspace estimation by using
eigenvalue decomposition; a more detailed analysis can be found for example
in [88,54]. The model under consideration is (2.40)

R = G(ABAH + ArBrA
H
r )GH + D (3.26)

in which the diagonal matrix B contains the astronomical signal powers σ2
i and

the matrix Br the interferer signal powers σ2
ri:

B = diag([σ2
1 , · · · , σ2

qs
])t

Br = diag([σ2
r1, · · · , σ2

rqr
])t (3.27)

The size of B is qs×qs assuming qs distinct sources, and the size of Br is qr ×qr

assuming qr interferers. The size of R and D is p×p as there are p telescopes; the
sizes of the array response matrices A and Ar are p× q and p× qr respectively.
Now write the model (3.26) in terms of astronomical source covariance Rs =
GABAHGH , and interferer covariance Rr = GrArBrA

H
r GH

r :

R = Rs + Rr + D (3.28)

The matrix D is a full-rank matrix, and as a consequence R is too, even in
the absence of astronomical and interferers. In order to analyse the subspace
structure due to the astronomical sources and interferers, the model without
noise is considered first. The matrix Rs + Rr is also full rank as the number of
astronomical sources is much larger than the array dimension qs ≫ p. If there
are qr interferers with received signal powers much larger than the astronomical
source signals, σ2

ri ≫ σ2
j ∀(i, j), then the astronomical source contribution may

be neglected. Assume for the moment that the complex gains G are identity,
G = I, or that they are calibrated and “absorbed” in A and Ar. This simplifies
the model in (3.26) to

R = ArBrA
H
r (3.29)

The rank of R is min(p, qr), and the number of narrowband and mutually uncor-
related interferers qr can be estimated by means of an eigenvalue decomposition,
assuming qr < p. Let

R = UΛUH (3.30)
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be an eigenvalue decomposition of R, where the p×p unitary matrix U (UUH =
UHU = I) contains the eigenvectors ui, U = [u1, · · · ,up], and the diagonal ma-
trix Λ contains the corresponding eigenvalues λi, Λ = diag([λ1, · · · , λp]

t). The
eigenvalues are sorted in decreasing order: λ1 ≥ λ2 ≥, · · · , λp ≥ 0. As the rank
of R is qr there are qr nonzero eigenvalues and p − qr zero eigenvalues. The
nonzero eigenvalues are stacked in a diagonal matrix Λr, and the corresponding
eigenvectors in a tall p×qr signal subspace matrix Ur. The remaining eigenvec-
tors are stacked in a p× (p− qr) “noise” subspace matrix Un. As U = [UrUn]
is unitary, the two subspaces are orthogonal, UH

r Un = 0. In the noise-free case
the model can be expressed in terms of subspaces as

R = [UrUn]

[
Λr 0

0 0

][
UH

r

UH
n

]
= UΛUH (3.31)

where the zero matrices have sizes compatible with the subspace dimensions
defined above.

The next step is to include noise in the model:

R = ArBrA
H
r + D (3.32)

If the noise matrix contains unequal elements on the diagonal, then it distorts
the eigenvalue decomposition solution. For example, the eigenvectors obtained
in the noise-free case differ from the ones obtained in the noisy case unless D

contains identical noise powers. This is explained next.
Let ui be the ith eigenvalue of Rr, then Rr ui = λi ui. The eigenvectors

of Rr are also eigenvectors of the identity matrix, c I ui = cui, where c is an
arbitrary complex constant. Adding the two equations yields:

(Rr + cI)ui = (λi + c)ui = λ′
iui (3.33)

which means that the eigenvectors in the eigenvalue decomposition of Rr are
not changed by adding cI. The eigenvalues are raised with a constant c. In
general this is not the case for adding arbitrary diagonal matrices. If the noise
is i.i.d. distributed and spatially white with covariance matrix σ2

n Ip, then the
covariance matrix R = Rr + σ2

nI can be decomposed as follows:

R = Ar Br Ar + σ2
nIp

= Us Λr UH
r + σ2

n (UrU
H
r + UnUH

n )

= [UrUn]

[
Λr + σ2

nIqr
0

0 σ2
nIp−qr

][
UH

r

UH
n

]

= UΛUH (3.34)

A physical interpretation of the eigenvalue decomposition can be as follows. The
eigenvectors give an orthogonal set of “ directions ” (spatial signatures)2 present

2Here direction is not to be interpreted as the physical direction-of-incidence sr of the
interferer, but rather the abstract direction of a unit-norm vector in the vector space Cp, cf.
definition of ar in (2.20).
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in the covariance matrix, sorted in decreasing order of dominance. The eigen-
values give the power of the signal coming from the corresponding directions,
or the power of the output of a beamformer matched to that direction. Indeed,
let the ith eigenvector be ui then this output power will be

uH
i Rui = λi. (3.35)

The first eigenvector, u1 always points in the direction from which most energy
comes. The second one, u2, points in a direction orthogonal to u1 from which
most of the remaining energy comes, etcetera.

If there is no interference and only noise, then there is no dominant direction,
and all eigenvalues are equal to the noise power. If there is a single interferer
with power σ2

r1 and spatial signature ar1, normalised to ||ar1||2 = p, then the
covariance matrix is R = σ2

r1ar1a
H
r1 + σ2

nI. It follows from the previous that
there is only one eigenvalue larger than σ2

n. The corresponding eigenvector is
u1 = ar1||ar1||−1, and is in the direction of ar1. The power coming from that
direction is

λ1 = uH
1 Ru1 = pσ2

r1 + σ2
n (3.36)

Since there is only one interferer, the power coming from any other direction
orthogonal to u1 is σ2

n, the noise power.
With more than one interferer, this can be generalised. Suppose there are

two interferers with powers σ2
r1 and σ2

r2, and spatial signatures ar1 and ar2.
If the spatial signatures are orthogonal, aH

r1ar2 = 0, then u1 will be in the
direction of the strongest interferer, number 1, say, and λ1 = pσ2

r1 + σ2
n will be

the corresponding power. Similarly, λ2 = pσ2
r2 + σ2

n.
In general, the spatial signatures are not orthogonal to each other. In that

case, u1 will point to a direction that is common to both a1 and a2, and u2 will
point in the remaining direction orthogonal to u1. The power λ1 coming from
direction u1 will be larger than before because it combines power from both
interferers, whereas λ2 will be smaller.

Usually, the diagonal elements of the noise covariance matrix D are not
equal, and also the elements of G are usually not equal. They also may vary
slowly in time. This means that in general U and Λ found from an eigen-
value decomposition of R = UΛUH are not equal to Ur and Λr found from
an eigenvalue decomposition of Rr = UrΛrU

H
r . As the interference mitigation

approaches in this thesis make use of eigenvalue decompositions, it is important
to compensate for these distortions. To handle this subspace data processing
problem, there are several approaches, three of which are listed below. The
model R = G(ABAH +ArBAH

r )GH +D is considered here, and it is assumed
that the astronomical source signal powers are much smaller than the system
noise powers.

1. No corrections for D and G

In this case the model under consideration is R = G(ABAH+ArBAH
r )GH+

D, and the matrix R is always full rank. In case a strong interferer exists with
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σ2
r1 ≫ σ2

ni (∀i) then the largest eigenvalue and eigenvector are close to the “true”
values. For moderate and weak interferers, the eigenvalue and eigenvector esti-
mated will be suboptimal, and approaches such as described below are preferred.

2. Applying corrections for G and D

Assuming that the astronomical source powers are known for the strongest
sources, then in time-frequency regions of observed data where there is no in-
terference, the data itself can be used for gain and noise estimation, yielding Ĝ

and D̂. The corrected model R′ to which the eigenvalue composition will be
applied is

R′ = Ĝ−1(R − D̂)Ĝ−H (3.37)

The noise matrix in R′ takes the form D − D̂ and is approximately zero,
which means that the eigenvalue decomposition of R′ is close to the “true”
one (ABAH + ArBrA

H
r ) if Ĝ is close to G and if D̂ is close to D. A disad-

vantage is that with estimated data, R̂′ may no longer be positive definite.

3. Pre-whitening using an estimate for D

Assuming that the noise matrix D̂ is estimated by a calibration procedure,
then the corrected model R′ to which the eigenvalue composition will be applied
is

R′ = D̂− 1
2 RD̂− 1

2 = D̂− 1
2 G(ABAH +ArBAH

r )GHD̂− 1
2 + D̂− 1

2 DD̂− 1
2 (3.38)

If D̂ is close to D, then D̂− 1
2 DD̂− 1

2 ≈ I. In this approach D̂ is known and the
multiplication with D̂− 1

2 can be reversed in further processing steps, but G is
still unknown and has to be estimated at some later stage.

3.2.2 Factor analysis decomposition

Factor analysis is a statistical technique with origins in psychometrics and bio-
metrics [91, 105]. It considers a collection of data X = [x(1), · · · ,x(N)] with
covariance R = E{XXH} = AAH +D, where R is a p×p hermitian matrix, A

a p × q matrix, and D a diagonal matrix. The objective in factor analysis is to
estimate the factor dimension q, A, and D, given R. The model which factor
analysis considers closely resembles the models in this thesis for astronomical
correlations. Several algorithmic approaches to solve this problem exist [91,105];
in chapter 8 several algorithms for a rank-one problem are analysed in detail.
The factor analysis decomposition can be viewed as an extension of the eigen-
value decomposition. Let UΛUH be the eigenvalue decomposition of AAH ,
with U = [UrUn], then

R = UΛUH + D = [UrUn]

[
Λr 0
0 0

][
UH

r

UH
n

]
+ D (3.39)



3.2. SUBSPACE ANALYSIS 61

Note that a useful factorisation only exists for q ≤ p. Furthermore, an estimate
of A is not unique since A can be replaced by AQ for any unitary matrix Q

without altering the product AAH as AAH = AQQHAH . As a result only
rank(A) = rank(Ur) = q and Λr can be determined uniquely. There are ways
to constrain A to be a unique factor [151], but the resulting factor, although
consistent with the data, probably is not the “true” factor.

3.2.3 Finite sample effect

The (co)variance of the sample array covariance matrix is a crucial mathemat-
ical tool for the analysis and interpretation of interference mitigation methods.
The estimation accuracies of the eigenvectors and eigenvalues are crucial as well,
as subspace analysis is also used throughout this thesis. This section therefore
lists a few useful formulas for these estimation (co)variances.

Covariance of the covariance matrix
Given baseband sample data stacked in a p×N matrix X, with p the number

of telescopes and N the number of samples, then the (p × p) covariance matrix

sample estimate R̂ is defined by

R̂ =
1

N

N∑

n=1

XXH (3.40)

The sample data are considered Gaussian zero mean random variables, with
E{R̂} = R having a central complex Wishart distribution [89,33]. In appendix

C, the variance var(R̂) = E{(R̂ − R) ⊙ (R̂ − R)} and covariance cov(R̂) =

E{(vec(R̂)− vec(R))(vec(R̂)− vec(R))H} of the array covariance matrix R̂ are

derived, together with the weighted versions R̂w = WR̂W where W is derived
from R̂ or is known from a-priori knowledge of the model R.

cov(R̂) =
1

N
R ⊗ R (3.41)

var(R̂) =
1

N
vecdiag(R)(vecdiag(R))t (3.42)

cov(R̂w) = (W ⊗ W)cov(R̂)(W ⊗ W) (3.43)

var(R̂w) = W2var(R̂)W2 (3.44)

The dimension of cov(R̂) and cov(R̂w) is p2 × p2, the dimension of var(R̂) and

var(R̂w) is p × p. The (co)variance of R̂w above is exact for W fixed, but it is

only approximately true if W is derived from R̂.

Eigenvector covariance
Consider the eigenvalue decomposition R = UΛUH , where the eigenvector

matrix U = [u1, · · · ,up] contains the eigenvectors ui(i = 1 · · · , p), and the
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eigenvalue matrix Λ contains the corresponding eigenvalues λi: Λ = diag(λ1,
· · · , λp). Let Ψi = Λ − λiI, then the covariance of the eigenvector ui is given
by [141,105]:

cov(ûi) =
1

N
λiUΨ

†
iΛΨ

†
iU

H =
1

N

∑

j �=i

λiλj

(λj − λi)2
uju

H
j (3.45)

var(ûi) = vecdiag(cov(ûi)) (3.46)

This equation is valid for eigenvectors of R̂ corresponding to a Gaussian model
and corresponding to unequal eigenvalues.

Eigenvalue variance
Consider the variance var(R̂) for the model given in (2.40), which is simpli-

fied by assuming that there are no interferers and that the astronomical sources
are so weak they can be ignored. This leads to the noise-dominated model
R = D, with var(R̂) = var(D̂) = 1

N vecdiag(D)vecdiag(D)t = 1
N D2. Recall

that D is diagonal, with eigenvalue decomposition D = IΛIH , which leads in
the interferer-free and weak astronomical sources case to:

var(Λ̂) =
1

N
Λ2 (3.47)

This formula is also valid in a more general case with arbitrary positive entries
on the diagonal of D, as is shown in [33].

3.2.4 Eigenvalue estimates and exact solutions

For the use in interference mitigation filters or for the evaluation and analysis
of such filters it is sometimes convenient to have estimates of eigenvalues of the
covariance model. The eigenvalues can be easily estimated by computer simula-
tion in case all noise and signal contributions are known (system noise, interferer
and astronomical signals) and assuming a calibrated telescope. However, sim-
ple closed-form expressions exist for the approximate values of the largest and
smallest eigenvalue, if the system is fully dominated by system noise. These
expressions are listed below, followed by a closed-form eigenvalue solution for a
two-source model with i.i.d. noise.

Eigenvalue extremes for systems with noise
Consider a data model based on N baseband data samples in which there is

only system noise with equal system power for each of the p telescopes, R = σ2I.
For this model, the maximum and minimum eigenvalues γmax and γmin of R̂

are approximately given by [42]:

λmax ≈ σ2

(
1 +

√
p

N

)2

(3.48)
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λmin ≈ σ2

(
1 −

√
p

N

)2

(3.49)

The eigenvalues λmax and λmin converge to the limits given above for N → ∞.
These expressions are useful, for example, to determine thresholds for a decision
to apply an RFI mitigation algorithm. It was used, for example, for determining
the detector threshold in interference excision.

Eigenvalues for a two sources model with noise
Consider a sensor array model consisting of two point sources with baseband

signals s1(t) and s2(t) at (normalised) directions a1 and a2. Assume that the
additive system noise n(t) is i.d.d. with E{n(t)n(t)H} = σ2

nI:

x(t) = a1s1(t) + a2s2(t) + σ2
nI (3.50)

Define the source power variances by σ2
1 = E{s1(t)s1(t)} and σ2

2 = E{s2(t)s2(t)},
and define the inter signal correlation by ρ12 = E{s1(t) s2(t)} and ρ21 =
E{s2(t)s1(t)}. Using these definitions the covariance matrix R = E{xxH} of
this system is given by

R = σ2
1a1a

H
1 + σ2

2a2a
H
2 + ρ12a1a

H
2 + ρ21a2a

H
1 + σ2

nI (3.51)

Closed form solutions for the eigenvalues of this system exist; the solutions for
the two largest eigenvalues λ1 and λ2 are given by [68] [177]:

λ1,2 = σ2
n +

(
1

2
(σ2

1 + σ2
2) + Re(ρ12 aH

2 a1)

)
.

(
1 ±

√
1 − 4

(1 − |aH
1 a2|2)(σ2

1σ2
2 − |ρ12|2)

(σ2
1 + σ2

2 + 2Re(ρ12 aH
2 a1))2

)
(3.52)

The remaining eigenvalues are equal to σ2
n. This result is useful for the esti-

mation of several effects such as the influence of the spatial extendedness of
sources and the influence of bandwidth on the subspace structure of the array
covariance matrix. This tool will be helpful in determining which factors limit
the interference mitigation effectiveness, as will be described in the next section.

3.3 Influence of assumption violations on sub-
space

Throughout this thesis, it is assumed that the narrowband approximation and
the point-source approximation hold. The advantage of this assumption is sim-
plicity. The first assumption allows time delays of impinging signals to be
described by phases, which are modelled relatively easily. The advantage of
the second assumption allows modelling of a continuum source distribution by
discrete sources, which is also relatively easy. The question arises what the
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influence of (limited) assumption violations is on interference mitigation effec-
tiveness.

Consider, for example, a spatial interference detector (cf. chapter 5) or
spatial interference filter (cf. chapter 6), based on subspace analysis in which
only the largest eigenvalue and its corresponding eigenvector are used. In the
noise-free case and in case there are no astronomical sources, all energy of the
transmitter will be represented by the largest eigenvalue, and the corresponding
eigenvector will be the true array signature vector. In case there is noise (cf.
section (3.2.3)) or in case the assumptions mentioned above are violated, the
eigenvalue and eigenvector distribution will change. The rank-one approach
will lead to suboptimal interference filters, but a detector or filter based on a
rank-two model, or more generally on a rank-qr model, will perform better. A
disadvantage of higher-rank interference filters is that those filters distort the
astronomical signals more than rank-one filters. This is caused by the fact that
a higher-rank spatial filter will remove a larger subspace than a rank-one filter.
It is therefore relevant to investigate the influence of these assumption violations
on the subspace structure, as will be discussed in the next two sections.

3.3.1 Narrowband assumption

Influence of bandwidth on covariance matrix eigenvalues
The purpose of this section is to derive an expression for the eigenvalues of

the model
R = σ2

saa
H + σ2

nI (3.53)

as a function of the bandwidth used. This is the model for a single point
source with source power σ2

s , with a normalised array response vector for the
source a, and i.i.d. spatially white noise with power σ2

nI. The first part of the
derivation concerns a Taylor expansion of the spatial signature vector a [68],
while the second part differs from [68] in that no orthogonality requirements are
needed, but a direct solution is given using the two-source eigenvalue model. The
frequency-dependent covariance matrix R(ν) of the system under consideration
is given by

R(ν) = σ2
sa(ν)a(ν)H + σ2

nI (3.54)

The array response vector a(ν) is frequency dependent, and it is assumed that
different frequency components ν1 and ν2 are uncorrelated: let S(ν) be the
Fourier transform of s(t), then E{S(ν1)S(ν2)} = 0 for ν1 �= ν2. The total array
covariance R is an integral over frequency, with ν0 the centre frequency of the
band under consideration, and ∆ν the bandwidth:

R =
σ2

s

2∆ν

∫ νo+∆ν

νo−∆ν

a(ν)a(ν)Hdν + σ2
nI (3.55)

This expression can be evaluated using a Taylor expansion of a(ν):

a(ν) =

∞∑

n=0

(ν − νo)
n

n!

[
dna(ν)

dνn

]

ν=νo

(3.56)
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Let a
(n)
o =

[
dna(ν)

dνn

]
ν=νo

, a
(0)
o = 1, and let Ra = R−σ2

nI, and insert up to order

two terms of the Taylor expansion in the expression for Ra:

Ra ≈ σ2
s

2∆ν

∫ νo+∆ν

νo−∆ν

[
a(0)

o + (ν − νo)a
(1)
o +

1

2
(ν − νo)

2a(2)
o

]
.

[
a(0)

o + (ν − νo)a
(1)
o +

1

2
(ν − νo)

2a(2)
o

]H

dν

= σ2
s(a(0)

o a(0)H

o ) +
σ2

s

6
∆ν2

(
a(0)

o a(2)H

o + a(2)
o a(0)H

o

)
+

σ2
s

3
∆ν2a(1)

o a(1)H

o +
σ2

s

20
∆ν4a(2)

o a(2)H

o (3.57)

The integral of the products of the term containing a
(1)
o with the terms con-

taining a
(0)
o and a

(2)
o are zero because these are odd functions, integrated over

a symmetric interval with respect to νo. Let

σ1a1 = σs

(
a(0)

o +
1

6
∆ν2a(2)

o

)
, σ2a2 = σs

(
1√
3
∆νa(1)

o

)
(3.58)

with the constraints |a1| = |a2| = 1. Inserting these definitions in the previous
equation yields

R = σ2
1a1a

H
1 + σ2

2a2a
H
2 + σ2

nI + O(∆ν4) (3.59)

This equation corresponds to the two-source model with ρ12 = ρ21 = 0, for
which the eigenvalues are known in closed form. In a narrowband system only
the zeroth order expansion term would be nonzero, and Ra would be rank one.
A system which deviates slightly from being perfectly narrowband , the higher
order terms of the expansion would be nonzero, and Ra would be rank two.
This means that the value of the second eigenvalue λ2 (i.e. the one-but-largest
eigenvalue) of Ra is a useful measure for the narrowness of a frequency band.
The largest and second-but-largest eigenvalues (cf. section 3.2.4) are given by:

λ1,2 = σ2
n +

1

2
(σ2

1 + σ2
2)

(
1 ±

√
1 − 4

σ2
1σ2

2(1 − |aH
1 a2|2)

(σ2
1 + σ2

2)2

)
(3.60)

As in equation 2.19, define R = (r1, · · · , rp)
t, and let sℓ be the direction vector

of the ℓth source, then the derivatives of the normalised array response vector
a(ν) at ν = νo (cf. section 2.3.1) can be straightforwardly expressed by

a(o)
o = p−

1
2 e−ıνoc−1Rsℓ (3.61)

a(1)
o = −ıc−1Rsℓ ⊙ a(o)

o (3.62)

a(2)
o = −c−2Rsℓ ⊙Rsℓ ⊙ a(o)

o (3.63)
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These three expressions are used for calculating the rank-two model in (3.59),
given a telescope configuration R and a source direction sℓ. Initially the model
R − σ2

nI is rank-one, assuming there is only one source, see equation (3.53),
but the finite bandwidth transforms it into a rank-two model, see equation
(3.59). The largest and second largest eigenvalues of this single source model
are dependent on the bandwidth and can be calculated using (3.60). The effect
of bandwidth on the second eigenvalue for a single source model for the WSRT
is illustrated in the next paragraph.
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Figure 3.4. Effect of bandwidth on the two largest eigenvalues for a one-
source model with noise: R = σ2

saa
H + σ2

nI. The left-hand figure shows the
eigenvalues for p = 8 and (ri−rj)max = 1008 m (the configuration used for the
majority of the RFI mitigation experiments), and for p = 22 and (ri−rj)max =
3 km (a full 3 km baseline WSRT configuration). The source direction used

was s = 3−
1
2 (1, 1, 1)t. The figure to the right shows the eigenvalues for p = 8

and (ri − rj)max = 1008 m for two different directions s = 3−
1
2 (1, 1, 1)t and

s = (1, 0, 0)t

Bandwidth requirement for the WSRT
Using the narrow bandwidth formula (3.2) for the WSRT telescopes, with

8 telescopes and a maximum baseline of 1008 m, the bandwidth ∆ν of the
frequency bins should be ∆ν ≪ 300 kHz. A bandwidth of 30 to 50 kHz seems
reasonable in this case. However, considering a single source impinging on the
array ((R − σ2

nI) should be rank one), such a bandwidth has a relatively large
influence on the second eigenvalue as is demonstrated in figure 3.4, where the
ratio of the second and the first (largest) eigenvalue reaches -30 to -20 dB.
In figure 3.4, left, the influence of telescope configuration (maximum baseline
length) is shown, the right-hand figure illustrates the effect of the pointing
direction. Because of the east-west orientation of the WSRT , sources in the
east or west directions give the most stringent constraints on the narrowness
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of the band. Directions in the meridian plane pose no requirements to the
narrowness of the band because in this case there is no time delay between the
different telescopes.

For example, consider a spatial filter for interference mitigation which should
be able to suppress an interferer with a certain factor. Suppose also that the
filter should remove only one subspace dimension (cf. chapter 6 for details).
Then the second eigenvalue in the bandwidth model above should be at least 3
dB lower than the suppression factor. If a 30 dB spatial filter is needed which
suppresses only one subspace dimension, then the second eigenvalue should be
<≈ -33 dB with respect to the largest eigenvalue, which corresponds to a 10 kHz
bandwidth for 1 km maximum baseline length.

3.3.2 Point source assumption

As was shown earlier in section 2.5.1, the multipaths of interferers which are
not fully correlated with the main path increase the rank of the corresponding
covariance matrix. If a spatial filter is based on the observed largest eigenvalue,
then an increase in rank due to multipath reduces the effectiveness of the filter.
Multipath in this case can be considered as a deviation from the point source
assumption.

Another example where deviations from the point-source assumption may
have influence is the gain estimation accuracy of a telescope using an astronom-
ical point source in the centre of the field of view. An ideal point source would
yield a rank-one system; an extended source would yield rank two or more if
different sections of the extended source were not fully correlated.

The relevant question to be answered in both cases is how deviations from
the point-source assumption influence the eigenvalues of the corresponding co-
variance matrix R. This question will be answered by considering a single-source
model with a single multipath. The formulas which will be derived are valid for
the multipath case, but are only approximately valid for the extended sources
case.

Single point source model with multipaths
Suppose that there is one emitting source in direction a1 with signal s1(t),

and one multipath in direction a2 with signal s2(t). These two signals are either
spatially correlated, partially correlated, or not correlated. The array output
vector x(t) for the source with multipath can be written as

x(t) = a1 s1(t) + a2 s2(t) + n(t) (3.64)

where ai = e−2πνic
−1Rsi is the spatial signature vector for the ith source( cf.

section 2.3.1), si(t) is the baseband signal of source i, and n(t) is the noise
vector. The angle between s1 and s2 is given by θ. Assume that s1 is fixed,
and that s2 varies. Note that by definition ||s1|| = ||s2|| = 1. The covariance
of the array output is defined by: R = E{x(t)x(t)H}. Let σ2

1 = E{s1(t)s1(t)},
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Figure 3.5. Direction vectors s1 and s2 of a point-source with multipath.

σ2
2 = E{s2(t)s2(t)}, and let ρ12 = E{s1(t)s2(t)} and ρ12 = ρ21, then

R = σ2
1a1a

H
1 + σ2

2a2a
H
2 + ρ12a1a

H
2 + ρ21a2a

H
1 + D (3.65)

where D = E{n(t)n(t)H}. This is basically the two-source model described in
section 3.3.1, so the distribution of the power of a point-source and its multipath
over the two largest eigenvalues is given by equation (3.52). This is a general
case which is valid for dual sources with various degrees of mutual correlation.

Now suppose the point-source and its multipath are fully correlated: ρ12 =
σ1σ2. Inserting this in equation 3.52 yields λ1 = σ2

n +σ2
1 +σ2

2 +Re{σ1σ2a
H
2 a1},

and λ2 = 0. When the point-source and its multipath are not fully correlated
then λ2 > 0. A spatial filter based on a rank-one analysis would then lead to a
suboptimal filter (as compared to a larger-rank filter).

If the narrowband condition holds, then ρ12 = σ1σ2, and R − D will be
rank one. If, however, the propagation delay of the multipath is much larger
than the geometric delay differences across the array, and if for this multipath
the narrowband condition does not hold, then the resulting model R − D is
rank two. Figure 3.6 shows ρ12 for a single source with one multipath as a
function of path delay. For a box car frequency taper, ρ12 is proportional to
sinc(2π∆ντ). At 1420 MHz, and for a 1152 m pathlength distance (between
nine WSRT telescopes), ρ12 is 0.34σ1σ2 for 30 kHz bandwidth and 0.999σ1σ2

for 1 kHz bandwidth.

Figure 3.7 shows the results of a calculation of the two largest eigenvalues
for a single point-source model with a single multipath, having varying degrees
of mutual correlation. These calculations were carried out for the WSRT using
nine fixed telescopes. The point-source is located in the 3−

1
2 (1, 1, 1, )t direction.

The upper right-hand figure shows the two largest eigenvalues as a function
of point-source - multipath separation angle for ρ12 = 0.33σ1σ2 and ∆ν = 30
kHz, as was mentioned above. This figure shows that if a rank-one based spatial
interference filter is used, with an attenuation factor of, for example, 20 dB, then
this filter would be optimal for source separations less than 0.2o at 8.6 GHz sky
frequency. If in this case the multipath delay is more than the delay across the
array, then the 20 dB attenuation cannot be reached unless a higher-rank filter
is used.
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Figure 3.6. Correlation ρ12σ1σ2 for a single source with one multipath as a
function of path delay. For a box car frequency taper, ρ12 is proportional to
sinc(2π∆ντ).

The lower left-hand figure shows that for ρ12 = 0.999 (corresponding to
∆ν = 1 kHz), a rank-one 20 dB filter puts no requirements on source-multipath
separation. The upper left and lower right-hand figures show the eigenvalue
distribution for ρ12 = 0 and ρ12 = 0.99999 respectively.
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Figure 3.7. Calculation results of the two largest eigenvalues for a single
point-source model with an uncorrelated multipath (upper left), and with par-
tially correlated multipaths (remaining subfigures). The results were obtained
for the WSRT configuration with nine fixed telescopes. The point-source is

located in the 3−
1
2 (1, 1, 1, )t direction.



Chapter 4

Experimental set-up

In this chapter a description will be given of the experimental set-ups used for
obtaining measurement data. The main part of the set-up is the WSRT radio
telescope described in section 4.1. The WSRT data were recorded using a data
acquisition system developed in the context of the project Nulling Osbtructing
Electromagnetic Interferers (NOEMI ). The general goal of this project was to
investigate the merits of modern array signal processing algorithms for interfer-
ence mitigation in radio interferometry. More specifically, the project aims were
(1) to select viable interference rejection scenarios including performance re-
quirements, (2) to characterise and record the signals of interest, (3) to select and
analyse appropriate signal detection and rejection algorithms based on subspace
techniques, (4) to develop a small-scale RFI mitigation demonstrator system, (5)
to conduct field tests, and (6) to explore implications for LOFAR and/or SKA.
The project started in 1999, ended in 2003, and was supported by the Dutch
Technology Foundation STW under DEL-77-4476, DTC.5893. The NOEMI
baseband time sample recording system will be described in section 4.2, and
the NOEMI online DSP correlation system will be described in section 4.3. Fi-
nally, an offline/online recording mode for WSRT data including a phased-array
reference antenna will be described in section 4.4. This reference antenna, the
NOEMI-THEA tile, is a phased array antenna developed by ASTRON.

4.1 The Westerbork Synthesis Radio Telescope

The Westerbork Synthesis Radio Telescope (WSRT , figure 4.1) consists of four-
teen dual polarisation, twenty-five meter diameter, parabolic dishes, and oper-
ates in the frequency bands specified in table 4.1. The telescope is configured as
a linear East-West array, shown in figure 4.2, with regular 144-m distances be-
tween ten of the fourteen telescopes. Two telescopes are mounted on rail tracks
close to the fixed telescopes, and two are mounted on rail tracks at approxi-
mately 1.5 km distance. All telescopes are linearly polarised, except the 13-cm

71
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band, which is circularly polarised. After amplification with low noise amplifiers
(LNAs) and filtering, the telescope signals are down converted to baseband, us-
ing a local oscillator system which is locked to a frequency reference (Hydrogen
MASER). The baseband signals are digitised, and correlated and stored for fur-
ther image data processing after application of a digital delay. The WSRT also
has other operational modes (offline correlation in VLBI modes, pulsar time
series observations), but these are not discussed here, as this thesis focuses on
RFI mitigation applied to WSRT correlation data.

Figure 4.1. Westerbork Synthesis Radio Telescope (WSRT), The Nether-
lands, operating in selected frequency bands from 110 MHz to 8.6 GHz.

System properties
Table 4.1 lists system properties of the WSRT. The first two columns give

the available receiver bands and corresponding frequency ranges. The third
column gives the system noise power or system temperature Tsys in K, defined
as [124,87]

Tsys =
PR

k∆ν
(K) (4.1)

where PR is the electric power (W) at the antenna terminals (after signal re-
ception but prior to amplification), where k is the Boltzmann constant (J/K),
and where ∆ν (Hz) is the bandwidth. The system power includes instrumen-
tal noise, signal losses, ground radiation spill-over entering via the telescope
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Figure 4.2. Westerbork Synthesis Radio Telescope layout: telescope posi-
tions [84]. All telescopes are equatorially mounted on an East-West line. Ten
telescopes are located at regular 144 m distances. Two telescopes are mounted
on rail tracks in close proximity to the fixed telescopes. The remaining two
(also on rail tracks) are located at a 1.5 km distance.

Receiver frequency (MHz) Tsys (K) ηa ΓRT (K/Jy)
LFFE 110-180

UHF low 250-460 120-250 0.30-0.55 0.053-0.098
92 cm 310-390 125 0.59 0.105
49 cm 560-610 75 0.59 0.105

UHF high 700-1200 120-180 0.35-0.55 0.062-0.098
21/18 cm 1150-1750 27-31 0.54 0.096

13 cm 2215-2375 60 0.54 0.096
6 cm 4470-5020 65 0.48 0.085

3.6 cm 8150-8650 110 0.35 0.062

Table 4.1. WSRT telescope specifications: frequency bands, system temper-
atures (Tsys), aperture efficiencies (ηa), and telescope sensitivities (ΓRT ).

sidelobes, astronomical source contributions, and RFI (if present). The power
received from an astronomical source antenna with an effective aperture area
Aeff (m2), due to an incident flux Ψ (in Jy, where 1Jy = 10−26Wm−2Hz−1)
is given by [87] PΨ = 1

2Aeff∆νΨ. This means that the telescope sensitivity or

gain ΓRT , defined by ΓRT = TΨ

Ψ , can be expressed as

ΓRT =
Aeff

2k
(K/Jy) (4.2)

For the WSRT, the effective area is given by Aeff = ηa
1
4πD2

rt, where Drt is the
telescope dish diameter, and where ηa is the aperture efficiency. The aperture
efficiency, given in the fourth column of table 4.1, is a factor corresponding to
antenna losses, and to the fact that the antenna at the focus of the parabolic
dish does not “illuminate” the dish area uniformly. The fifth column lists the
telescope sensitivity.
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Figure 4.3. Coordinate system.

Coordinate system
The coordinate system usually used at the WSRT is the hour angle (h)

and declination (δ) equatorial coordinate system shown in figure 4.3. The unit
vectors ex, ey, and ez point in the (δ, h) = (0o, 0o), (δ, h) = (0o,−90o), and
(δ, h) = (0o, 90o) directions respectively. An array signature vector so for the
direction o can be written in carthesian coordinates (ex, ey, ez) as:

so =




cos(δo) cos(ho)
− cos(δo) sin(ho)

sin(δo)


 (4.3)

Assuming that the first 10 telescopes with only one polarisation are used, the
baselines matrix R can be written as R = 144 ((0, 0, 0)t, (0, 1, 0)t, · · · , (0, 9, 0)t)t

(cf. equation 2.19). In this representation telescope 0 is the baseline reference
telescope. The resulting geometric delay vector ad

ℓ as defined in (2.20) can then
easily be found by

ad
ℓ (sℓ) = e−2πλ−1Rsℓ (4.4)

Fringe rotation
As discussed in section 3.1.2, a geometric fringe frequency term occurs due

to the application of a geometric delay correction after the mixer stage. In the
literature this topic is addressed for example in [146,113]. This fringe frequency
term is telescope- (baseline) dependent and needs to be compensated for. At
the WSRT this is done by applying an offset frequency term which is added
to the local oscillator signals. Interferers are spatially fixed with respect to
the telescopes or move with different speeds and in different directions than
the astronomical sources. The fringe correction term therefore introduces a
changing geometric delay vector for fixed interferers. As this influences the
interfering mitigation capabilities (cf. chapter 6), it is worthwhile to quantify
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the fringe phase rotation magnitudes for the WSRT. The starting point is the
fringe spatial signature vector (3.22) derived in section 3.1.2:

af (so) =




e−2πνoτd1

...
e−2πνoτdp


 (4.5)

As was stated in section 3.1.2, the applied geometric delay offset τdi
for telescope

i is equal to τo − τgi
, where τo is an arbitrary positive offset. Recall that

(τg1
, · · · , τgp

)t = Rsoc
−1 so that

af (so) = e−2πνoτoe−2πνoc−1Rso (4.6)

The fringe frequency vector νfr is defined by

νfr =
∂

∂t
arg(af (so))) (4.7)

Evaluating this expression yields

νfr = −2πνoc
−1R∂so

∂t

= −2πνoc
−1 ∂{− cos(δo) sin(ho)}

∂t
R1

= 2πνoc
−1 cos(δo) cos(ho)

∂ho

∂t
R1 (4.8)

The factor ∂ho

∂t is the earth rotation angular frequency, and is 2π/(24 × 3600)
in radians per sidereal second.

Astronomical sources and transmitter identifications used
Finally, table 4.2 lists some of the astronomical sources which are used for the

RFI mitigation experiments. The second column of the table lists the frequencies
at which the sources were observed for RFI mitigation test purposes. Column
three lists the source fluxes [5]. The sources are, from a radio-astronomical
point of view, very strong sources. For the WSRT telescope, for example, the
detection limit in sky maps at 1420 MHz, is about 0.24 mJy (per beam and
depending on the observation mode) for a 12-hour synthesis observation for a
78 kHz channel. This is about 50 dB lower than the 3C48 and 3C286 source
fluxes. Transmitters and interferers at the WSRT, on the other hand, may have
observed signal powers up to several orders larger than the telescope receiver
noise.

4.2 The NOEMI data recorder, time sample mo-
de

The function of the NOEMI data recorder system, shown in figure 4.4, is to
record eight telescope output baseband signals simultaneously for a short du-
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Source Frequency Ψ (Jy) Transmitter

3C48 781 24.9 TV Lingen
” 905 22.3 GSM uplink
” 1228 17.7 GPS
” 1420.4 15.8 -
” 1480 15.2 Afristar
” 1624 14.1 Iridium

3C286 781 19.4 TV lingen
” 1090 16.7 DME
” 1158 16.2 Aeron. radionav.
” 1481 14.4 Afristar
” 1575 14.0 GPS

OH0130+621 1612 Glonass

Table 4.2. Astronomical sources used for RFI Mitigation experiments. The
source fluxes, given in the third column are from [5]. The fourth column gives
some of the transmitters at or close to the bands which were investigated.

ration (of order one second to a minute), and to store the data on disk or
CDROM for offline processing. The goal is to record transmitters or interfer-
ence for characterisation purposes, and for the study of the effectiveness of RFI
and transmitter mitigation purposes. Both blanking (excision) of TDMA and
frequency hopping signals, as well as spatial filtering techniques are studied.
The recorder is based on an industrial PC, with a Pentium II 300 MHz board
containing 384 MB SDRAM memory on its PCI backplane. The industrial PC
is equipped with 6 and 28 GB hard disks, and a CD writer for storing data.
Into four PCI slots, PCI212 sampling boards are plugged, each of which has two
channels. Each of the PCI212 channels is equipped with an analog to digital
converter of a maximum of 20 MSamples/s and RAM for 16 MSamples of data
(32 MB). This allows 0.8 seconds of sampling of eight telescope (single polari-
sation) output baseband signals at 20MS/s. The sampling rate can be reduced
with a divider down to 312.5 kSamples/s (54 sec sampling). To obtain one
sampling moment, the four boards are linked together. The internal sampler
clock was free running, not locked to the WSRT MASER clock systems. Via
the PCI-bus the boards can be read out and stored on disk and subsequently
on CDROM.

Figure 4.5 shows the functional layout of the NOEMI recording system, and the
connection with the WSRT telescope. Eight of the twenty-eight telescope base-
band channels are connected to the recorder using the WSRT DLB IF system.
After baseband low-pass filtering, the DLB-IF baseband output power nominally
is +10 dBm/10MHz in 50 Ω coax, corresponding to 1√

2
Vrms. The ADCs range

can be set in factor two steps from 2V downto 0.25 V. The measured interboard
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Figure 4.4. NOEMI eight channel data recorder with four dual ADC boards
and with online DSP correlator board.

Figure 4.5. Experimental set-up consisting of the WSRT, with 14 dual polar-
isation telescope antenna outputs, which are amplified and downconverted to
baseband. For standard WSRT imaging observations, the signals are digitised
and correlated after applying a geometrical delay compensation. Eight single
polarisation telescope baseband outputs are connected to the NOEMI data
recorder.
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crosstalk was 90 dB (power) and the onboard crosstalk 51 dB. Compared to the
observed SNRs no significant problems were expected (or encountered).

4.3 NOEMI data recorder, correlator mode

Purpose

Due to limited RAM memory size, the time-sample mode of the NOEMI
recorder is limited to 0.8 s of continuous data for a 10 MHz bandwidth (or
54 s for a 156 kHz bandwidth). The maximum observation duration was in-
creased by adding a Daytona DSP board to the PC. The first reason for adding
the DSP board was to demonstrate on-line blanking of intermittent RFI. The
second reason was to increase the sensitivity of the system, thereby increasing
the range of astronomical sources which could be observed. And finally, as the
fringe frequency is low, typically 2 Hz for a 1 km baseline at 1420 MHz observing
frequency, its effects on the mitigation filters could be studied for longer time
stretches. The DSP board enables the recording of longer time intervals by data
reduction. The reduction is reached by online correlation of the eight channels
and averaging. The computed and averaged covariance matrices are stored on
disk. The online correlator is used for online detection and blanking of inter-
mittent interference, and for the recording of covariance matrices for long-term
(up to half an hour) offline spatial filter processing.

System description of the online correlator

The Daytona board is a DSP board with two processing nodes. Each pro-
cessing node is based on a TMS320C6701 DSP, with 4M × 32 bit SDRAM and
128k × 32 SSRAM memory. The TMS320C6701 is a floating point DSP of the
Texas Instruments C600 platform, and runs at a clock speed of 166 MHz. The
processor has a 32-bits interface to external SDRAM. For low-latency data ex-
change between the two processing nodes, the nodes share 8k×32 bit dual-port
RAM. The data connection between the nodes, and between the nodes and the
computer PCI bus, is the Daytona local PCI bus. The data transfer between
the node memory and the local PCI bus runs via a special chip, the Hurricane.
The processors run at 166 MHz, which gives the processor nodes a maximum
processing capacity of 1 GFLOP.

The operating system for the NOEMI system is Windows NT; software
drivers for both the PCI212 and the Daytona boards have been installed. The
host program, for controlling the PCI212 ADC boards and controlling the tasks
for the DSPs, is written in Visual C++. The DSP code was written with the
TI Code Composer Studio. Graphical visualisation of the results was done with
Matlab. Calibration and detector monitoring was also done within Matlab.

Observational modes

The NOEMI DSP system uses a basic integration time of 0.5ms for the DSP
system and a 10 s, 10 ms, or 0.5 ms time interval for the integrated data. It is
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assumed that the 0.5 ms interval is short enough to ensure quasi-stationarity of
the transmitters and RFI sources. The 10 s integrated output is the standard
output for observations. The 0.5 ms output was used for system tests. The sys-
tem can run continuously for hours, storing 10 s integrated covariance matrices.
Due to limitations of the PCI bus speed, the effective duty cycle for most of
the observations was 20%. In the online blanking mode, both the blanked data
and original data were stored. In the offline mode, only the original data were
stored.

4.4 NOEMI THEA tile reference antenna set-
up

Purpose
The spatial filtering algorithms for RFI mitigation can be improved by in-

corporating directional reference antennas pointed at the interferer. The advan-
tages of a reference antenna with high gain towards the interferer are that the
interferer characteristics (signature vector) can be estimated more accurately,
and that the (matrix) conditioning of spatial filters is improved. Both effects,
in principle, lead to better spatial filter performance. Obviously, the reference
antenna should have a higher gain towards the interferer than the telescope
sidelobe gain, otherwise the noise introduced by the reference antenna will de-
teriorate the astronomical signals. For spatial filtering tests with a reference
antenna at the WSRT , the NOEMI ASTRON THEA tile phased array refer-
ence antenna, shown in figure 4.6, was used. The tile has a directional gain
toward the interferer which exceeds the WSRT sidelobe level by approximately
10 to 15 dB.

Phased array reference antenna description
The THEA tile phased array, shown in figure 4.6, is a 64-antenna element

(tapered slot Vivaldi antennas) system with a two-octave wide RF bandwidth
(700-1700 MHz) [133, 135]. The antenna signals are amplified with a 40 K
noise temperature LNA, followed by a vector modulator for controlling the
amplitudes and phases of each of the antenna elements. The 64 phase- and
amplitude-adjusted signals are combined in an RF combining network, thereby
creating an RF beam. The modulators and combining network are implemented
two-fold, creating two independently steerable beams. The beam signals are
down-converted and digitised with 40 MHz 12 bit analog to digital converters.
The digital output of each beam is transmitted to the THEA back-end with
a 1.2 GBit/s fibre link. For the reference antenna experiments at the WSRT
site, the digitisation and digital THEA back-ends wer not used. Instead the tile
down-conversion electronics was slightly adapted to match the WSRT IF out-
put frequency (f ≈ 170 MHz) and band direction. The parameters of the dual
receiver chain are controlled with a Front-End Controller (FEC), which sets the
vector-modulators and the parameters for the receiver unit. It is capable of
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Figure 4.6. NOEMI ASTRON THEA phased-array tile at the WSRT site
during initial tests (upper figure) and a schematic overview of a dual beam 64
antenna element THEA tile phased-array (lower figure).

storing 1200 pre-calculated beams, which allow fast beam steering.

Experimental configuration

Figure 4.7 shows the setup used for reference antenna experiments at the
WSRT. The tile was located at a 30-m distance to telescope 6. The two tile
beams, A and B, and six of the fourteen (single polarisation) telescope outputs
were connected to the WSRT DLB IF system. In order to match the WSRT
frequency mixing scheme, the tile (internal) IF system was slightly adapted.
The DLB outputs were connected to the NOEMI data recorder as before. The
tile and the NOEMI data recorder were controlled via a controller PC (NOEMI
phased array controller) using serial links. One of the THEA beams (beam A,
the searching beam) was used to find the direction of the interferer, the second
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Figure 4.7. Experimental set-up used for spatial filtering experiments with
a phased-array reference antenna (NOEMI THEA tile). Two array tile beams
and six single polarisation WSRT telescope output signals are connected to
the NOEMI data recorder. The NOEMI phased-array controller steers the
array beams and synchronises the data acquisition process.

beam (beam B, tracking beam) was constantly aimed at the interferer. In the
RFI searching mode of the system, the NOEMI DSP subsystem calculated the
power spectra of the beams and transferred them to the control PC. Initially,
a full-sky beam scan was made to find the interferer direction. During the
astronomical observations, searching was done by observing eight directions
close to the expected direction, and updating the RFI source tracking direction
if necessary. The (relatively short) tracking and updating observations were
conducted with the astronomical observations of the six telescope signals and
beam A. The recorded data were used for offline spatial filter tests.





Chapter 5

Spectral-temporal blanking

5.1 Introduction

Radio frequency transmitters and interferers which are intermittent, such as
Time Division Multiple Access (TDMA) wireless communication and airplane
radar (DME), can be detected and removed from contaminated radio astronom-
ical data without completely losing astronomical information. This interference
detection and removal in time-frequency space is also known as excision, blank-
ing, or flagging. Flagging in radio astronomy is traditionally done by removing
time-frequency samples from post correlation data. This is an offline process and
is interferometer based. The integration period of the data samples is usually
of the order of seconds or minutes.

The time scale of transmission slot lengths at which the transmitter or in-
terferer is active is in many cases much less than the one-minute or one- second
level. This means that fast online detection and excision algorithms are essen-
tial to reduce the effect of interference in bands which are densely occupied with
intermittent transmitters or interferers.

Examples of man-made intermittent or time-slotted signals are the European
mobile telephony standard GSM (slot length ≈ 0.5 ms) or the TDMA (time-
division multiple access) based mobile telephony standards IS- 54/136 in the US.
Other examples are DME/SSR airplane radar (≈ 20 µs bursts), Iridium satellite
transmissions (≈ 10 ms slots), and mobile communication channels where the
transmission is determined by the conversation length (transmission durations
of order seconds to minutes).

Existing detection and excision methods in the pre-correlation domain have
a limited scope. Until recently, the most widely implemented algorithm has been
a single-channel total power change detector [82], followed by a blanking of the
correlator output [51]. In addition, wavelet decomposition-based detectors have
been proposed [106], as well as detectors based on Cyclostationarity assump-
tions of the transmitter / interference [163] [118]. Also the use of quantised
correlations at all correlation lags was proposed [164] to test the presence

83
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Figure 5.1. Examples of time-slotted transmissions. The left-hand figure
shows observed GSM transmissions (frequency channel width 200 kHz, time
slot length ≈ 0.5 ms) in an observation of 3C48 at the WSRT . The brightness
in the spectrogram corresponds to the Frobenius norm of an observed eight-
antenna covariance matrix. The figure to the right shows a similar spectrogram
of Iridium satellite transmissions (frequency channel width 100 kHz, slot length
≈ 10 ms).

of interference. Short-pulse detection schemes were considered [115] [49] for
application in wideband radio spectroscopy, neural networks were applied for
detection [137], and detection based on a pdf analysis was proposed [52]. Many
of these detection schemes were tested on radio telescope systems [125] [4] [51]
[162]. However, these are all single-channel detectors that do not exploit the
spatial properties of the interference. A detector that considered combining
multiple telescopes for improved detection and blanking was proposed by [80]
for low-frequency interferometry, which implied a robust data censoring method
based on the temporal behaviour of the cross spectrum. This requires a large
number of estimated spectra to obtain reliable robust estimates, while only two
channels are used.

The aim of this chapter1 is to introduce modern array signal processing
detection and blanking techniques in the context of radio astronomy and to in-
vestigate the merits of multichannel detection and blanking algorithms at the
Westerbork Synthesis Radio Telescope (WSRT). By combining cross-correlation
information of a large number of sensor pairs, we can increase the detection per-
formance significantly and also estimate the spatial signature of interferers. In
essence, the approach is to compute short-term spatial correlation matrices in
narrow subbands , and then to compute the eigenvalue decomposition of each
of these matrices [99]. A rank-estimate based on the eigenvalues allows us to
detect the number of interfering signals in each time-frequency slot, while the
dominant eigenvectors give information on the spatial signature of the interfer-
ers. Alternatively, detectors based on the determinant and Frobenius norm of

1Parts of the results of this chapter were published in [92] [98] [15]
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the correlation matrices will be discussed and applied as well.

The effectiveness of the space-time detection and blanking process will be
demonstrated by applying the algorithms (offline) to data measured at the
WSRT using the NOEMI data recording system. It will be shown that the
galactic absorption line of 3C48, masked by a superimposed GSM transmis-
sion, was completely recovered by multichannel blanking whereas it could not
be recovered by single-channel techniques.

5.2 Data model and interference detection

Many interference detection schemes exist. They differ in the amount of know-
ledge that we can assume about the interfering signals; if, for example, we know
the signal wave form, then the optimal detector has the form of a matched filter.
Extensions are possible if the wave form is known up to a few parameters such
as amplitude, phase, or frequency. Usually, however, the signal is modulated
by a message and hence effectively unknown. There are two classes of detection
techniques: more or less deterministic methods that exploit the known proper-
ties of the signals such as modulation type or certain periodicities, and those
methods based on statistical models with unknown parameters, leading to gen-
eralised likelihood ratio tests (GLRT). A particular example of this last is power
detection.

In principle, man-made interference is expected to be statistically diffe-rent
from the astronomical sources. Although this difference in statistics is very
attractive for interference detection [48,163], it is a somewhat complicated tech-
nique, as it involves a-priori knowledge of the transmission modulation and
coding schemes, and of the transmitted messages. For detection based on long
averaging periods, the statistics-based methods are less applicable, as the aver-
aging tends to jointly Gaussianise the interfering signals (central limit theorem).

Another distinction between interferers and astronomical signals is the differ-
ence between their spatial signature vectors. Astronomical signals enter through
the main lobe of the telescopes and have a very structured (parametrically
known) array response (viz. eq. (2.12, 2.30)), which is used for imaging. The
interferers usually enter through the sidelobes and are either in the near or far
field, leading to unstructured varying direction vectors (ar-vectors).

Even for fixed-location transmitters, the slow rotation of the telescopes as
they track the sky will change the ar-vector within a fraction of a second, either
because of multipath fading or because the interferer moves through the highly
variable sidelobe pattern. With multipath propagation, a mobile transmitter or
interferer only has to move about 30 cm to create a different ar-vector, giving a
maximum quasi-stationarity period in the order of 10− 100 ms for a GSM user.

Another source of nonstationarity is the fringe correction introduced at the
first IF stage (cf. equation (3.22)) to compensate for the geometrical delay in
synthesis telescopes. As the telescopes rotate, this introduces a time-varying
phase for fixed-location interferers. This phase drift is different for each tele-
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scope, and has a rate in the range of 0 − 10 Hz for the WSRT .
For optimal multiple-antenna based interferer detection, the integration times

should match the transmitted slot lengths, but not exceed the spatial quasi-
stationarity time scales: order 10-100 ms for the WSRT . The chapter on
spatial filtering focuses more on this stationarity issue; this chapter assumes
quasi-stationary transmitters and interferers.

Before continuing with the detection schemes, the data model is revisited
briefly. Ideally, the output of the correlation process produces clean estimates
of the visibilities Rv, Rv = ABAH (cf. ch.2), once every 10 s or so. In principle,

we estimate it by correlating the array output vector: R̂ = 1
N

∑N
n=1 xxH

n . In

practice however, the estimates of R̂ are influenced by additive noise, additive
man-made transmissions, interference, and unknown antenna gains. The data
model under consideration, including astronomical signals with interference and
noise (cf. ch.2), is given by:

R = G (ABAH + ArBrArH)GH + D (5.1)

The objective of interference detection and rejection schemes is to improve the
signal-to-interference and noise ratio (SINR) at the output of the integrators
(i.e., at the 10s level) by reducing the contribution of ArBrArH in the model
above. Intermittent interference that is quasi-stationary at these time scales or
longer can often be treated off-line (post-correlation flagging). In this chapter
on-line interference detection and excision schemes are considered for interferers
which are quasi-stationary at subsecond time scales.

5.2.1 Single-antenna temporal-spectral detection

Detection theory is based on hypothesis testing. Tested is H0: there is no inter-
ference, versus H1: there is at least one interferer in this band. The implementa-
tion of this test depends on the model that we pose for the interferer. First some
particularly simple cases will be discussed which will allow analysis. Consider
the single-channel case first. Assume that there is at most a single interferer,
where the interfering signal is independent identically distributed (i.i.d.) Gaus-
sian noise with unknown power σ2

r . The background noise is i.i.d. Gaussian
noise with known power σ2

n. The astronomical signal powers are assumed to be
much lower than the system noise so these signals can be ignored.

Without interferer, the observed data samples xn = x(tn) are complex nor-
mal (CN ) distributed, with zero mean and variance σ2

n. With an interferer, this
distribution is still complex normal, but with variance σ2

n + σ2
r . Thus, we test

the hypothesis

H0 : xn ∼ CN (0, σ2
n) (5.2)

H1 : xn ∼ CN (0, σ2
n + σ2

r), n = (0, · · · , N − 1) (5.3)

We assume that we have available N samples {xn}, collected in a vector x =
[x1, · · · , xN ]t. This is a rather standard problem in detection theory (cf. [82,167]
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for an introduction). A Neyman-Pearson detector selects H1 if the likelihood
ratio,

L(x) =
p(x|H1)

p(x|H0)
(5.4)

exceeds a threshold, where p(x|H) denotes the probability density function of x

under the hypothesis H. It is known that this leads to an optimal probability
of detection, given a certain probability of false alarm (detecting an interferer
when there is none). In this case, the Neyman-Pearson detector is simplified
to comparing the total received power to a threshold γ, deciding H1 if the test
statistic

T (x) =
1

σ2
n

N∑

n=1

|xn|2 > γ (5.5)

The Neyman-Pearson detector can be used for intermittent interference, when
the a-priori probabilities are not known and also when the costs related to the
detection test outcomes are not known or specified. This makes the Neyman-
Pearson generally applicable, that is, more or less independent of the intermit-
tent interference and telescope characteristics. Under the above assumptions,
closed form expressions for the probability of a false alarm and the probability
of detection can be obtained. For this, recall that the sum of squares of N real
i.i.d. zero-mean unit-variance Gaussian random variables has a χ2 distribution
with N degrees of freedom (dof ). Since we have complex samples xn, T (x) is
the sum-square of 2N real variables. Indeed, let xn = an + ıbn, where an and bn

are random real variables with variance 1
2σ2

n. Define cn with variance 1
2σ2

n by

cn =

{
an 1 ≤ n ≤ N
bn N + 1 ≤ n ≤ 2N

(5.6)

then the summation of the |xn|2 terms can be expressed in terms of cn:

N∑

n=1

|xn|2 =

N∑

n=1

|an + ıbn|2 =

2N∑

n=1

c2
n (5.7)

The probability of a false alarm is therefore given by

PFA = P{T (x) > γ|H0} = P

{
1

σ2
n

2N∑

n=1

c2
n > γ | H0

}
(5.8)

In the equation above, the term before the inequality sign, needs to have a
unit variance in order to be expressable in terms of χ2 distributions (otherwise
Gamma probability density functions are needed). This is accomplished by
multiplying both sides of the inequality by 2:

PFA = P

{
1

1
2σ2

n

2N∑

n=1

c2
n > 2γ | H0

}
= 1 − χ2

cdf,2N (2γ) = Qχ2
2N

(2γ) (5.9)
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where Qχ2
2N

(.) is the tail probability of a χ2 random variable with 2N degrees

of freedom. It has a closed-form expression (see Kay 1998), and its inverse is
known in terms of the inverse Gamma function, and allows us to select γ to
obtain a desired level of false alarm. Similarly, the probability of detection of
interference at this threshold γ is given by, see figure 5.2:

PD = P {T (x) > γ : H1} (5.10)

= P

{
1

σ2
n

N∑

n=1

|xn|2 > γ | H1

}
(5.11)

Let INR = σ2
r/σ2

n be the interference-to-noise ratio, and normalise the term left
of the inequality sign in the expression above by multiplying both sides with
σ2

n/(σ2
n + σ2

r). This yields:

PD = P

{
2

σ2
n + σ2

r

2N∑

n=1

c2
n >

2γ

1 + INR
| H1

}
(5.12)

= 1 − χ2
cdf,2N

(
2γ

1 + INR

)
= Qχ2

2N

(
2γ

1 + INR

)
(5.13)

As an illustration, figure 5.2 shows the χ2
pdf,N probability density functions for

the cases without interference and with interference. The probability of a false
alarm and the probability of detection are given by the grey areas in the figure.

5.2.2 Multiple-antenna spatial-temporal detection

A significant performance improvement is possible with a multichannel detec-
tor. To illustrate this, we assume again the simple case with at most a single
narrowband Gaussian interferer, with a known spatial signature vector ar in
white Gaussian noise. The source power of the interference is denoted by σ2

r ; to
normalise the receiver gain we set ||ar||2 = (ar)Har = p, where p is the number
of antennas. Without interference, the data vectors xm are complex normal
distributed with zero mean and covariance matrix σ2

nI. With a single interferer,
the covariance matrix becomes R = E{xmxH

m} = σ2
ra

r(ar)H + σ2
nI. Thus,

H0 : xm ∼ CN (0, σ2
nI) (5.14)

H1 : xm ∼ CN (0, σ2
nI + σ2

ra
r(ar)H), m = (0, · · · , N − 1) (5.15)

The Neyman-Pearson detector based on the data matrix X = [x1, · · · ,xN ]
considers the estimated data covariance matrix

R̂ =
1

N

N∑

n=1

xnxH
n (5.16)
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Figure 5.2. Probability density functions for the cases without interference
(INR=0) and with interference (INR=0.5). Only one interferer is assumed to
be present. Both the interferer and the system noise are assumed to be i.i.d.
Gaussian. The probability of false alarm, assuming a threshold γ, is given by
the dark grey area; the probability of detection by the light grey area.

and is given by [82]

T (X) =
N

σ2
n

(ar)HR̂ar

(ar)Har
>H1

<H0
γ (5.17)

Note that T (X) ≈ N
σ2

n
λ1 if ar is estimated by u1, where λ1 and u1 are the largest

eigenvalue and the corresponding eigenvector of R̂. This test is recognised as a
matched spatial filter detector; essentially, we compare the received energy in
the direction ar of the interferer to σ2

n. If we define yn to be the output of the
matched beamformer2 in the direction of xn, yn = ||ar||−1(ar)Hxn, then

H0 : yn ∼ CN (0, σ2
n) (5.18)

H1 : yn ∼ CN (0, σ2
n + pσ2

r), n = (1, · · · , N) (5.19)

and it is seen that taking the same threshold as in the case of the single channel
will provide the same false alarm probability as before :

PFA = P{T (x) > γ|H0} = Qχ2
2N

(2γ) (5.20)

2A matched beamformer yn = wHxn for the model xn = arsn+n , where sn is the imping-
ing signal and n is the noise vector, can be found by maximising |yn|2 while keeping the weight
vector w constrained to one: ||w|| = 1 [82] [88] [104]. The weighting vector then becomes
w = ar/||ar||. Also: E{|yn|2} = E{wHxn(wxn)H} = ((ar)H/||ar ||)E{xnxH

n }(ar/||ar ||) =
σ2

n
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Figure 5.3. Probability of detection PD versus INR for N = 8,32,64, and false
alarm rate PFA = 0.05. The three curves to the right correspond to the single
telescope case, the curves to the left correspond to an array of 14 telescopes.

However, the probability of detection is now given by

PD = P {T (x) > γ|H1} (5.21)

= Qχ2
2M

(
2γ

1 + pINR

)
(5.22)

Figure 5.3 presents the probabilities of detection as a function of interference-
to-noise ratio for a single-channel and for p = 14 channels. We have selected a
threshold such that PFA = 0.05, which means that without interference, we will
throw away 5% of the data. We can clearly see that the probability of detection
is greatly improved by moving to the multichannel case. The improvement is
equal to the array gain, p, which is for p = 14: 11.5 dB.

5.2.3 Residual interference after blanking

Consider a TDMA signal: an interferer which is periodically active in a fraction
β of the time, see figure 5.4. Here 0 < β < 1 is known as the duty cycle of the
periodic signal. Assume that the interferer is present in the selected frequency
band and that the duration of the slot in which the interferer is active is equal
to αN samples xN , where we take α > 1. Let as before σ2

r denote the power of
a single sample of the interferer when it is present. Since the interfering slots
need not be synchronised to the analysis window, a single interfering slot will
give rise to two analysis windows in which the interferer is partially present,
and possibly one or more analysis windows in which the interferer is present in
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Figure 5.4. Temporal occupancy figure for a transmitter/interferer with pe-
riod L0, slot length L = αN samples, power σ2

s (when on), and duty cycle
β = L/L0

all the samples. Since the interferer is time-slotted with duty cycle β, there will
also be windows that contain no interference. The corresponding probability
density p(I) of having a certain average interference power I per sample in an
arbitrary analysis window of length N can be computed in closed form as

p(I) =





(1 − (α + 1)α−1β)δ(I), I = 0
2β(Imaxα)−1, 0 < I < Imax

(α − 1)α−1βδ(I − Imax), I = Imax

(5.23)

where δ(.) is the Dirac delta function. For example, for an interferer of strength
σ2

r per sample when it is on, the maximal average interference power per sample
is obviously σ2

r , when all samples are contaminated. The probability of this is
(α−1)α−1β. Power densities less than σ2

r occur with a uniform distribution for
analysis windows that are only partly corrupted, at the edges of the interfer-
ence slot. Define the average interference power per sample before detection by
Ibefore, the average interference power per sample after detection and blanking
by Ires, and the fraction of the number of samples kept after detection and
blanking by Nres. Finally, define the average interferer power per (kept) sample
by Iafter:

Ibefore =

∫ σ2
r

0

Ip(I)dI = βσ2
r (5.24)

Ires =

∫ σ2
r

0

I(1 − p(I))p(I)dI (5.25)
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Figure 5.5. Effective INR after detection and excision versus INR before de-
tection (left), and a fraction of remaining samples after detection and excision
(right)

Nres =

∫ σ2
r

0

(1 − PD(I))p(I)dI (5.26)

Iafter = Ires/Nres (5.27)

As the functions defined above are based on a system with unit noise variance,
INR values before INRbefore = σ2

r/σ2
n and after detection and excisions INRafter

are defined, in which the noise may have a non-unity variance. Figure 5.5 shows
the dependence of the residual interference-to-noise ratio as a function of N
(the number of samples in an analysis block), for an interferer of length L = 64
subband samples, a duty cycle β = 1/8, and a false alarm rate of 5%. Obviously,
very weak interference is not detected, and in that case we throw away 5% of
the data because of the false alarm rate. High interference powers are easily
detected, and almost all contaminated analysis windows will be detected and
blanked. Only the tails of an interfering slot might be missed, so that there
is still some interference remaining after detection. The worst case occurs for
interference that is not strong enough to be detected all the time, but not weak
enough to be harmless.

Several other interesting facts can be seen in these figures. The most impor-
tant is the large performance gain in the multichannel approach, as compared
to a single channel. As seen in figure 5.5, the effect of using an array is to
shift the graphs of the probability of detection to the left by the array gain; for
the 14-channel detector for example, the graph is shifted by 11.5 dB. Hence,
we require 11.5 dB less interference power in order to detect it. However, the
effective gain is given by the vertical distance between the graphs: this shows
the amount of interference suppression for a given interference power. In fig-
ure 5.5 the suppression can be approximately 21 dB larger than that of the
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single-antenna case.

A second interesting phenomenon is the fact that the interference suppres-
sion is almost the same for a large range of analysis windows N. Thus, we would
make this window rather small, so that the residual number of samples is larger.
This effect is mainly due to the fact that the case of partial blocks with weaker
power is less frequent as the analysis block becomes smaller. Further study of
this model appeared in [92].

The (left-hand) curves in figure 5.5 show a maximum of INRafter at a certain
level. For low INRbefore, obviously, INRafter is low also. For high INRbefore, the
interferer can be detected easily, and can be efficiently excised. The INRafter

however, cannot be zero because some of the temporal windows of the detector
will have only a small overlap with the interferer “on” time slot. The inter-
ference energy in such a time slot may be below the detection threshold. The
(approximate) maxima of the detection curves in figure 5.5 can be estimated as
follows. Suppose the false alarm rate is set to 0.05. This yields, according to
formula (5.9), a certain threshold value of γ. Now assume that at the maximum,
the probability of detection is 0.5, then, using the value of γ derived above, the
INR follows from formula (5.22). A straightforward combination of the formu-
las leads to the following expression for the (approximate) maximum residual
interference after detection and excision:

INRres
<≈ β

p

(
χ2inv

cdf,2N (1 − PFA)

χ2inv

cdf,2N (1 − PDmax
)
− 1

)
(5.28)

An alternative approach to estimate the maximum residual interference after
detection and excision is based on an estimate of the variance of the eigenvalues
of the covariance matrix. Let R be a covariance matrix of a system with only
i.i.d. noise, with a diagonal noise matrix D = diag(σn

2
1, · · · , σn

2
p): R = D.

The eigenvalue decomposition of R yields: R = UΛUH , or Λ = UHDU. The
variance of Λ is then given by3:

var(Λ) =
1

N
Λ2 (5.29)

Assume that the noise variance of all telescope are equal, σn
2
i = σ2

n (∀i), and
assume there is a single interferer with power σ2

r , then λ1 = σ2
n + σ2

r . As a
detection threshold, a value of, say, 2 times the standard deviation of the largest
eigenvalue4 for the interference-free case (λ = σ2

n)can be used: γ = 2 std(λ1) =
2σ2

n/
√

N . When a multichannel detector, based on a largest eigenvalue λ1 is
used, the maximum residual interference after detection and excision is given

3From cov(R̂) = 1

N
R̄ ⊗ R it can be derived that var(D̂) = 1

N
diag(D)diag(D)t, and

var(D̂) = 1

N
D2. But the eigenvalues of R = D are equal to D itself, or var(Λ) = 1

N
Λ

2.
4This more or less arbitrary factor 2 can be related to the probability of a false alarm as

before.
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by

INRres
<≈ 2βσ2

n

p
√

N
(5.30)

The factor p in the denominator is a result of the array gain. Obviously, this
formula can be refined by considering unequal noise variances, but this refine-
ment will not be pursued here. The two results of the formulas (5.28) and
(5.30) are shown in figure 5.6 (right), and are compared to the theoretical
INRafter − INRbefore curves calculated using equations (5.24) to (5.27). The
estimated maxima of the curves (left) match reasonably well with the predicted
ones, and can be considered as upper bounds. Note that the outcome of equation
(5.28) depends on the particular choice of PDmax
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Figure 5.6. Effective INR after detection and excision versus INR before
detection (left), and upper limit for the residual interference after detection
and excision as a function of the number of samples (right). There are four
groups of two curves. Each group corresponds to a specific number of antenna
elements (p). The upper curves of the groups correspond to a detector based
on formula (5.28); the lower curves correspond to a detector based on formula
(5.30). The plusses in the left-hand figure correspond to the maxima according
to equation (5.28), the circles correspond to equation (5.30)

5.2.4 Multiple-antenna detection scenarios

Several detectors, described in this section, will be used for excision experi-
ments. These detectors differ in the way the observed covariance matrices R̂

are processed.

Known spatial signature
If a telescope array is calibrated, and if the location or direction of an in-

terferer is known, then the spatial signature of the interferer is known as well.
In that case, the matched spatial filter detector as in (5.17) can be used with
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known ar.

Unknown spatial signature, eigenvalue test
If the interferer spatial signature is not known, the test statistic in (5.17)

takes the form of a matched spatial filter

T (X) =
N

σ2
n

λ̂1
>H1

<H0
γ (5.31)

as ârR̂(âr)H = λ̂1 for âr = û1, where λ̂1 and û1 are the largest eigenvalue and

corresponding eigenvector of R̂. The threshold γ can be defined as is done in
sections 5.2.1 and 5.2.2. A simple alternative for the threshold is the use of the
maximum eigenvalue estimate as defined in (3.48) and [42]

γ = σ2

(
1 +

√
p

N

)2

(5.32)

The threshold γ can be given a small offset to change the probability of a false
alarm. The offset value can be found by simulation.

If there is more than one interferer, a threshold test for the eigenvalues can
be used as well. A complication is that in this case the number of interferers
must be estimated, as well as thresholds for each of the eigenvalues. The sum of
all eigenvalues could be used for detection as well. The complication here is also
in finding suitable threshold levels. Alternative approaches will be described
next.

Unknown spatial signature, GLRT detector
In case we only have an estimate R̂ based on a finite number of samples N

and the spatial signature vectors of the interference are unknown, there are no
optimal results. The eigenvalue analysis suggested that we should compare the
eigenvalues to a threshold defined by σ2

n: without interference, all eigenvalues
are asymptotically equal to σ2

n. If the noise power σ2
n is known, we can apply the

(generalised) likelihood ratio test (GLRT), which leads to a method for testing

the null hypothesis that σ−2
n R̂ = I (no interference) [25]. The GLRT leads to a

test statistic given by [98,97]

T (X) = −Np log

p∏

i=1

λ̂i

σ2
n

= −Np log
|R̂|
σ2

n

(5.33)

where λ̂i is the ith eigenvalue of R̂ and we detect an interferer if T (X) > γ. This
basically tests whether all eigenvalues are equal to σ2

n with a certain confidence.
In the no-interference case, one can show that

T (X) ∼ χ2
(p+1)(p−2) (5.34)

This makes it possible to select the value of γ to achieve a desired false alarm
rate.
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If the noise power is unknown as well, the Minimum Description Length
(MDL) detector [159] can be used. In this case, rather than setting a threshold
based on the asymptotic distribution of the LRT, the correct model order which
minimises the description length of the data is estimated [98]. This detector
is simple to implement, but a disadvantage is that the false alarm rate is not
known and not fixed. This detector will not be further pursued in this thesis.

Ad hoc detectors

The eigenvalue test and the GLRT detector described above require eigen-
value computations, which need O(p3) operations. An ad-hoc detector which
has a lower computational load, O(p2) operations, is the Frobenius norm detec-

tor. This detector is applied to pre-whitened covariance matrices R̂w with test
statistic

T (X) = ||R̂w||2F >H1

<H0
γ (5.35)

Note that ||R̂||2F =
∑

λ2
i . In [97] it is shown that this detector is equivalent to

the GLRT detector for weak interferer signals, up to the third order.

5.3 Experimental results

To test the blanking algorithms, the WSRT antennas were attached to the
NOEMI multichannel data recorder which can collect baseband data at 0.313
to 20 MHz sampling rates. The system was used both in the sampling and the
off-line processing mode, and in the on-line real-time processing mode. In this
way, a variety of actual intermittent transmitter and interfering signals were
processed.

In the following sections, the performance of the blanking algorithms will be
demonstrated using experimental data. First, two examples will be shown of
the eigenstructure of observed datasets with Iridium and GSM tranmsmitters.
Next the estimates will be shown of the probability of detection using single
and multichannel detectors, using observational data of GSM mobile phone and
Iridium satellite TDMA transmissions. Thirdly, an experiment will be shown in
which observed GSM transmissions were added (offline) to observational data
of the galactic absorption of the astronomical source 3C48. The detection and
blanking results were quite good, as it was possible to recover the 3C48 absorp-
tion line which was completely masked by the GSM interference. In addition,
several detectors were applied to observations of the source 3C48, which were
affected by Iridium TDMA transmissions. An illustration will be shown of the
eigenstructure of an astronomical intermittent source: a radio pulsar. Finally,
a result will be shown of the online demo blanking system with which online
detection and blanking measurements were carried out.
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5.3.1 Eigenstructure examples

The covariance matrix eigenvalue structure can be nicely illustrated on data
collected at the WSRT . From the observed data a sequence of short-term (ms
scale) cross-spectral matrices was computed, and an eigenvalue decomposition
was applied. Figure 5.7, left, shows an observation of 3C48 with Iridium satellite
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Figure 5.7. Single Iridium TDMA satellite transmitter (left) and multiple
interferers: GSM TDMA transmissions and a strong continuous source (right).

transmissions. It is an example of the time evolution of the eigenvalues of the
covariance matrices. There is only one dominant interferer, as can be seen
from the fact that the largest eigenvalue is 20 dB larger than the remaining
p − 1 eigenvalues. This means that either there are no other interferers or
that the interferers have signal powers less than ≈ 1% of the observed Iridium
transmitted power. The 1% rise of the p − 1 eigenvalues can also be explained
by other causes. The finite bandwidth effect (cf. section 3.3.1) for the used
78 kHz bandwidth yields a second eigenvalue which lies approximately 20 dB
below the largest eigenvalue. Moreover, the dataset also contains signals from
the astronomical source 3C48, which has a power of about 5% of the channel
noise.

The figure to the right shows an observation of a weak GSM uplink trans-
mission, together with a strong continuous narrowband continuous wave (CW)
signal that leaked in from a local oscillator of the WSRT receiver system. The
largest eigenvalue is due to the CW signal and is always present. The GSM
interference is intermittent: at time intervals where it is present the number of
large eigenvalues increases to two. The remaining eigenvalues are slightly above
the noise floor. The reasons for this effect are the same as in the case of the
Iridium transmissions.

Note that it is crucial that the noise is spatially white. For coloured noise,
an extension (whitening) is possible but we have to know the colouring.
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5.3.2 Comparison of single-channel and multiple-channel
detectors: influence on pD

In this section, single-channel and multichannel detectors will be applied to
astronomical datasets which are affected by intermittent transmissions or inter-
ference.

The first experiment is to verify the derived theoretical p(D1|H1) curves
experimentally, using datasets of 3C48 with GSM and Iridium transmissions.
The detection probability estimation approach was to count the number of de-
tected transmissions, while gradually increasing the noise level. This was done
adding spatially white noise to the GSM and Iridium datasets during offline
processing. Figure 5.8 shows the autocorrelations of eight WSRT telescopes for
both datasets. The communications transmissions enter the WSRT telescopes
via sidelobes. The figure shows that the sidelobe gains of the telescopes dif-
fer by a factor of about 10. The fast time variability of the GSM signals are
caused by multipath fading close to the source. The 0.5-second time variability
of the GSM and Iridium transmissions are caused by changes in the sidelobe
level due to telescope and source motion, and due to multipath reflections close
to the telescopes. The eigenvalue decomposition of both datasets, shown in fig-
ure 5.7, indicates that the dominant eigenvalues are ≈ 10 to 20 dB above the
noise floor, which means that nearly all interfering power is concentrated in the
largest eigenvalue.
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Figure 5.8. Autocorrelations of 3C48 observations with TDMA GSM trans-
missions (0.4 ms duration bursts) for eight WSRT telescopes (left), and with
Iridium satellite transmissions (9 ms duration bursts), also for eight WSRT
telescopes (right).

Before applying detectors to the datasets, the observations were pre-whitened.
The whitening was done by using the diagonal of the covariance matrix, dis-
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carding the sections where there were GSM transmissions present:

Rw = (R ⊙ I)−
1
2 R (R ⊙ I)−

1
2 (5.36)

As before, the covariance matrix R is composed of an interference power ma-
trix Br, interference array response Ar, astronomical source power matrix Bs,
source array response As, and noise power matrix D

R = ArBr(Ar)
H + AsBsA

H
s + D (5.37)

Without loss of generality it is assumed that the electronic gains G are “ab-
sorbed” in the spatial signature matrices Ar and As. As the flux of 3C48 is small
compared to the channel noise, R⊙ I is a good estimate of D in time-frequency
bins without interference, and as a result:

Rw ≈ D− 1
2 ArBrA

H
r D− 1

2 + I (5.38)

The INR is defined, as before, by the ratio of the transmitter power and the
noise power, but due to the different sidelobe levels and multipath effects, the
received transmitter power varies from telescope to telescope by about 10 dB.
The INR is therefore defined by INR ≡ λ̂1/p. Here, λ̂1, the largest eigenvalue

estimate, is obtained from an eigenvalue decomposition of R̂w.
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Figure 5.9. Estimated p(D1|H1) curves for observed GSM transmissions.
The figure to the left shows single-channel detectors based on the telescope
autocorrelations Rii (i = 1 · · · 8), and on a multichannel detector based on the
largest eigenvalue λ1. The figure to the right shows the estimated p(D1|H1)
curves for four multichannel detectors based on respectively λ1, tr(R), |R|,
and ||R||F . The figure also shows the mean of the single channel results,
(Rii)mean. The detectors were configured such that pFA = 0.05.

The single and multichannel detectors were applied to R̂w. Figure 5.9 shows
the estimated p(D1|H1) curves as a function of INR for the GSM dataset. The
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Figure 5.10. Estimated p(D1|H1) curves for observed Iridium satellite trans-
missions. The applied processing and results are similar to the GSM observa-
tions shown in figure 5.9.

left-hand figure shows a detector based on the largest eigenvalue for a false alarm
rate of 0.05. The single channel detectors based on the (Rw)ii estimates are also
shown in the figure. Depicted by (Rii)mean is the mean of the single-detector
curves. For p = 1 and for p = 8 (assuming N = 16 samples and a false alarm
rate of 0.05) the INR corresponding to a theoretical estimated p(D1|H1) = 0.5 is
0.048 and 0.06 respectively. For p = 1 this is close to the experimental value in
figure 5.9. For p = 8 this number is about a factor 2 lower than the theoretical
value. This is probably caused by the fact that the sidelobe gain of the WSRT
telescopes, for the observatons under consideration, differ by more than 10 dB.
However, the figures clearly show the advantage of the multichannel detection
scheme over the single-channel approach.

Figure 5.9 (right) shows similar results as the left-hand figure, but now de-
tectors based on tr(R) =

∑
i λi, |R| =

∏
i λi, and ||R||2F =

∑
i λ2

i are added.
All multichannel detectors, except the determinant detector, have comparable
performance. This means that if computational efficiency is an issue for certain
applications, the detector based on the Frobenius norm is preferred. Calcula-
tion of the Frobenius norm requires multiplicative operations in the order of
p2; full-rank eigenstructure decompositions require multiplicative operations in
the order of p3. The determinant detector, which for low INR is equal to the
Frobenius detector up to third order [97], apparently does not perform as well
as the Frobenius norm detector for higher INR values.

Figure 5.10 shows p(D1|H1) the results of observations with Iridium trans-
missions. The performance of the detectors in this case is similar to the detector
performance in the observations with GSM transmissions.

The GSM transmissions in the datasets discussed before showed fast, order
0.1 s, fluctuations (fast fading). This suggests that these fluctuations are caused
by a cluster of scattering objects close to a moving transmitter giving rise to
many multipaths . This can be verified by determining the distribution of the



5.3. EXPERIMENTAL RESULTS 101

magnitude of the observed complex samples. If there are many reflections on
the scattering objects nearby a moving source, then it can be shown [153] that
the distribution of the amplitude |x| of observed complex samples is Rayleigh
distributed [82,176]:

p|x|(|x|) =
2|x|
σ2

r

e
− |x|2

2σ2
r . (5.39)

The reason for this is that the multipath reflections can be described as signals
with random phases, and that therefore the sum of many reflections can be rep-
resented as Gaussian noise (the amplitude of Gaussian complex noise signals is
Rayleigh distributed). However, if there is a dominant path, then the amplitude
distribution is a Rice distribution:

p|x|(|x|) =
|x|
σ2

r

e
−(

|x|2+a2)

2σ2
r

I0(a|x|/σ2)
. (5.40)

where a is defined by a = E{|x|}, and I0 is the modified Bessel function of the
first kind of order 0. Figure 5.11 shows the amplitude of a baseband signal
of telescope 6 for a dataset wit GSM transmissions. The figure also shows a
mask which is used for separation of the GSM bursts from time slots which
do not contain GSM transmissions. Figure 5.12 shows the distribution of the
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Figure 5.11. Absolute values of the baseband signal x6 of telescope 6 for
a narrow frequency band of 78 kHz width. A mask is defined, depicted by
rectangular bars.

amplitude of the observed baseband signal of telescope 6, for time-slots without
GSM transmissions (left) and for time-slots with GSM transmissions (right). In
the situation in which there is no transmission the distribution is a Rayleigh
distribution, as is expected for Gaussian signals. If there is a GSM transmitter
present the distribution appears to be a Rice distribution, which means that
there exists a dominant transmission path. The solid curves in the figure are the
theoretical Rayleigh and Rice distributions. The Iridium dataset was processed
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in a similar way as the GSM dataset. For Iridium, the distributions are similar
to the GSM dataset, indicating that in this case (as expected) there also is a
dominant path.

Figure 5.12. Distribution of the amplitude of the observed baseband signal of
telescope 6, for time-slots without GSM transmissions (left) and for time-slots
with GSM transmissions (right).

5.3.3 Application of multichannel detectors: further ex-
amples

In order to demonstrate the performance of the subband detection and blank-
ing method, as described earlier in this chapter, an observation containing GSM
transmissions at 905 MHz was superimposed on an observation of 3C48 at 1420
MHz, both having the same bandwidth. The 3C48 dataset shows a galactic
spectral absorption line which was masked by the added GSM data. Although
a bit artificial, the excellent linearity of the WSRT system implies that had a
GSM signal been transmitted with a carrier frequency of 1420 MHz, then the
measured data would be the superposition of the two signals plus system noise.
The overlay allows us to verify the blanking performance for various mixtures
of signal-to-interference power, since the clean data are now available as a ref-
erence, while the theoretical coherency is also well-known. As described before,
the detection of an interferer in a specific time-frequency cell is based on the
eigenvalues of the corresponding correlation matrix of the resulting mixture. In
this scheme, if one or more eigenvalues are above a threshold, then an interferer
is detected and that data block is omitted. However, to avoid the selection of
the threshold based on a desired false alarm rate, a choice was made to sim-
ply throw away the worst 30 percent of the data according to the value of the
detector.

Figure 5.13 shows the coherency functions over all baselines for a particular
mixture of signals and interference: scaling the GSM data by 0.1 and the clean
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Figure 5.13. Magnitude of the coherency functions of 3C48 mixed with GSM
interference: clean data (upper left), 3C48 data mixed with GSM data (upper
right), effect of detection and excisison with a single channel detector (lower
left), and effect of detection and excision with a mutichannel detector (lower
right).

3C48 data by 0.9. It is seen that (top left) the clean 3C48 spectrum shows
the absorption line5, which is (top right) completely masked when GSM inter-
ference is added. After blanking, (bottom right) the absorption line is almost
perfectly recovered. For comparison we also included (bottom left) the results of
blanking based on single-channel power detection from channel 2 only, without
the subband decomposition. The failure of this common way of single-channel
detection is clearly seen. The reason is that the GSM signal was rather weak,
so that for single-channel wideband processing the probability of detection was
quite low, even for a false alarm rate of up to 30%.

To verify the phase behaviour of the coherency the unwrapped phase as a
function of frequency was computed. Note that the geometrical delay compen-
sation and fringe corrections were not included in the recording. As a result of

5The source flux of 3C48 at 1420.4 MHz is 15.9 Jy, yielding a correlation coefficient of
approximately 0.055. The source 3C48 is an extragalactic spectral continuum source. Its
radio waves, at 1420.4 MHz, are absorbed by the hydrogen gas of the Milky Way, which is
visible as an absorption dip.
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Figure 5.14. 3C48 coherency phase function versus frequency, for various
baselines, predicted (solid lines) and observed (broken and dotted lines).

narrowband processing, the delay offset of one channel with respect to another
shows up as a frequency-dependent phase shift (the fringe). The direction of the
sources 3C48 and all baseline vectors is known, so the coherency phases were
easily computed. Figure 5.14 shows the observed phase differences averaged over
all identical baselines, and the computed phase, both as a function of frequency
and baseline length. It is seen that the correspondence is very good. Note that
for the shorter baselines we have more realisations so that their correspondence
is better.
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Figure 5.15. 3C48 observations affected by Iridium TDMA transmissions,
before and after detection and excision. Both the auto (rcii) and cross-
correlation coefficients (rcij , i �= j) are shown. The figure to the right is a
zoomed-in version of the left figure.

Another example of the excision of communication transmissions in radio
astronomy data is the excision of Iridium TDMA signals in the 3C48 contin-
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uum source, shown in figure 5.15. Normalised auto- and cross-correlations are
plotted in solid lines6. The observed TDMA time slot length is L ≈ 9 ms, the
observed duty cycle is β = 0.05. The processing time resolution, that is, the
observation slot length the detection is based on, is 6.8 ms. As before, both
single-channel detectors and multichannel detectors (based on the Frobenius
norm , the largest eigenvalue and the determinant) are used. The filtered (ex-
cised) spectra are shown as discontinuous and dotted curves. The multichannel
detector attenuates the transmission down to the noise level. To verify this, the
noise variance is calculated using the derivations in chapter 3. The normalised
covariance matrix and its variance are defined by

Rw = W R W, W = (R ⊙ I)−
1
2 (5.41)

var{R̂w} = W2 var{R̂} W2 =
1

N
(Wvecdiag(R))(Wvecdiag(R))t(5.42)

In interferometer terms, the normalised covariance or correlation coefficient for
interferometer ij is given by

rcij =
E{xixj}

E{xixi}E{xjxj}
=

σ2
s√

(σn
2
i + σ2

s)(σn
2
j + σ2

s)
(5.43)

Assuming that σ2
s ≪ σn

2
i and σ2

s ≪ σn
2
j , which is approximately true for the

Iridium transmissions under consideration, then rcij ≈ σ2
s

σniσnj
, and

var{rcij} =
1

N
rciircjj ≈ 1

N

σ4
s

σn
2
i σn

2
j

(5.44)

Assuming that the noise variances of the telescopes are equal, or σn
2
i = σ2

n (∀i)7,
the variance of the cross-correlations averaged over the (1

2p(p − 1)) different
entries in the normalised covariance matrix is given by:

mean{var{rcij}} ≈ 1

N 1
2p(p − 1)

σ4
s

σ4
n

(5.45)

For the settings used in figure 5.15 (N = 256, p = 7, σ2
s/σ2

n = 0.06) , the mean
of the standard deviation is 0.00087, which fits in with the observed value. The
upper limit of the residual interference after detection and excision is approxi-
mately given by formula 5.30:

INRres
<≈ 2βσ2

n

p
√

(N)
(5.46)

6The source flux of the spectral continuum source 3C48 at 1624.4 MHz is 14.1 Jy, yielding
a correlation coefficient of approximately 0.06.

7The noise variance differences between the WSRT telescopes are typically of the order of
15%.
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For the settings used (N = 256, p = 7, σ2
n = 1, β = 0.05), this yields INRres

<≈
0.00089. Not surprisingly, this is approximately equal to the mean standard
deviation estimated above. The conclusion is that the transmitter signals are
suppressed at least down to the estimated level as given by formula 5.30.

Radio astronomical signals, for instance from pulsar sources [146, 124], can
be intermittent. An example of a pulsar, PSR0329+54, as observed with the
NOEMI recorder at the WSRT , is shown in figure 5.16. The pulsar pulse period
is 0.7145 s [145], the (FWHMP) pulse length is 5.9 ms, and its average flux at
301 MHz is 2.18 Jy. The figure shows the eigenvalues of the observation after a
whitening operation. Note that the maximum and minimum eigenvalues outside
the pulsar-off time slots correspond to the predictions of formula 3.48 [42]8:

λ̂1 ≈ 1.56, and λ̂p ≈ 0.56. The pulsar signal is dominantly present in the largest
eigenvalue, as expected. The reason is that the pulsar source is in power a
dominant point-source which, in a noise-free situation, would give a rank one
covariance matrix. Pulsar signal powers are known to be highly variable; this
is clearly visible in the figure. Also here, some of the pulsar power “leaks”
into the remaining p − 1 eigenvalues for reasons discussed earlier, namely finite
bandwidth and sorting effects.
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Figure 5.16. Eigenstructure time dependence for an astronomical intermit-
tent source: the pulsar PSR 0329+54. The pulsar period is 0.715 s; the average
pulse width is approximately 5.6 ms.

If the blanking of interference is necessary in observations with intermittent
astronomical sources, then in most cases the detection and excision scenario can
still be used, as the majority of those sources is weak with respect to system
noise. However, an additional criterium for the detector that should be used is

8Here the number of observed real samples N = 2 × Nsam, where Nsam is the number of
complex samples.
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that the detector threshold is higher than the expected maximum astronomical
signal. Assuming that, for the duration of the on-period, the astronomical signal
can be (approximately) described as a white Gaussian noise process, then the
corresponding detector threshold can be derived in the same way as was done
for the interference case.

5.3.4 Online blanking demonstration

In addition to the offline interference detection and excision experiments, on-
line experiments were also carried out using the NOEMI online DSP system
connected to the WSRT. The goal of these experiments was to demonstrate re-
altime operation of a multichannel detection and excision system at the WSRT.
The operational mode of the online experiments was to alternately observe for
a short period, in order to estimate optimal detector thresholds, and to perform
the actual observation with the new detector threshold. Regular updates of
the detector thresholds are necessary to account for gain and noise power drifts
and fluctuation, which are present at radio telescopes such as the WSRT. As
TDMA/FDMA and radar pulse signals were observed, each with duty cycles
β < 20%, the thresholds could easily be calculated from data from which 20%
of the samples with the strongest power were removed. Figure 5.17 shows an ex-
ample of an online blanking experiment at the WSRT of airplane radar at 1080
MHz. Both the original data and the blanked data were, simultaneously, stored
on disk. The observational duty cycle, that is, the sustained processing capacity,
was 20 %, mainly due to limitations of the PC PCI bus. The interfering power
was removed, at least down to the noise level.
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Figure 5.17. Online detection and excision of airplane radar DME: original
spectrum (left) and spectrum with radar bursts removed (right).
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5.4 Conclusions and further research

In this chapter the theoretical performance of single-channel and multichan-
nel interference detectors were considered and applied to experimental radio
astronomical data. It was shown that by subband processing, many narrow-
band techniques available in array signal processing and detection theory can
be successfully applied to radio astronomical observations contaminated with
intermittent transmitter signals and interference. The benefits of multichan-
nel spatiospectral detection and excision were demonstrated, both theoretically
and experimentally. Finally, the theoretical limits for the maximum attenuation
numbers were derived.

The detection theory (Neyman-Pearson detector) used in this chapter was
based on the assumption that the a-priori probabilities (P(H1) and P(H0)) are
not known, and that there are no costs assigned to the different possible out-
comes of the hypothesis tests. This makes the detection methods generally
applicable. However, if for transmitters and interference the a-priori probabili-
ties are known, and (or) if costs for the different outcomes of the hypothesis tests
are defined, then also several alternative hypothesis testing criteria can be used.
It is likely that by following some of these alternative scenarios the effect of the
remaining interference on the astronomical data can be further reduced. It is
also expected that the improvement over the method described in this chapter
is not dramatic, but it may be worthwhile.

In the analysis presented in this chapter, the focus was on single-frequency
channel processing. In practice the transmitter or interferer bandwidth may be
(much) different from the analysis bandwidth. If this is the case, then, obviously,
a great improvement of the detection and excision performance can be achieved
by combining the frequency bins prior to detection.

When excising interference, one must keep track of the time-frequency slots
excised because they influence the sensitivity of the observations. The remaining
data (i.e. the un-excised data) must be multiplied with a scaling factor in order
to be comparable to frequency bins which are not affected by excision. If this
scaling is not applied, then the observed spectral lines will be distorted. Note
that this scaling procedure is interferometer -based.



Chapter 6

Spatial filtering

6.1 Introduction

This chapter will focus on the efficacy of multichannel spatial filtering for the
removal of continually present man-made interference or radio transmissions,
such as TV signals, radio broadcasts, or communications and position reference
satellite systems. Examples of these transmissions are shown in figure 6.1. Spa-
tial filtering can be applied to interferometric radio telescope arrays such as the
Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands, the Very
Large Array (VLA) in the USA, or future massive phased array telescopes, such
as the Low Frequency Array (LOFAR), currently under design in the Nether-
lands, and the Square Kilometer Array (SKA).

Extensive literature exists concerning spatial filtering and nulling in beam-
forming arrays, for example in the context of communications systems and radar
array signal processing [149] [88] [168]. In radio astronomy, research on and ap-
plication of these techniques started only fairly recently, around 1998. Most of
the efforts are directed at subtraction approaches using a few (≈ two to four)
antennas [6] [29]. Although effective in interferer reduction capabilities, these
methods do not fully exploit the subspace structure of the antenna arrays. In
astronomical SKA-related phased-array studies (i.e. pre-correlation), however,
beamforming and subspace-based nulling were investigated and applied to ra-
dio astronomical demonstrators [64] [136] [43] [45]. Until recently [100] [147],
post-correlation interference mitigation studies using the subspace structure of
the full array covariance matrix , were very limited. The aim of the research
presented in this chapter therefore is to focus on post-correlation spatial filter-
ing techniques, based on a subspace structure analysis of the telescope output
signal covariance matrices1.

In interferometric radio astronomy the signals from various sensors (tele-
scopes) are usually split into narrow frequency bins (say 50 kHz), and correlated

1Parts of the results of this chapter were published in [98,22,119,148]

109



110 CHAPTER 6. SPATIAL FILTERING

Figure 6.1. Examples of time-continuous transmissions in observation of the
astronomical source 3C48. The spectrograms show stereo sound carrier waves
of the analog television station TV Lingen (left) and transmissions of the GPS
satellite system (right).

over 1–100 milliseconds to yield short-term correlation matrices. These are then
integrated over longer periods of typically 10–60 seconds to yield long-term cor-
relation matrices (containing the “visibilities”), which are stored onto disk or
tape and constitute the output of the telescope interferometer. Images of the
sky are usually constructed by fourier transforming several hours of “visbility”
data.

The long-term correlation matrices contain contributions from the astronom-
ical sources in the pointing direction through the main lobe of the telescope, from
interferers in the near and far field through the side lobes, and from spatially
white receiver noise. The astronomical signals usually have a signal-to-noise
ratio (SNR) of −20 dB or less, and hence they are too weak to be detected over
short integration periods. Harmful interference may range from −70 dB up to
+50 dB with respect to the instantaneous system noise level.

Continually present interferers cannot be cut out in the time-frequency plane
without losing astronomical information as well. In some cases, for example in
continuum observations, spectral notch filters can be used. However, in many
other cases, such as spectral line research, spectral filters cannot be used and
other techniques are needed, such as spatial filtering. Assuming that the fre-
quency bins are sufficiently narrow-band compared to the maximal propagation
delay across the array, we can associate a spatial signature vector to each inter-
ferer, and estimate these from the short-term correlation matrices. By project-
ing out the corresponding dimensions, the interference is removed. The filtered
correlation matrices are then integrated over 10 s.

Spatial filtering modifies the correlation matrix and therefore a correction
must be applied to recover the original visibility matrix of interest to radio
astronomers. The correction is possible under the assumption that the spatial
signatures of interferers change sufficiently over the 10 s period, so that different
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dimensions are knocked out each time. This is expected since (a) ground-based
interferers are subject to multipath fading, (b) satellite and airplane interferers
move, and moreover (c) the telescopes are rotating slowly while tracking a point
in the sky, and continuously compensate for the changing baseline lengths by
delay tracking and a phase rotation (fringe correction) in the order of a few Hz.
This causes even stationary interferers (TV stations) to change in the spatial
signature vector over a period of 10 s.

In the next sections, the spatial filtering algorithm is introduced and the
correction that has to be applied to recover a good estimate of the desired
covariance matrix is discussed. Next, the performance of the algorithm is shown
both on simulated data, and on real data collected at the WSRT .

6.2 Data model

Figure 6.2. Se-tup of the correlation procedure with spatial filtering and
distortion correction.

Consider a telescope array as having p elements, and consider a single fre-
quency bin, which for simplicitys sake is assumed to have at most q = 1 interferer
present. The array output vector x(t) is modelled in complex baseband form
(cf. section 2.3.2) as

x(t) = a(t)s(t) + v(t) + n(t) (6.1)

where x(t) = [x1(t), . . . , xp(t)]
t is the p × 1 vector of output signals at time t,

s(t) is the interferer signal with spatial signature vector a(t) which is assumed
stationary only over short time intervals, v(t) is the received sky signal, as-
sumed a stationary Gaussian vector with covariance matrix Rv, and n(t) is the
p×1 noise vector with independent identically distributed Gaussian entries and
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covariance matrix σ2I. We assume that σ2
n is known from a calibration obser-

vation, and that Rv ≪ σ2
nI. Given observations xn = x(nTs), where Ts is the

sampling period, the objective is to estimate Rv.
Figure 6.2 schematically shows the set-up of the data acquisition and corre-

lation process, followed by a spatial filtering and distortion correction step. The
processing steps will be discussed in more detail in the next section.

6.3 Spatial filtering algorithm

Given the observations xn, the first step is to form short-term covariance esti-
mates R̂k,

R̂k =
1

T

(k+1)M∑

n=kM

xnxH
n (6.2)

where M is the number of short-term samples to average, MTs is in the order
of 1–100 millisecond . In the usual procedure, these matrices are then further
averaged to obtain a long-term (say NMTs = 10 second) estimate

R̂10s =
1

N

N∑

k=1

R̂k (6.3)

The reason for choosing the 1–100 millisecond and 10 second values is given
later in this section, and in section 6.6.

If there is only an astronomical signal and white Gaussian noise, R̂10s is an
unbiased estimate of the true covariance matrix

R0 = Rv + σ2
nI (6.4)

where Rv contains the astronomical ‘visibilities’ and σ2
n is the telescope noise

power.
Consider now the situation where there is an interferer with zero mean,

power σ2
k and a spatial signature vector ak (normalised to unit norm), assumed

constant over the short integration periods. The expected value of the short-
term estimates R̂k will then be

Rk = R0 + σ2
kaka

H
k = Rv + σ2

nI + σ2
kaka

H
k (6.5)

In the construction of the long-term estimate, the interferer contribution will
be (1/N)

∑
σ2

kaka
H
k . Depending on the variability of ak, the contribution will

average out somewhat, but if σk is strong, its influence will be felt: the estimate
of Rv will be biased and will also have an increased variance. It is therefore
desirable to filter the interferer out.

Suppose that the spatial signature ak of the interferer is known. We can
then form a spatial filter Pk,

Pk := I − ak(aH
k ak)−1aH

k (6.6)
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which is such that Pkak = 0. Thus, when this spatial filter is applied to the
data covariance matrix all the energy of the interferer will be nulled. Denoting
the modified (filtered) covariance matrix by Řk we have

Řk = PkR̂kPk , E{Řk} = PkR0Pk . (6.7)

Note that the astronomical data are modified as well, so that we will have to
apply a correction at a later stage. When the spatial signature of the interferers
is unknown, it can be estimated by an eigenanalysis of the sample covariance
matrix R̂k. The covariance matrix Rk can be written in terms of eigenvalues
and eigenvectors as

Rk =: UkΛkU
H
k (6.8)

where Uk is a unitary matrix containing the eigenvectors, and Λk is a diagonal
matrix containing the eigenvalues. Assuming that the astronomical contribution
is small, the eigenvalue decomposition (cf. section 3.2.2) can be expressed as

Rk = [ak | Unk]




σ2
k + σ2

n 0 · · · 0
0
...
0

σ2
nIp−1




[
aH

k

UH
nk

]
(6.9)

where Unk is the noise subspace and σ2
n the telescope noise variance. Thus,

the principal eigenvector is equal to ak. This means that an estimate of ak can
be obtained from the eigenvalue decomposition of Rk, and that it can be used
to construct the projection matrix Pk. As in practice the covariance matrix
Rk may not be known, the sample covariance matrix R̂k has to be used to
construct Pk. The next step is averaging the modified covariance matrices Řk,
which yields the long-term estimate

Ř10s :=
1

N

N∑

k=1

Řk =
1

N

N∑

k=1

PkR̂kPk (6.10)

To recover an unbiased estimate of R0, assuming that the interferer has been
projected out completely, a correction has to be applied to Ř10s. The following
matrix identity is employed

vec(ABC) = (CT ⊗ A)vec(B) (6.11)

Thus, the expected value of the distorted, filtered, covariance matrix can be
expressed as

E{vec(Ř10s)} = E{ 1

N

N∑

k=1

(PT
k ⊗ Pk)vec(R̂k)}

=

{
1

N

N∑

k=1

(PT
k ⊗ Pk)

}
vec(R0)

= C vec(R0)

(6.12)
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where C = 1
N

∑N
k=1(P

T
k ⊗ Pk). Thus, an unbiased estimate of R0 can be

obtained by applying the inverse of C to vec(Ř10s),

R̂10s
0 = unvec(C−1vec(Ř10s) ) (6.13)

E{R̂10s
0 } = unvec(C−1E{vec(Ř10s)} )

= R0 = Rv + σ2
nI (6.14)

In short, to obtain the covariance matrix representing the astronomical
sources, the projected short-term covariance matrices can be averaged as usual
to long-term averages, but the correction matrix C has to be applied, which is
formed in the same way by averaging PT

k ⊗ Pk. At this point, several aspects
will be considered.

• The invertibility of C is crucial for recovering the correlation matrix of the
astronomical signals. If all Pk are the same (ak is stationary), then C will
not be invertible. One can show that an average of only a few different Pk

is needed to ensure invertibility. Indeed, if the ak are random independent
vectors, then C → I as N → ∞. Thus ak needs to be sufficiently variable
over the long integration period. On the other hand, to be able to estimate
ak from the data, the interferer signature has to be constant over short
integration periods. An analysis of the spatial stationarity properties of
the interferer gives suitable information to determine the partitioning of
a long integration interval into short intervals where ak can be considered
constant.

• The stationarity of the interferer is dependent not only on its own move-
ment (in thecase of mobile telephones or satellites), but also on the geomet-
rical delay compensations applied to the telescope signals to compensate
for the rotation of the earth, meanwhile tracking the desired astronomi-
cal objects. Depending on the baseline length and the elevation angle of
the pointing direction, the stationarity is limited to about 0.05–0.5 sec in
the case of WSRT, and hence varies sufficiently over the usual integration
period of 10 seconds.

• A good estimate of the interferer signature can be obtained only if it is
sufficiently strong to be detected. This is dependent also on the short-term
integration length, and thus limited by the period over which the interferer
can be considered stationary. The accuracy of this estimate determines
the amount of residual interference.

If the principal eigenvector is always projected out, regardless of the in-
terference power, then a bias will result if the power is weak. Thus it is
a better approach to detect the presence of an interferer using a standard
test for this, and to apply a projection only if the interferer has been
detected.
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• Another issue is that of computational expenditure. C will be a matrix of
size p2 × p2. Online constructing and inverting such a large matrix can be
time-consuming. An alternative is to store the projection directions {ak}
and apply the corrections off-line.

The single-interferer derivations are easily generalised to multiple interferers.
Suppose that there are qr interferers with unknown a vectors, with qr < p. As
described in sections 2.3.2 and 3.2.2, the covariance matrix including multiple
interferers can be described by

R = Rv + σ2
nI + ArB

rAH
r (6.15)

where Ar and the source power matrix Br are defined as in section 2.3.2. The
projection matrix in this case is defined by

Pk = I − Ak(AH
k Ak)−1AH

k (6.16)

If the interferer directions ar not known, then the interferer subspace can be
found by means of an eigenvalue analysis of R̂k. Also here, the astronomical
source signal power must be much less than the interferer powers because oth-
erwise they would distort the interferer subspace estimation. The derivation of
the distortion correction for the multiple interferer case is identical to the single
interferer case.

6.4 Alternative spatial filtering algorithms

Without going into too much detail, a few other possibilities for spatial filtering
and interference cancellation will be mentioned next. Assume that the model de-
scribed in the previous section, Rk = Rv +σ2

kaa
H +σ2

nI (equation (6.5)), holds.
For this model, two alternative techniques will be discussed: the subtraction of
interference and interference mitigation using a reference signal. This section
will conclude with a brief comparison of pre- correlation and post-correlation
filtering techniques.

Subtraction of interference
An alternative filtering method is interference subtraction. With σ2

k and
σ2

n or their estimates, the contribution of the interferer can be reduced by sub-
tracting it from the observed covariance matrix. Let Ř be the filtered covariance
matrix, that is, the observed covariance matrix with the estimated interference
removed by subtraction:

Řk = R̂k − σ̂k
2âkâ

H
k (6.17)

Without further knowledge, the best estimate of ak is the dominant eigenvector
u1k of R̂k, and likewise the best estimate of the interferer power σ̂2

k is λ1k −σ2
n.

Since both of these are derived from R̂k, it turns out not to be too different
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from the projection scheme. Indeed, using a scaling parameter αk, and using
the definition Lk ≡ (I − αku1ku

H
1k), the two methods are related as follows:

Ř⊥
k = LkR̂kL

H
k (6.18)

= R̂k − u1ku
H
1kλ1k(2αk − α2

k) (6.19)

Ř−
k = R̂k − σ̂k

2u1ku
H
1k (6.20)

where Ř⊥
k is a generalisation of projection-filtered covariance matrix. It would

be the equal to the projection-filtered covariance matrix for α = 1. Ř−
k the

subtraction filtered matrix. Now, Ř⊥
k can be made equal to Ř−

k by selecting αk

such that λ1k(2αk − α2
k) = σ2

k. Using λ1k = σ2
r + σ2

n, the scaling factor αk can
be written as

αk = 1 ±
√

σ2
n

σ2
n + σ2

k

(6.21)

The projection scheme had αk = 1. Therefore, subtraction of eigenvector com-
ponents can also be represented by a two-sided linear operation on the correla-
tion matrix, for an arbitrary αk > 0. Consequently, the visibility matrix Rv is
altered, which means that the corrections mentioned in section 6.3 are in order.

For known interferer direction vectors ak, a distortion correction only needs
to be applied if the interferer power estimate is biased, as will be shown next.
Define Ř⊥ =

∑
k Ř⊥

k and Ř− =
∑

k Ř−
k so that

E{Ř⊥} =
1

N

N∑

k=1

LkR0Lk +
1

N

N∑

k=1

σ2
kLkaka

H
k Lk (6.22)

E{Ř−} = R0 +
1

N

N∑

k=1

[
σ2

k − E{λ̂1k(2α̂k − α̂k
2)}
]
aka

H
k (6.23)

= R0 +
1

N

N∑

k=1

[
σ2

k − E{σ̂2
k}
]
aka

H
k (6.24)

where Ro is the interference-free covariance matrix. Recall that for the projec-
tion scheme, αk = 1 and Lkak = 0, hence R0 changes. For αk equal to (6.21),
the expected value in (6.24) is not equal to Ro if σ̂2

k is biased, which means that
corrections are needed.

Pre correlation versus post correlation spatial filtering
Spatial filters, both projection and subtraction filters, can be applied before

correlation or after correlation. Both are similar from a mathematical point of
view, assuming a stationary filter. Indeed, as before, let the time-dependent
telescope array output signal vector be denoted by x, and let this vector be
modified by a pre-correlation constant filter matrix P. The filtered array output
vector x̌ is then given by

x̌ = Px (6.25)
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Let R = E{xxH}, and denote the filtered covariance matrix by Ř, then

Ř = E{x̌x̌H} = E{PxxHPH} = PRP (6.26)

which means that spatial filtering at the array output level is mathematically
identical to filtering after correlation, assuming the filter is stationary and data-
independent. Therefore, in applying spatial filters in linear systems it does not
make much sense to make a classification distinction between applying these
filters before or after correlation. A more relevant distinction would be the
update rate of the estimation of the spatial signature vectors. Note that in
the detection of interference, the difference between pre-correlation and post-
correlation is essential.

6.5 Spatial filter attenuation estimates

6.5.1 Model error simulations

In this section the results of a computer experiment will be presented. Consider
a scenario in which there are p = 8 telescopes, a weak astronomical signal
(−20 dB w.r.t. the receiver noise), and a single interferer of varying power.
The received data are correlated over M = 100 samples, the spatial filters are
applied, and the result is further averaged over N = 100 such matrices. The
performance measure used is the Mean-Squared-Error of the resulting estimate
R̂10s compared to the desired outcome R0 = Rv + σ2I, averaged over 100
Monte-Carlo experiments, that is,

MSE = E
{
‖ R̂10s − R0‖F

}

Figure 6.3, left, shows the MSE curves for several cases:

• Unfiltered interference: this shows what happens if nothing is done and
the long-term covariance estimate is computed traditionally.

• RFI-free: the data do not contain interference and the covariance is esti-
mated as traditionally done (no filtering).

• Perfect projection filter: assumes that the spatial signatures of the inter-
ferer are perfectly known, and the distortion correction is applied.

• Perfect projection filter, uncorrected: assumes that the spatial signatures
of the interferer are perfectly known, but the distortion correction is not
applied.

• Subtraction filter, λ1: a filter based on the substraction of the interference
using an estimate of the largest eigenvalue and assumes a known spatial
signature ak: Ř = R̂ − 1

N

∑N
k=1 λ̂1k aka

H
k . The distortion correction is

not applied. This curve lies above the uncorrected perfect projection filter
because of uncertainties in the estimated λ̂1k.
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Figure 6.3. MSE for several spatial filters as function of interferer power.
Subtraction filters (left) and eigenfilters (right) are compared to perfect pro-
jection filters, to applying no filters at all, and to a situation in which there is
no interference.

• Subtraction filter, σ2
k: a filter based on the substraction of the inter-

ference using an estimate of the interferer power σ̂2
k = λ̂1 − σ̂2

n and
assumes a known spatial signature ak or an estimate âk = û1: Ř =

R̂ − 1
N

∑N
k=1 σ̂2

k aka
H
k .

The curves clearly demonstrate the effectiveness of spatial filters and the need
for distortion corrections. Figure 6.3, right, shows the MSE curves for several
cases:

• Unfiltered interference: this shows what happens if nothing is done and
the long-term covariance estimate is computed traditionally.

• RFI-free: the data do not contain interference and the covariance is esti-
mated as traditionally done (no filtering).

• Perfect projection filter: assumes that the spatial signatures of the inter-
ferer are perfectly known; the distortion correction is applied.

• Eigenfilter: the spatial signatures are estimated from the eigenvalue de-
composition of the short-term data covariance matrices; the distortion
correction is applied.

• Eigenfilter and detection: first it is checked whether the interference is
observable in the data using a standard Box-test (white-noise test) on the
short-term covariance estimates [105],

L = 2M [tr(R̂k/σ2) − p − log det(R̂k/σ2)]
>
< γ
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where γ is a detection threshold. (In figure 6.3, the detection threshold
was selected to obtain a false alarm probability of 0.1.) If an interferer is
detected, then the spatial projection is applied as before.

Note that the scale of the right-hand figure differs from that of the left-hand
figure. The results indicate that for INRs above −15 dB,2 it is essential to apply
the spatial filter. If the spatial signatures of the interferer are perfectly known,
then the final estimate is almost as good as in the RFI-free case. If the spatial
signatures are estimated from the data, then it is important first to detect if
there is an interferer, otherwise for weak interferers the final covariance estimate
is biased. In combination with detection, it is seen that the covariance estimate
is very close to the interference-free result. The same is true for the subtraction
filter based on σ̂2

k estimates.

6.5.2 Interference attenuation limits

Asymptotic expressions for residual interference after applying spatial filtering
can be estimated using a perturbation analysis of the eigenvalue decomposition
[132]. Assume that there is only one interferer, and define the interference to
noise ratios INR, before spatial filtering by

INRbefore =
p tr(R − D)

p tr(D)
=

p tr(σ2
raa

H)

pσ2
n

=
σ2

r

σ2
n

(6.27)

where it is assumed that a is normalised: aHa = 1. The INR after spatial
projections is defined by

INRafter =
p tr(P(R̂ − D̂)P)

tr(D)
=

σ2
r

σ2
n

tr(PââHP) (6.28)

As before, see for instance section 3.2.2, R can be decomposed in terms of
eigenvalues λi, a noise subspace Un, and a signal subspace Us. Then Pâ is
asymptotically a zero-mean Gaussian random process with variance determined
by the asymptotic estimate of PââHP [94] [132]:

E{PââHP} =
σ2

n

N

λ1

(λ1 − σ2
n)2

aaH + o(N−1) (6.29)

For large N , the INR after spatial filtering is therefore given by:

INRafter =
1

N

(
1 +

1

p INRbefore

)
(6.30)

It can be shown [94] that the residual interference is spatially white up to order
N−2. This means that the filtering residuals do not (up to order N−2 effects)

add spatial features to R̂.

2This bound is determined by the level at which the filtering algorithm can start to detect
the presence of interference, and depends on the number of telescopes p, the number of short-
term samples M , and on the selected false alarm rate.
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Figure 6.4. Simulation result. The left-hand figure shows the INR after
applying spatial filters (INRafter) versus the initial INR before spatial filtering
(INRbefore). The short-term correlation length (M samples) is varied. The
spatial filter is activated only when a certain threshold is exceeded. The right-
hand figure shows the fraction of the data which in which interference was
detected.

Figure 6.4 shows a simulation in which a spatial filter (plus distortion cor-
rection) was applied to simulated data. The spatial filter was activated only
when a detector (Box test) detected interference. The false-alarm rate of the
detector was set to 0.1. The left-hand figure shows that for low INR no RFI was
detected, so that INRafter = INRbefore. For high INR values, the curves decrease
monotonously and converge to a limit. This part of the curve is nicely described
by the asymptotic formula 6.29, as can be seen in figure 6.5, where the limit-
ing values for high INRbefore are plotted together with the theoretical residual
interference curve. The three limiting values lie a little below the theoretical
curve because the three values were estimated for INRbefore = 10 whereas the
theoretical curve is the limiting case for INRbefore = ∞. The curves saturate
for high INRbefore values, apparently because the higher INRbefore power is fully
compensated for by better estimates of the spatial signature of the interferer.
The left-hand figure in 6.4 also confirms that increasing the number of sam-
ples M in the short-term time interval leads to better estimates of the spatial
signature of the interferer and to more effective filters. The right-hand figure
in 6.4 shows the fraction of samples in which RFI was detected. These curves
imply that the occurrence of maxima in the left-hand figure are not caused by
the fact that the interference is not detected by the detector. The reason that
the maxima are larger than the asymptotic values for high INRbefore is that
interference is detected but projected out (or subtracted) with very inaccurate
estimates of a.
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Figure 6.5. Residual INR after spatial filtering for large INR values. The
curve is the theoretical limit for large INR, the circles are obtained from the
simulations, shown in figure 6.4.

6.6 Correction matrix condition number estima-
tes

Recall that for an optimal projection filter distortion correction, it is necessary
that the interferer is stationary for short time intervals, and nonstationary for
long intervals. Nonstationarity at long time scales ensures invertibility and a low
condition number of the distortion correction matrix C. High condition numbers
need to be avoided because this increases the system noise. An important factor
which makes stationary interferers nonstationary on long time scales, is the
fringe frequency. The aim of this section is to find the relation between the
fringe frequency, the condition number of the correction matrix, and the noise
increase due to filtering and distortion correction.

Consider the case in which there is only one interferer, without multipath.
In this case, at any point in time, there is only one array response vector ar

that corresponds to this interferer. The rank of the corresponding covariance
matrix excluding noise (R−D = σ2

rara
H
r ) therefore is one. Under the influence

of the fringe rotation during the integration interval, the array response vector
changes. As a consequence, the rank of R − D increases to p after a certain
integration time length, and this is needed to ensure the invertibility of C. In
practically all cases, the full-rank situation is reached when the array response
vector at time t+∆t is perpendicular to ar(t), or ar(t+∆t)Har(t) = 0. This is
the somewhat arbitrary (although verified experimentally) criterion used for suf-
ficient nonstationarity of C. This criterion is supported by simulations in [147],
and an expression in terms of phase rotations is derived next.
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Suppose that the direction vector of an observed astronomical source is given
by s(t). Because of the earth rotation, this direction vector is a function of time.
Recall from section 2.3.1 that the telescope baseline coordinate matrix is given
by R. The array response vector for the astronomical source at a time t for the
direction s(t) can then be written as

as(t) = e−2πλ−1Rs(t) (6.31)

At the WSRT telescope, a (fringe) phase is added in the electronic receiver
systems in order to compensate for the geometric delay-related phase rotation.
One effect of this is that the phase of the field of view centre is fixed. The second
effect is that an interferer at a fixed geographical location, initially with a fixed
array response ar0, now will have a changing array response vector ar(t):

ar(t) = ar0 ⊙ as(t) (6.32)

For an east-west linear array such as the WSRT , the array response vector
can also be expressed (cf. section 4.1), in terms of the fringe frequency for the
shortest baseline νf0, the baseline vector b, and the earth rotation dh

dt . Let

b = b0 [0, 1, · · · , p − 1]t (6.33)

νf0 =
b0

λ

dh

dt
cos(δ) cos(h) (6.34)

where b0 is the smallest telescope distance (144 m). Then as(t) can be expressed
by

as(t) = e−2π b

b0
νf t (6.35)

Using these definitions, the inner product ar(t + ∆t)Har(t) is easily found by
evaluating the exponential power series:

ar(t + ∆t)Har(t) =

p−1∑

k=0

e2πkνf0∆t (6.36)

= eπ(p−1) νf0 ∆t · sin(πp νf0∆t)

sin(πνf0∆t)
(6.37)

Thus the |ar(t + ∆t)Har(t)| expression is a sinc function with its first null at

∆t =
1

p νf0
(6.38)

Figure 6.6 (left) shows, for the WSRT with only the first eight telescopes, the
value of |ar(t+∆t)Har(t)| as a function of the fringe rotation phase. Because of
this choice for the abscissa, the curve in the figure is independent of hour angle
and declination. The first null, for p=8 telescopes, is found at 5.5 × 2π phase
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Figure 6.6. The left-hand figure shows the influence of fringe rotation on the
inner product of two array response vectors, which initially are identical. One
vector (ar0)remains fixed, the other(ar) is affected by the fringe. The figure
to the right shows curves with identical fringe rotation frequency for the hour
angle - declination plane, for a baseline length of (p − 1) × 144 m,with p=8.
Both figures are calculated in terms of fringe phases for the longest baseline.

rotations. Figure 6.6 (right) shows a contour plot of the fringe frequency for the
WSRT for a baseline of (p − 1)b0 and an observation frequency of 1420 MHz.
For example, at an hour angle and a declination of 45◦, the fringe frequency
is 0.2 Hz. This means that after 27.5 s, the phase is rotated over 5.5 × 2π
rad, as was required by the“first null” condition. Simulations [147] show that
a sufficiently low condition number of C is obtained after 2 to 5 ×2π phase
rotations. Apparently the “first null” criterion is slightly stronger; however, it
can be used as a worst case criterion. Assume, for example, an integration time
of two minutes, then formula (6.38) yields that a minimum fringe frequency
of 0.05 Hz is required for an acceptable projection correction matrix. In this
particular case, a projection filter in the shaded region of figure 6.6 will not
work and a subtraction filter is preferable.

6.7 Measurement results

6.7.1 Application examples of projection and subtraction
filters for time-continuous interference

In this section, the projection and subtraction filters which were discussed in
the previous sections will be applied to observations carried out at the WSRT
using the NOEMI data recorder. As the filters are based on subspace analy-
sis, the observed covariance matrix is whitened, see for instance section 3.2.2:
RW = D− 1

2 RD− 1
2 . The whitening is done by estimating the noise matrix D

in regions of the observed spectrum where no interference or transmitters were
observed. Two methods will be applied: one method just uses the diagonal
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Figure 6.7. Observed autocorrelation (upper) and cross-correlation spectra
(lower) of source 3C48 and TV Lingen, before (left) and after (right) applying
a projection filter and distortion correction.

of R after averaging over time, the second estimates it by one of the ad-hoc
methods (LOGLS) described in chapter 8. The LOGLS method yields better
estimates for the noise matrix D in case there is interference, but in case there
is no interference, the two methods yield the same results. In this section, the
interference mitigation effectiveness is illustrated, and related to the subspace
structure and observed correction matrix condition numbers.

Television sound carrier waves in an observation of 3C48

Figure 6.7 shows an observation of source 3C48 at 780.75 MHz, which is
affected by television transmissions of TV Lingen. The strongest transmission
in the data set occurs at 780.75 MHz, and has an INR of 104. The figure
shows the mean of the observed auto- and cross-correlation spectra before (left)
and after (right) applying a spatial projection filter and distortion correction.
The two stereo sound carrier waves of the television transmitter TV Lingen are
clearly suppressed. The whitened autocorrelation curves and their mean have a
magnitude of approximately one (cf. equation 5.43), that is, in frequency bins
which are not affected by interference. The whitened cross-correlation curve lies
about 17 dB below the autocorrelation curve, this corresponds to the observed
source power of 3C48 relative to the receiver noise.

Figure 6.8 shows the observed filter attenuation numbers for the projec-
tion filter (left) and for the subtraction filter (right). The expected attenuation
from equation 6.30 is a factor 256, which is dominated by the number of short
time scale samples Nsam. Recall that this attenuation limit, the “finite sample
effect”, is caused by estimation errors of the direction vector. The theoreti-
cal attenuation limit fits in reasonably well with the the observed attenuation
numbers, both for the projection filter and the subtraction filter. Note that
the attenuation for the autocorrelations is lower than for the cross correlations.
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Figure 6.8. Spatial filter attenuation of TV Lingen transmissions of the
projection filter (left), and subtraction filter (right).
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Figure 6.9. Eigenvalue decomposition of observed data with 3C48 and TV
Lingen transmissions (left), and projection matrix correction matrix condition
numbers (right).
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Figure 6.10. Observation of source 3C48 and GPS satellite trans-
missions. The left-hand figure shows autocorrelation (above) and
cross-correlation spectra (below). The right-hand figure shows filtered
spectra using a projection filter: autocorrelation curve (above) and
cross-correlation curve (below).

This is caused by the fact that the autocorrelation data have an “offset” due to
the system noise.

Figure 6.9, left-hand figure, shows the eigenvalue decomposition of the whiten-
ed covariance matrix. In the interference-free frequency bins, the expected ratio
between the largest and smallest eigenvalues is two (cf. equation 6.30), which fits
in with the observed values. The ratio between the largest and second-largest
eigenvalue is about 250. This means that by removing the (scaled) subspace
corresponding to the largest eigenvalue, the interfering power is reduced by the
same factor of 250. This corresponds well to the numbers mentioned above.

Processing the data sets for various frequency bin widths shows that the
eigenvalue ratios are not affected by the frequency resolution. The conclusion is
that the narrow-band assumption is not violated up to a level of an eigenvalue
ratio λ1

λ2
of approximately 250. This is in line with the expected value, see for

instance equation 6.30.

Figure 6.9, right-hand figure, shows the observed condition number of the
correction matrix for the projection filter. In frequency regions without in-
terference, the condition number lies in the range 3 to 4, but when there is
interference, the condition number increases to roughly 200. This is expected
as the duration of the TV Lingen observation was only 6.7 seconds, and the
fringe of the WSRT does not rotate fast enough in these time scales, see for
instance section 6.6. Condition numbers of observations of different types of
transmitters, with integration times up to 400 s, are shown in section 6.7.3.

GPS transmissions in an observation of 3C48

Another example of an astronomical observation affected by man-made trans-
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Figure 6.11. Observation of source 3C48 and GPS satellite transmissions.
Attenuation spectra are shown for the projection filter (left) and subtraction
filter (right).
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Figure 6.12. Observation of source 3C48 and GPS satellite transmissions.
The left-hand figure shows an eigenvalue decomposition of the observed data,
the right-hand figure shows the observed condition number spectrum.
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Figure 6.13. Frobenius norm spectrogram of 3C48 and aeronautical radio
navigation, Eelde airport (left-hand figure), and auto and cross correlation
coefficients (right-hand figure).

missions is shown in figure 6.10. A spectrum is visible of an observation of the
source 3C48 together with transmissions at 1575.42 MHz from the GPS satellite
system. The left-hand figure shows auto correlation spectra (upper curve) and
cross correlation spectra (lower curve). The right-hand figure shows the spectra

after projection filtering. The data set was whitened using the diagonal of R̂ at
the edges of the band, at 1571 and 1579 MHz.

Attenuation graphs of projection and subtraction filtering are shown in fig-
ure 6.11. Both filters have similar attenuation performance and the maximum
observed attenuation at the centre of the band is close to the theoretical value,
that is 256, see for instance equation 6.30. This number matches the observed
difference between the largest and second-largest eigenvalue ratio. Also here,
the observed condition number is about 200. Although the GPS satellites or-
bit the earth in 12 hours, the resulting fringe rate is too low to generate low
condition numbers for the duration of the observation, which was 0.838 s.

6.7.2 Application example of projection filter for inter-
mittent interference: influence of short time scale
integration

Radiolocation signals, Eelde airport radar, in an observation of 3C286
Figure 6.13 shows a Frobenius norm spectrogram (left) of a radio location

transmission, and the normalized covariance spectra (right). The transmissions
are from the Eelde airport radar and consist of sub-ms emitted bursts, visible in
the spectrum as a comb with five peaks. Note that in this case the interference is
weak: INRbefore as defined in equation (6.27) is less than one. The transmitter
is clearly visible in the cross-correlation spectra, but is barely visible in the
autocorrelation spectra. The 1.25 s duration interval of increased power in the
spectrogram plot, starting at 0.6 s, is caused by switching on the calibration
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Figure 6.14. Projection filter attenuation for aeronautical radio navigation
transmissions, for short time scale integrations Nsam = 64 (left), and Nsam =
4096 (right). The smooth curves are autocorrelation curves, the more erratic
curves are cross-correlation curves.
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Figure 6.15. Condition number of the projection filter for aeronautical radio
navigation transmissions, for short time scale integrations Nsam = 64 (left),
and Nsam = 4096 (right).



130 CHAPTER 6. SPATIAL FILTERING

0 1 2 3 4 5 6 7
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

time (s)

fr
in

g
e

 p
h

a
s
e

 (
ra

d
)

Fringe phase, 3C48 and TV Lingen

f = 780.72 MHz
∆ f = 1.98 kHz

ha = 57.2o

dec = 33.2o

p = 8

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

time (s)

fr
in

g
e

 p
h

a
s
e

 (
ra

d
)

Fringe phase, 3C48 and GPS

f = 1575.33 MHz
∆ f = 66.67 kHz

ha = 14.2o

dec = 33.2o

p = 8

Figure 6.16. The left-hand figure shows telescope fringe phases for TV Lingen
observations, measured (solid curves), and predicted (dashed curves). The
right-hand figure shows the predicted curves for a transmitter which is fixed to
the horizon (dotted curves), and observed curves for the GPS satellite signals.

noise source at the WSRT. The calibration sources generate i.i.d. noise, and
can easily be accounted for in the calibration and whitening processes.

Figure 6.14 shows the interference attenuation curves for a projection filter
with distortion correction, for sample integrations Nsam = 64 (left) and for
Nsam = 2048 (right). For low Nsam values, the measurement sample interval
is close to the transmitted bursts. For large Nsam intervals, the transmitted
energy is smeared out, which leads to a poorer estimate of the source direction
and to a poorer interferer suppression number.

Figure 6.15 shows observed condition numbers for the two filters with the
different Nsam numbers. The condition number at the frequency where the
transmitter has the largest power, is 5 for Nsam = 64 and 200 for Nsam = 2048.
The number 200 matches the observed number for the TV Lingen transmitter.
The condition number 5 for Nsam = 2048 is much lower than is expected, and is
caused by the fact that the sample time is close to the transmitter burst time.
The consequence of this match is that there are many observed samples without
interference, leading to projection matrices with arbitrary subspace structure.

6.7.3 Observed fringe rates and long-term condition num-
bers

So far, most of the observed projection matrix condition numbers, in observa-
tions with durations of 0.839 to 6.7 seconds, appeared to be in the range 200 to
300. The aim of this section is to investigate the condition number behaviour
for longer observation durations, and to relate it to the theoretically expected
values derived in section 6.6.

As a first check, predicted and observed fringe phases at the WSRT are
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Figure 6.17. The condition number of the correction matrix C−1 for the
transmitters TV Lingen, GPS satellites, amateur radio, and DME, are shown
as curves with large dots indicating the measured data points. The condition
numbers for “clean” parts of the spectrum are shown as curves without large
dots.

compared for different transmitters. Figure 6.16 shows them for TV Lingen
and GPS. The left-hand figure shows the theoretical fringe phase for the source
3C48 as a function of time for the eight telescope baselines (dashes) and the
observed fringe phases (solid). The phase trends are correct, but the phases
fluctuate around the predicted curve, most likely because of multipath effects.
The right-hand figure also shows the fringe phase for source 3C48 as a function
of time for the eight telescope baselines (dotted) and the observed fringe phases
(solid). There is a mismatch of a factor 1.8, caused by the fact that GPS is not
a transmitter fixed to the horizon, but orbiting the earth (in 12 hours).

Now that it is verified that the observed fringe phases behave as expected,
the condition numbers are obtained for a range of long-term integration times.
These integration times range from 0.4 to 400 s. The results for four types
of interference are shown in figure 6.17 as curves with large dots. An analysis
of the expected fringe rates shows that for these transmitters, the theoretical
5.5× 2π criterion (cf. section 6.6) is reached after 20 to 200 seconds. The exact
number depends on telescope pointing and frequency. These numbers match
with the observed condition number behaviour. The DME curve in the figure
lies close to the curves for the RFI-free cases. The reason for this was explained
in the previous section. The GPS curve lies below the TV Lingen curve because
the fringe rate is large, due to the satellite motion, and because it is observed at
a higher frequency. The amateur radio curve lies between the GPS curve and
the DME curve. The reason for this is not entirely clear; it could be caused by
multipath effects.
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6.7.4 Further examples of applied spatial projection filters

Radio location transmissions in an observation of 3C48.
As an additional example, the spatial projection algorithm was applied to an

observation of 3C48 containing radiolocation and amateur radio transmissions.
Figure 6.18 shows a spectrogram of the 20-minute duration observation (left). In
the channel at 433.9 MHz (the one with the very strong intermittent signals) up
to about six eigenvalues were affected. After applying the projections, we recov-
ered the original signal by the inversion process described earlier in this paper.
Recall that to be able to reconstruct the astronomical signal after projection by
applying the inverted C matrix operation, it is required that the projection ma-
trix Pk varies sufficiently over the interval which is to be processed. We found
that in most cases the interfering signal varies enough to ensure that the correc-
tion matrix was invertible. We observed condition numbers in the range of 3 to
20. Only for the continuous interference at 434.3 MHz we found an extremely
high value. This is probably related to the fact that the interfering signal was
only visible in one of the telescopes, whereas the other signals were visible in
all telescopes. The result of the projection is shown in figure 6.18, right. The
upper figure shows the mean of all cross-correlations, before and after applying
the spatial filter. Both the time-continuous and intermittent interference are
suppressed significantly. The exception is the signal at 434.3 MHz; the autocor-
relation plot in the lower figure shows that only one of the telescopes receives a
strong interfering signal. The conclusion is that, apparently, the interference at
the telescope shows enough fluctuations to fulfill the stationarity requirements
of the projection matrix. Further study has to demonstrate which fraction of
the non-stationarity is caused by fringe stopping (an instrumental phase rota-
tion) and which fraction is caused by other effects (multi-path fading).

Glonass satellite transmissions and observed OH emissions.
Figure 6.19 shows an observation of astronomical OH maser lines at 1612.5

MHz, together with Glonass satellite transmissions. The left-hand figure shows
an eigenvalue decomposition which clearly shows that the Glonass transmission
at 1614 MHz occupies only one dimension in subspace. Therefore, in principle
it could be filtered effectively. But as the INRbefore is low, the filter does not
work effectively at these time scales.

6.8 Conclusions and further research

In this chapter the effectiveness of spatial filters was derived and demonstrated
for observed data. Both projection and subtraction filters can be applied. Each
has its own specific advantages and disadvantages. The advantage of projection
filters is that only the direction of the interferer is required, not estimates of
its power. The main disadvantage is that projection filters need a distortion
correction which puts constraints on the stationarity of the observed transmitter
signals and which requires O(p3) operations. An advantage of subtraction filters
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Figure 6.18. Observation of the astronomical source 3C48, in which amateur
radio and/or radio location transmissions are present. Both time-continuous
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is that they are relatively simple to apply, but they require more knowledge of
the system noise and they require a good estimate of the interferer power.

Further research, for instance a careful analysis of the biases involved in the
subtraction procedures, would be useful. Also a study of combining information
in adjacent frequency channels, for the purpose of spatial filtering, would be
useful.



Chapter 7

Spatial filtering using a
reference

Assuming an array of telescopes, we have previously considered spatial filtering
techniques based on projecting out the interferer array signature vector. In this
chapter1, we will consider extending the astronomical array with a reference
antenna (or array), and develop spatial filtering algorithms for this situation. It
is shown that the information from the reference antenna improves the quality
of the interferer signature vector estimation, hence more of the interference
can be projected out. The conditioning of the problem improves as well. The
algorithms are tested both on simulated and experimental data.

7.1 Introduction

With an interferometer array of p telescope dishes, spatial filtering techniques
are applicable. The desired instrument outputs in this case are p×p correlation
matrices, integrated to 10 s. Based on short-term correlation matrices (integra-
tion to e.g., 10 ms) and narrow subband processing, the array signature vector
of an interferer can be estimated and subsequently projected out [119]. This
technique was described in chapter 6.

To improve the performance for weak or stationary interferers, in this chap-
ter we will consider extending the telescope array with one or more reference
antennas. In general, a higher gain (interference-to-noise ratio) than that ob-
tained from an omnidirectional antenna is needed to expect any benefits. Most
flexibility is obtained by using a phased array which can adaptively be pointed
towards the strongest interferers. We have actually built a demonstrator set-up
along these lines, utilising a wideband phased array of 64 elements (see section
4.4). The reference signal is correlated along with the telescope signals as if it

1This chapter was published in [152]
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Figure 7.1. Telescope array augmented with a reference phased array

were an additional telescope, and spatial filtering algorithms can be applied to
the resulting short-term integrated covariance matrices. This set-up is shown
in figure 7.1. Spatial filtering on extended arrays was first considered by Briggs
et al. [29] for a single dual-polarised telescope (two channels) and two reference
antennas. With their technique a single interferer can be cancelled. Jeffs et
al. [77, 78] propose spatial filtering algorithms along the lines of [119]; we will
summarise their approach in section 7.3.2 and subsequently make extensions
which may improve performance.

7.2 Problem definition

7.2.1 Data model

Assume we have a telescope array (primary array) with p0 elements, and a
reference array with p1 elements.2 The total number of elements is p = p0 + p1.

We will consider the signals xi(t) received at the antennas i = 1, · · · , p in
a sufficiently narrow subband. For the interference free case the primary array
output vector x0(t) is modelled in complex baseband form as

x0(t) = v0(t) + n0(t)

where x0(t) = [x1(t), . . . , xp0
(t)]t is the p0 × 1 vector of telescope signals at

time t, v0(t) is the received sky signal, assumed on the time scale of 10 s to
be a stationary Gaussian vector with covariance matrix Rv,0 (the astronomical
“visibilities”), and n0(t) is the p0 × 1 noise vector with independent identically

2In subsequent notation, the subscript “0” will generally refer to the primary array and
“1” to the reference array.
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distributed Gaussian entries and covariance matrix σ2
0I. The astronomer is

interested in Rv,0.
If an interferer is present and the processing bandwidth is sufficiently narrow,

then the primary array output is modelled as

x0(t) = v0(t) + a0(t)s(t) + n0(t)

where s(t) is the interferer signal with spatial signature vector a0(t) which is
assumed stationary only over short time intervals. Without loss of generality,
we can absorb the unknown amplitude of s(t) into a0(t) and thus set the power
of s(t) to 1.

Now consider that we also have a reference antenna array. The outputs of
the p1 reference antennas are stacked into a vector x1(t), modelled as

x1(t) = a1(t)s(t) + n1(t) .

It is assumed here that the contribution of the astronomical sources to the
reference signals is negligible. The noise on the reference antennas is assumed
to be i.i.d. Gaussian with covariance matrix σ2

1I. Stacking all antenna signals
in a single vector xT = [xT

0 xT
1 ]T , we obtain

x(t) = v(t) + a(t)s(t) + n(t) .

We make the following additional assumptions with regard to this model:

(A1) The noise variances σ2
0 and σ2

1 are known from calibration.

(A2) Rv,0 ≪ σ2
0I. This is reasonable as even the strongest sky sources are about

15 dB under the noise floor.

(A3) The interferer signature a(t) is stationary over short processing times (say
10 ms). It may or may not vary over longer periods.

This was the model considered in [119]. The model is easily extended to multiple
interferers, in which case we obtain

x(t) = v(t) + A(t)s(t) + n(t) ⇔
{

x0(t) = v0(t) + A0(t)s(t) + n0(t)
x1(t) = A1(t)s(t) + n1(t)

where A : p×q has q columns corresponding to q interferers, and s(t) is a vector
with q entries.

7.2.2 Covariance model

Let observations x[n] = x(nTs) be given, where Ts is the sampling period. We
assume that A(t) is stationary at least over intervals of MTs, and construct

short-term covariance estimates R̂k,

R̂k =
1

M

(k+1)M∑

n=kM

x[n]x[n]H
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where M is the number of samples per short-term average. All interference
filtering algorithms in this chapter are based on applying operations to each
R̂k to remove the interference, followed by further averaging over N resulting
matrices to obtain a long-term average.

Considering the Ak := A(kMTs) as deterministic, the expected value of

each R̂k is denoted by Rk, which can be written in block-partitioned form as

Rk =

[
R00,k R01,k

R10,k R11,k

]
.

According to the assumptions, Rk has model

Rk = Ψ + AkA
H
k = Rv + Σ + AkA

H
k

=

[
Rv,0 + A0,kA

H
0,k + σ2

0I A0,kA
H
1,k

A1,kA
H
0,k A1,kA

H
1,k + σ2

1I

]
(7.1)

where Ψ is the interference-free covariance matrix, and Σ := diag[σ2
0I, σ

2
1I] is

the diagonal noise covariance matrix (assumed known). The objective is to
estimate the interference-free covariance submatrix Ψ00 := Rv,0 + σ2

0I.

7.3 Algorithms

7.3.1 Traditional subtraction technique

In array signal processing, a classical technique for interference removal using
a reference antenna is based on taking the covariance of the primary antennas,
R00,k, and subtracting the estimated contribution of the interferers, A0,kA

H
0,k.

In effect, the rank deficiency of the interference term

AAH =

[
A0A

H
0 A0A

H
1

A1A
H
0 A1A

H
1

]

is exploited: if q ≤ p1 and moreover A1 : p1× q has full column rank q, then the
first p0 columns must be linear combinations of the remaining p1. Under these
conditions,

A0A
H
0 = A0A

H
1 (A1A

H
1 )†A1A

H
0

where † indicates the pseudo-inverse, and hence a ‘clean’ instantaneous covari-
ance estimate is

Ψ00,k = R̂00,k − R̂01,kR̂
†
11,kR̂10,k

(ignoring the effect of the noise term σ2I). The final ‘clean’ covariance estimate
is obtained by averaging over N such matrices to obtain a long-term estimate

Ψ00 =
1

N

N∑

k=1

Ψ00,k .
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Briggs et al. [29] essentially derive this algorithm and several variants of it, for
the special case of q = 1 and p1 = 2. Jeffs et al. [77] describe the same technique
as a generalisation of the classical Multiple Sidelobe Canceller.

The conditions mentioned on A1 entail that this technique can be used for
at most p1 interferers, and only if the reference antennas are sufficiently inde-
pendent so that they receive independent linear combinations of the interferers.
Unlike some of the techniques to be discussed in later sections, the technique
does not rely on the variation of Ak: in principle, Ak can be stationary. Also,
no detection of the number of interferers is done, nor of any noise powers. This
simplifies the algorithm but might also limit its performance.

7.3.2 Spatial filtering using projections

In chapter 6, a spatial filtering algorithm based on projections was introduced.
Although this algorithm did not assume the presence of reference antennas, it
can also be used in our current situation. Briefly, the method is as follows.

Suppose that an orthogonal basis Uk of the subspace spanned by interferer
spatial signatures span(Ak) is known. We can then form a spatial projection
matrix Pk := I−UkU

H
k which is such that PkAk = 0. When this spatial filter

is applied to the data covariance matrix, all the energy due to the interferer will
be nulled: let

Q̂k := PkR̂kPk

then
E{Q̂k} = PkΨPk

When we subsequently average the modified covariance matrices Q̂k, we obtain
a long-term estimate

Q̂ :=
1

N

N∑

k=1

Q̂k =
1

N

N∑

k=1

PkR̂kPk . (7.2)

Q̂ is an estimate of Ψ, but it is biased due to the projection. To correct for
this we first write the two-sided multiplication as a single-sided multiplication
employing the matrix identity vec(ABC) = (Ct ⊗ A)vec(B), This gives

vec(Q̂) =
1

N

N∑

k=1

Ckvec(R̂k) where Ck := Pt
k ⊗ Pk . (7.3)

If the interference was completely removed, then

Evec(Q̂) =
1

N

N∑

k=1

Ckvec(Ψ) = Cvec(Ψ) ; C :=
1

N

N∑

k=1

Ck . (7.4)

In view of this, we can apply a correction C−1 to Q̂ and define

Ψ := unvec(C−1vec(Q̂)) .
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If the interference was completely projected out, then Ψ is an unbiased esti-
mate of the covariance matrix without interference. This was the algorithm
introduced in chapter 6.

The reconstructed covariance matrix is size p × p. In the present case, we
are only interested in the submatrix corresponding to the primary antennas.
Hence, the estimate produced by the algorithm is the p0 × p0 submatrix in the
top-left-hand corner, Ψ00. This is one of the algorithms introduced in [77].

The spatial signature of the interferer is generally unknown, but it can be
estimated from an eigen-analysis of the sample covariance matrices R̂k. To do
this, recall that the noise powers on the two antenna arrays are not necessarily
the same, and they will first have to be made equal. This noise whitening is
done by working with Σ−1/2R̂kΣ

−1/2. Without interference and assuming that
Rv is negligible compared to Σ, all eigenvalues of this matrix are expected to be
close to 1. With q interferers, q eigenvalues become larger, and the eigenvectors
corresponding to these eigenvalues are an estimate of span(Ak).

7.3.3 Improved spatial filter with projections

We will now derive an improved algorithm. Computing the projections and
long-term average of the projected estimates Q̂ as before in (7.2). Then (7.4)
applies:

Evec(Q̂) = Cvec(Ψ) .

Based on this, we previously set vec(Ψ) = C−1vec(Q̂), which is the solution
in Least Squares sense to the covariance model error minimisation problem,
‖vec(Q̂) − Cvec(Ψ)‖2. Now, instead of this, partition Ψ into 4 submatrices as
in (7.1)s. Since we are only interested in recovering Ψ00, the other submatrices
in Ψ are replaced by their expected values, Ψ01 = 0, Ψ10 = 0, Ψ11 = σ2

1I

respectively. This corresponds to solving the reduced-size covariance model
error minimisation problem,

Ψ00 = arg min
Ψ00

‖ vec(Q̂) − Cvec
([ Ψ00 0

0 σ2
1I

])
‖2 .

The solution to this problem can be reduced to a standard LS problem by
separating the knowns from the unknowns. Thus, the entries of vec(Ψ) are
rearranged into




vec(Ψ00)
σ2

11

0



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Figure 7.2. MSE, left as a function of interferer power at the reference
antenna, right as a function of the interferer power difference between the
reference antenna and the primary array elements.

where 1 indicates a vector with all entries equal to 1, and C is repartitioned
accordingly, to obtain the equivalent problem

vec(Ψ00) = arg min
Ψ00

‖ vec(Q̂) − [C1 C2 C3]




vec(Ψ00)
σ2

11

0


 ‖2

= arg min
Ψ00

‖ (vec(Q̂) − σ2
1C21) − C1vec(Ψ00) ‖2

= C
†
1(vec(Q̂) − σ2

1C21) .

The advantage compared to the preceding algorithm is that C1 is a tall matrix,
and better conditioned than C. This improves the performance of the algorithm
in cases where C is ill-conditioned, for example, for stationary interferers, or an
interferer entering at only a single telescope. Asymptotically for large INR of
the reference array, the algorithm is found to behave similar to the traditional
subtraction technique.

7.4 Simulations

We will first test the performance of the algorithms in a simulation set-up.
We will use p = 6 antennas, with p0 = 5 primary antennas (telescopes) and
p1 = 1 reference antenna. For simplicity, the array is a uniform linear array
with half-wavelength spacing and the same noise power on all antennas. The
astronomical source is simulated by a source with a constant direction-of-arrival
of 10◦ with respect to array broadside. The source has SNR0 = −20 dB with
respect to each primary array element, and SNR1 = −40 dB for the reference
antenna. The interferer is simulated by a source with a randomly generated
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and varying complex ak (i.i.d. entries, each complex normal distributed), and
varying INRs as explained in the simulations. This corresponds to a Rayleigh
fading interferer.

The following algorithms are compared:

• the subtraction method in section 7.3.1 denoted ‘traditional’,

• the spatial filtering algorithm using projections and eigenvalue computa-
tions, section 7.3.2, denoted ‘eig filt’,

• the spatial filtering algorithm with reduced-size covariance reconstruction,
section 7.3.3, denoted ‘eig filt (red corr)’,

• for comparison, the spatial filtering technique without reference antenna,
denoted ‘eig filt (no ref)’, the covariance estimate without RFI (‘RFI free’),
and the estimate obtained without any filtering (‘no filtering’).

Figure 7.2 shows the mean-squared-error (MSE) of the primary filtered co-
variance estimate compared to the theoretical value Rv,0 + σ2

0I, for varying in-
terferer power INR0 and interferer array gain INR1−INR0 respectively. Here,
we took M = 400 short-term samples and N = 2 long-term averages, which is
unrealistically small but serves to illustrate the effect of limited variability of ak

(only two different vectors).
It is seen that the new algorithm has a great advantage over the spatial

filtering algorithm without reference antenna in case the ak-vector does not suf-
ficiently vary. The MSE performance is flat for varying INR and INR difference,
which is very desirable. Moreover, it is very close to the RFI-free case. The new
algorithm is also often better than the subtraction technique.

Additional simulations, not shown here, indicate that if the interferer enters
only at one telescope and at the reference antenna, then the algorithm without
a reference antenna performs poorly: it cannot reconstruct the contaminated
dimension. The algorithm with reference antennas performs fine.

7.5 Experiment

To test the algorithm on actual data, we have made a short observation of
the strong astronomical source 3C48 contaminated by Afristar satellite signals.
The set-up follows figure 7.1. The primary array consists of p0 = 6 of the 14
telescope dishes of the Westerbork Synthesis Radio Telescope (WSRT). As a
reference we use the THEA tile discussed in section 4.4. One beam was pointed
approximately at the satellite, the other was used for scanning. We recorded 65
kSamples at 20 MS/s, and processed these offline. After short-term windowed
Fourier transforms, the data was split into 64 frequency bins, correlated, and
averaged over 32 samples to obtain 16 short-term covariance matrices.

The resulting auto- and cross-correlation spectra after filtering are shown
in figure 7.3. The autocorrelation spectra are almost flat, and close to 1 (the
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Figure 7.3. Averaged autocorrelation spectrum before and after filtering
(left), averaged cross-correlation spectrum before and after filtering (right)

whitened noise power). The cross-correlation spectra show that spatial filter-
ing with reference antenna much better removed the interference than filtering
without reference antenna. The residual correlation of about 4% is known to
be the SNR of the astronomical source. The lines are noisy due to the finite
sample effect; the predicted standard deviation (based on number of samples
averaged) is indicated for a few frequencies.





Chapter 8

Gain calibration

In radio telescope arrays, the complex receiver gains and sensor noise powers
are initially unknown and have to be calibrated. Gain calibration can enhance
the quality of astronomical sky images and, moreover, improve the effectiveness
of array signal processing techniques for interference mitigation and spatial fil-
tering. It is challenging that the signal-to-noise ratio is usually much below 0
dB even for the brightest sky sources. The calibration method considered here
consists of observing a single point source and extracting the gain and noise pa-
rameters from the estimated covariance matrix. We will present several closed
form and iterative identification algorithms for this1. Weighted versions of the
algorithms will be proved asymptotically efficient. The algorithms will be vali-
dated by simulations and by application to experimental data observed at the
Westerbork Synthesis Radio Telescope.

8.1 Introduction

In contrast to most communications systems, in radio astronomy the sources
of interest are usually much weaker than the instantaneous system noise levels,
with signal to noise (SNR) levels much below 0 dB even for the strongest sources.
Integration times of several hours to more than ten hours are needed to obtain
sky images with acceptable sensitivity. Astronomical sources can be broadband
or narrowband, and accurate estimates of the telescope gains are necessary to
compute the astronomical source power distribution, in radio astronomy also
known as the surface brightness.

For an array of telescopes (figure 8.1), not only the gain of the main beam of
each telescope needs to be estimated, but also the phase differences between the
telescopes, and the power of the noise present at each receiver. Two techniques
are widely used. In imaging applications, a “blind” iterative self-calibration
technique [113,146] starts from an initial estimate of the parameters and adapts

1This chapter was published in [21]
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Figure 8.1. Radio telescope array

them until the resulting image matches a prior parametric model of the field
of interest (usually a point source model). A second standard technique is to
obtain dedicated calibration observations of a part of the sky that contains a
single known, relatively strong point source, and this is the technique that we
are considering in this chapter.

Several algorithms to estimate the parameters from these observations have
existed for a long time [138, 37, 169], and until recently their performance was
considered satisfactory. For example, a typical 12-hour observation at the West-
erbork Synthesis Radio Telescope (WSRT, a 3-km linear array of 14 telescope
dishes of 25 meter diameter located in The Netherlands) is usually calibrated
with two dedicated short calibration observations prior to and after the 12-hour
observation run. At 1420 MHz and under optimal atmospheric and ionospheric
conditions, the resulting gain phase accuracy is about 5 degrees, and the gain
magnitude accuracy about a few percent. The gain estimates are assumed to
be valid for any direction in the sky. If a better accuracy is required or if the
atmospheric and ionospheric conditions are unstable, intermediate calibration
measurements need to be carried out, and calibration sources closer to the astro-
nomical source of interest can be selected. Since these are usually weaker, longer
integration periods are needed to reach sufficient accuracy. Observation time is
expensive, and there is a growing need for data-efficient estimation algorithms.

The advent of a new generation of radio telescopes such as the Square Kilo-
meter Array radio telescope or SKA [134] has sparked new interest in the issue.
SKA will be a phased array of about 106 elements with receivers that are not
as well matched and much noisier than the classical arrays. Hence array cal-
ibration will be both harder and more important. A proposed low-frequency
array (LOFAR) will suffer from atmospheric disturbances that can vary within
minutes, and calibration will have to be online and work with short data sets,
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so that efficient algorithms are needed. A second reason for renewed interest
in gain calibration issues is the recent attention for radio frequency interference
(RFI) suppression techniques. Advanced array signal processing techniques such
as spatial filtering are very adequate in this context [98], but most algorithms
rely on spatially white noise models which are valid only after accurate calibra-
tion. In this chapter we will study calibration techniques valid for the 14-dish
Westerbork array, but the results are more generally applicable.

As indicated before, we will consider the standard procedure for estimating
the complex gain and noise power of each telescope, which starts by pointing the
telescopes at a relatively strong astronomical source (e.g., SNR= −20 dB). Each
telescope output signal is the sum of the telescope system noise (uncorrelated
among the telescopes) and the astronomical source flux, which is correlated,
multiplied by the telescope gain. The source flux is the same for each of the
telescopes, but telescope gain and noise power usually are not. The gain consists
of the combined effect of atmospheric disturbances, telescope geometry, receiver
characteristics, and electronic (amplifier) gain. The noise consists mostly of
thermal system noise, and differs between the receivers by several dBs.

The output of the back-end processing stage is a sequence of covariance
matrices formed by cross-correlation of all telescope outputs. In this chapter
we aim to estimate the complex gain factors and the system noise power from
a recorded covariance matrix, assuming that we observe a single astronomical
source whose flux is known from tables. We will present four algorithms to
extract these parameters.

The telescope gains are frequency dependent, and therefore the received fre-
quency band is divided into sub-bands and the parameter estimation is repeated
for each frequency. We assume that the sub-bands are sufficiently narrow, so
that the geometric delay compensation (i.e. the delay of the astronomical signal
across the array) can be carried out via phase rotations. Under the narrow-
band assumption, it is sufficient to discuss the parameter estimation at a single
frequency.2

As we will show in section 8.2, the calibration problem is essentially reduced
to estimating the parameters of a p × p covariance matrix of the form

R = ggH + D (8.1)

where g is a gain vector and D a diagonal matrix representing the noise co-
variance. This problem is not entirely unknown in signal processing. There is
some recent literature on direction-of-arrival estimation in colored noise, with
models of the form R = a(θ)a(θ)H + D, where a(θ) is an array response vector
corresponding to the direction of arrival of a source. This problem and gen-
eralisations to multiple sources have been considered for example in [114, 140].
There is also a significant body of earlier research that considers more general

2If a model is assumed for the frequency behaviour of the parameters, then the information
from different frequencies should obviously be combined. This is outside the scope of this
chapter.
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structured noise models, see [55, 111] and references therein. Our problem dif-
fers in that we consider an unstructured complex vector g and a diagonal noise
covariance matrix D. This permits some interesting closed-form estimators.

The model (8.1) also appears in the statistical literature as a (rank-1) factor
analysis problem [105,91]. Factor analysis is a mature field which has seen much
activity in the 1960-1980s. Although quite relevant to array signal processing,
the results are apparently little known in this field. Many results also need to
be translated to the complex domain.

Our main contribution in this chapter is that we will give several new algo-
rithms for estimating the gain and noise parameters, including simple closed-
form algorithms. We will start by posing the data model, deriving the Cramer-
Rao bound, and formulating a Maximum Likelihood (ML) estimation problem
(section 8.2). This does not directly lead to useful algorithms, since the number
of parameters to be estimated can be large ((3p − 1) where the number of sen-
sors p is in the order of 10–60 for classical arrays, and potentially much more
in future arrays). We will then present an asymptotically efficient least squares
(LS) cost function (section 8.3.1), and subsequently derive several iterative and
closed-form algorithms (sections 8.3.2 to 8.3.5). The algorithms will first be
verified using simulations (section 8.4), and then applied to experimental data
collected at the WSRT (section 8.5).

8.2 Data model and preliminary results

8.2.1 Data model description

Consider a telescope array as in figure 8.1, and assume that during the calibra-
tion observation the telescopes are pointed at a single radio source in the sky,
placed in the center of the field of view. Let xi(t) be the complex baseband
signal at a certain frequency f at the output of the receiver of element i at
time t. We assume that the frequency bin is sufficiently narrow for the maxi-
mal propagation delay of a signal across the array to be much smaller than the
inverse bandwidth, so that it may be represented by a phase shift. Then xi(t)
can be modelled as

xi(t) = γie
ıφiais(t) + ni(t)

where γi is the overall amplitude gain of the receiver system and the atmospheric
disturbances, φi is the corresponding phase shift, s(t) is the flux of the impinging
source signal, ai = e−ı2πfτi is the phase shift due to the propagation delay τi of
s(t) across the array, as compared to its arrival at the first element, and ni is
the system noise.

Assuming that we have p elements, we can stack the xi(t) into a vector
x(t) = [x1(t), x2(t), · · · , xp(t)]

t
. Similarly, we define

g =
[

γ1e
ıφ1a1, · · · , γpe

ıφpap

]t
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and n(t) = [n1(t), n2(t), · · · , np(t)]
t
. We thus arrive at the data model

x(t) = gs(t) + n(t)

We make the following model assumptions:

1. The source signal is zero mean Gaussian, temporally independent iden-
tically distributed (i.i.d.), with signal power σ2

s = E{|s(t)|2} known from
tables.

2. The noise signal is zero mean Gaussian, temporally i.i.d., spatially un-
correlated among the sensors, with unknown power E{|ni|2} = σ2

i , and
independent of the source signal.

3. The gains γi and phases φi are unknown constants.

4. The geometry and looking directions of the telescopes are known, so that
the phase shifts ai are known.

Assume that we have collected N independent samples xn = x(nT ), n =
0, · · · , N − 1, where T is the sample period. Since the signals are Gaussian, all
information on the parameters is located in the second order covariance. Let
the true covariance matrix R and its sample estimate R̂ be

R = E{xnxH
n }, R̂ =

1

N

N−1∑

n=0

xnxH
n (8.2)

Since the noise is uncorrelated to the signal, we obtain

R = σ2
sggH + D (8.3)

where D = E{nnH} = diag[σ2
1 , · · · , σ2

p] is the noise covariance matrix, a diago-
nal matrix containing the noise powers.

Given R̂, our objective in this chapter will be to estimate g and D. Since σ2
s

is known from tables, we can make it equal to 1 without loss of generality. Also,
the ai are known from the geometry and looking direction of the telescopes;
hence without loss of generality we make ai = 1 as well.

We will use the following real-valued parametrisation of the model. Define

a factorisation of g into a magnitude vector γ and a phase vector eıφ as

g = γ ⊙ eıφ

It is clear that the phases in g are underdetermined, so that we define the phase
of the first entry as zero, φ1 = 0. The parameter vector to be estimated is thus

θ = [γt, φt, dt]t = [γ1, · · · , γp, φ2, · · · , φp, d1, · · · , dp]
t

where di = σ2
i .
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8.2.2 Cramer-Rao lower bound

The Cramer-Rao Bound (CRB) gives a lower bound to the variance of any

unbiased estimator θ̂ of the parameter vector θ. In our situation, we assume
that the source signal and the channel noise are complex independent Gaussian
distributed with zero mean, and satisfy the model in equation (8.3) with σs = 1.
Following standard techniques [65, 81], the CRB is known to be given by the
diagonal entries of

CCRB =
1

N
M−1

where M is the (scaled) Fisher information matrix (FIM), which can be written
as (e.g., [142])

M = FH
0 (R̄−1 ⊗ R−1)F0 (8.4)

Here, F0 := F(θ0) is the Jacobian evaluated at the true value of the parameters
θ0,

F(θ) = [Fγ , Fφ, Fd](θ) (8.5)

Fγ(θ) =
∂vec(R)

∂γt
(θ) =

[
∂vec(R)

∂γ1
, · · · ,

∂vec(R)

∂γp

]
(θ)

Fφ(θ) and Fd(θ) are expressed similarly.
Further expansion of M, presented in appendix D, shows that the gain phase

parameters are decoupled from the other parameters, which suggests that they
can be estimated separately (indeed, we will derive such an algorithm). More-
over, M is independent of φ: the estimation accuracy bounds are independent
of the particular values of the phases.

8.2.3 Maximum likelihood formulation

In principle, asymptotically efficient estimates of the model parameters θ, or g

and D, can be obtained via a maximum likelihood (ML) formulation. Since all
signal waveforms are i.i.d. Gaussian sequences, the derivation is standard, and
ML parameter estimates for N independent samples are obtained by minimising
the negative log likelihood function

{ĝ, D̂} = arg min
g,D

ln |Rθ| + tr(R−1
θ R̂)

where Rθ is a function of θ, and R̂ is the sample covariance matrix defined in
(8.2)). This would lead to ML-optimal, asymptotically efficient, estimates.

Even if the model is somewhat simpler than in [111], it does not seem pos-
sible to solve this minimisation problem in closed form, and we have to resort
to numerical optimisation methods, for example, Newton-Raphson or scoring
methods [81, 57, 91]. Stable implementations of such methods are complicated;
global convergence is not guaranteed and a good initial point is needed. The
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computational complexity is dominated by the repeated evaluation of second-
order derivatives.

In the following section we will propose algorithms that are based on the least
squares (LS) optimisation of the model errors. Although there is no guarantee
that the solution converges to the global optimum here either, the advantage
of the LS algorithms is reduced computational complexity. We will also derive
simple closed-form approximate solutions to the LS cost function.

8.3 Gain decomposition algorithms

We will start by describing the Least Squares cost function, after which we will
derive four Least Squares estimation algorithms, two iterative and two in closed
form.

8.3.1 Generalised Least Squares Formulation

As discussed in [111], and following techniques described in detail in [102, chap.
9], a Weighted Least Squares covariance matching approach is known to lead to
estimates that for a large number of samples are equivalent to ML estimates,
hence are asymptotically efficient and reach the CRB.

Therefore, for a given R̂, the Least Squares covariance model fitting problem
is, for estimation of g and D, defined as

{ĝ, D̂} = arg min
g,D

‖R̂ − ggH − D‖2
F (8.6)

By writing g and D in terms of their parametrization θ, we correspondingly
consider the minimisation of the cost function κ(θ):

κ(θ) = ‖R̂ − ggH − D‖2
F =

1

2
f(θ)Hf(θ) (8.7)

where f(θ) = vec(R̂ − ggH − D). A more general Weighted Least Squares
problem is obtained, for a Hermitian weighting matrix W, as the optimisation
of

κW(θ) =
1

2
f(θ)HWf(θ) =

1

2
fW(θ)HfW(θ) (8.8)

where fW(θ) := W
1
2 f(θ). The weighting can be used to obtain estimators

with a reduced variance. The optimal weight is known to be the inverse of the
asymptotic covariance of the residuals (cf. [111]), E{f(θ0)f(θ0)

H}, where θ0 is

the “true” value of the parameters, or f(θ0) = vec(R̂ − R) (corresponding to
the true covariance matrix R). Since all sources are Gaussian, we find

Wopt = (R̄ ⊗ R)−1 = R̄−1 ⊗ R−1 . (8.9)

Let θ̂ = arg min κ(θ). Before discussing algorithms to compute θ̂, we will
summarise the statistical performance of this LS estimator, as it follows from
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[102] and from similar results, for example in [81,156,111]. It is well known that
the (W)LS estimator is asymptotically unbiased and consistent. The asymptotic

distribution of θ̂ is Gaussian, and the large sample covariance matrix C =
E{(θ̂ − θ0)(θ̂ − θ0)

H} of the parameter estimate θ̂ is given by

C =
1

N
F

†
0 (R̄ ⊗ R) F

†H
0

where F0 = F(θ0) is the Jacobian in (8.5) evaluated at θ0. For weighted

estimates θ̂W, the large sample covariance matrix is derived as

CW =
1

N
(F0

HWF0)
−1F0

HW(R̄ ⊗ R)WF0(F0
HWF0)

−1

At the optimal weight (8.9),

CWopt
=

1

N

(
FH

0

(
R̄ ⊗ R

)−1
F0

)−1

= CCRB .

Hence, at the optimal weight (or a consistent estimate of it), the WLS estimator
is asymptotically efficient.

8.3.2 Gauss-Newton iterations (GNLS)

Assuming that we have a good initial point for θ, the minimisation of the
(weighted) LS cost function (8.6) can be carried out using the Gauss-Newton
method [57].

Let F(θ) denote the Jacobian (8.5). For the unweighted cost function, the
gradient at θ is

p(θ) = Re(F(θ)Hf(θ)) = F(θ)Hf(θ) (8.10)

Note that due to the Hermitian symmetries, the product FHf is already real.
The Hessian of the cost function at θ is given by

H(θ) = Re(FH(θ)F(θ)) = F(θ)HF(θ) (8.11)

The Gauss-Newton update step is then

θk+1 = θk − µkH(θk)−1p(θk) = θk − µkF
†
kfk (8.12)

where Fk = F(θk), and fk = f(θk). µk ∈ (0, 1] is a step size; with a good initial
point we can take µk = 1, but in practice a line search would be necessary to
ensure proper convergence. For numerical stability, the pseudo-inverse of Fk

can be regularised by incorporating a certain threshold on its singular values.
A similar iteration can be derived for the weighted cost function.

An initial point is needed for the GNLS recursion, and can often be obtained
from an SVD of R̂− diag(R̂), because the astronomical source power is usually
much smaller than the noise powers (or diag(ggH) ≪ D). Another possibility
is applying one of the closed-form algorithms described later in sections 8.3.4
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and 8.3.5. The initial point can also be used to generate a consistent estimate
of the optimal weight (since the latter depends on the true R and is unknown).

In the CRB derivations it was shown that the gain magnitudes and the gain
phases are decoupled. By analogy with the derivation in Appendix D, we can
show that FH

γ Fφ = 0, and FH
d Fφ = 0, which somewhat simplifies the Hessian.

As in [111], it is also possible to concentrate the cost function, eliminating D

and the scaling of g, but the remaining parameters are more strongly coupled
and the derivatives more complex to evaluate. In our experience, the complexity
of the resulting Gauss-Newton scheme is higher and the convergence not better.

8.3.3 Minimisation using alternating least squares (ALS)

Unweighted ALS algorithm

A straightforward technique to optimise a cost function over many parameters
is to alternatingly minimise over a subset, keeping the remaining parameters
fixed. In our case, assume that we have an estimate D̂k at the k-th iteration.
The next step is to minimise the LS cost function (8.6) with respect to the gain
vector only:

ĝk = arg min
g

‖R̂ − ggH − D̂k‖2
F (8.13)

The minimum is found from the eigenvalue decomposition R̂ − D̂k = UΛUH ,
where the matrix U = [u1 , · · · , up] contains the eigenvectors ui, and Λ is a
diagonal matrix containing the eigenvalues λi. The gain estimate minimising
(9.3) is given by

ĝk = u1

√
λ1 (8.14)

where λ1 is the largest eigenvalue and u1 is the corresponding eigenvector. The
second step is minimising (8.6) with respect to the system noise matrix D,
keeping the gain vector fixed:

D̂k+1 = arg min
D

‖R̂ − ĝkĝ
H
k − D‖2 (8.15)

where D is constrained to be diagonal with non-negative entries. The minimum
is obtained by subtracting ĝkĝ

H
k from R̂ and discarding all off-diagonal elements:

D̂k+1 = diag(R̂ − gkg
H
k )

The condition that the diagonal elements of D̂k+1 should be positive can be
implemented by subsequently setting the negative entries at zero. The two
minimisations steps (9.3) and (9.4) are repeated until the model error (8.7)
converges. Since each of the minimising steps in the iteration loop reduces the
model error, we obtain monotonic convergence to a local minimum. Although
the iteration is very simple to implement, simulations indicate that convergence
is usually very slow, especially in the absence of a reasonable initial point.
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Weighted ALS

The optimal weight for the LS cost function is W = R̄−1 ⊗ R−1. Due to this
Kronecker structure, the WLS cost function (8.8) can also be written as

{ĝ, D̂} = arg min
g,D

‖Wc(R̂ − ggH − D)Wc‖2
F (8.16)

where Wc = R−1/2. As before, if we have an estimate D̂k of D at the k-th
iteration, an estimate of g follows from

ĝk = arg min
g

‖Wc(R̂ − D̂k)Wc − (Wcg)(Wcg)H‖2
F (8.17)

After computing the eigenvalue decomposition Wc(R̂− D̂k)Wc = UΛUH , the
estimate ĝk follows as

ĝk = W−1
c u1

√
λ1 (8.18)

The second step is minimising the cost function with respect to D while keeping
g fixed:

D̂k+1 = arg min
D

‖Wc(R̂ − ĝkĝ
H
k )Wc − WcDWc‖2 (8.19)

Let d = vecdiag(D), then (using several Kronecker relations [59])

d̂k+1 = arg min
d

‖(W̄c ⊗ Wc)vec(R̂ − ĝkĝ
H
k ) − (W̄c ◦ Wc)d‖2

= (W̄2
c ⊙ W2

c)
−1vecdiag(W2

c(R̂ − ĝkĝ
H
k )W2

c)

This is a closed-form solution for D̂k+1. Note that unless Wc is diagonal, the

result in general is not equal to diag(R̂ − ĝkĝ
H
k ).

The optimal weight Wc = R−1/2 depends on the true covariance matrix R,
which is unknown. Asymptotically the same results are obtained by replacing
R by a consistent estimate, for example R̂ or the result of one of the closed-form
estimates in the following sections. At the optimum, the statistical properties
of the ALS and W-ALS estimators are as described in section 8.3.1.

8.3.4 Closed form using logarithmic least squares (LOGLS)

Unweighted LOGLS algorithm

An alternative closed form estimate (as in use at the Westerbork Synthesis Radio
Telescope, WSRT [138] since 1980) is obtained by minimising the mean squared
error of the logarithms of the model. As we will show, taking the logarithm has
several effects. The equations become linear in the parameters as the products
of gains become sums:

ln(rij) = ln(γi) + ln(γj) + ı(φi − φj) mod2πı (i �= j) .

It is seen that a least squares model fitting can be applied to the gain magnitude
and gain phase separately. Unfortunately, a modulo 2π phase ambiguity is
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introduced because of the complex properties of the logarithm. This makes
phase unwrapping necessary in the decomposition algorithm.

In a matrix formulation, we minimise an LS cost function after taking the
element-wise logarithm:

{ĝ, D̂} = arg min
g,D,k

‖ ln(R̂) − ln(ggH + D) + K2πı ‖2
F (8.20)

where K is a nuisance parameter matrix of integers. For any estimate ĝ, the
optimal estimate of D̂ is still given by D̂ = diag(R̂ − ĝĝH). Substituting this
back into the cost function shows that the main diagonal of the argument to
the Frobenius norm is equal to zero. Thus, the cost function is compressed as

ĝ = arg min
g,k

‖J[vec ln(R̂) − ln(ḡ ⊗ g) + k2πı] ‖2 (8.21)

where k = vec(K). Note that

ln(ḡ ⊗ g) = 1 ⊗ ln(g) + ln(ḡ) ⊗ 1

= 1 ⊗ ln(γ) + ln(γ) ⊗ 1 + ı(1 ⊗ φ − φ ⊗ 1)
= [1 ⊗ I + I ⊗ 1] ln(γ) + ı[1 ⊗ I − I ⊗ 1]φ

(8.22)

Defining vR = vec(Re ln(R̂)) and vI = vec(Im ln(R̂)) it is seen that the
optimisation problem separates into independent optimisations over γ and φ

(corresponding to the real and imaginary components), namely

γ̂ = arg min
γ

‖JvR − J[1 ⊗ I + I ⊗ 1] ln(γ) ‖2

φ̂ = arg min
φ,k;φ1=0

‖J(vI + k2π) − J[1 ⊗ I − I ⊗ 1]φ ‖2

Each cost function is linear and easily optimised in closed form. For the first cost
function, using JHJ = I⊗I− (I◦I)(I◦I)H and several Kronecker relations [59],
we obtain

ln(γ̂) = (J[1 ⊗ I + I ⊗ 1])†JvR = B−1q (8.23)

where B = 2((p − 2)I + 11t), q = 2(Re ln(R̂) ⊙ Ic)1, and Ic = 11t − I. An
explicit expression of B−1 is easily obtained using Woodbury’s identity. Note
also that B−1q can be computed very efficiently. Similarly, solving the second
cost function is reduced to solving

Ceφ̂ = ve + 2πke

where

Ce =

[
C

et
1

]
, ve =

[
vI

φ1

]
, ke =

[
k

0

]

and C = 1 ⊗ I − I ⊗ 1. The last row in Ce implements the chosen phase
uniqueness constraint, φ1 = 0. The system can be solved as

φ̂ = (CH
e Ce)

−1CH
e (ve + 2πke) (8.24)
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once the integers ke are known. Suppose we have an initial estimate φ◦ of
φ, for example from the first column r̂1 of R̂ as φ◦ = Im ln(r̂1). Then k (and
thus ke) is obtained by rounding the entries of Cφ◦−vI to the nearest multiple
of 2π: k = round

(
(2π)−1(Cφ◦ − vI)

)
. Using Woodbury’s identity and several

Kronecker relations, equation (8.24) can be worked out further, producing

(CH
e Ce)

−1 =
1

2

(
E +

(E1)(E1)H

1 − tr(E)

)

CH
e (ve + 2πke) = 2[(Im ln(R̂) + 2πK) ⊙ Ic]1

where E = 1
2 (2pI + e1e

t
1) and K = unvec(k).

Weighted LOGLS

The LOGLS method has zero bias and is consistent, as the logarithm function
is a smooth monotonous transformation, but the logarithm operator prevents
the LOGLS method from being statistically efficient. In general, there is no
weighting matrix which makes the LOGLS method asymptotically efficient, but
special cases for which asymptotical efficiency can be reached do exist. This
will be shown by comparing the LOGLS cost function with the weighted LS
cost function, the latter leading to asymptotically efficient estimates. We start
from the compressed LOGLS cost function (8.21). After replacing the selection
matrix J by JHJ (which does not change the norm and is more convenient since
JHJ is diagonal), we will introduce a weighting matrix Wlog to obtain

ĝ = arg min
g,k

‖W
1
2

logJ
HJvec[ln(R̂) − ln(ggH) + k2πı]‖2 (8.25)

Assuming that ĝ is close to g and that none of the gain amplitudes γ are zero, we
can use the Taylor approximation ln(x) ≈ x− 1. Let ⊖ denote an element-wise
matrix division, then

JHJvec[ln(R̂) − ln(ggH)]

= JHJvec[ln(R̂ ⊖ (ggH))]

≈ JHJvec[(R̂ ⊖ (ggH) − I)]

= JHJvec[(diag(g))−1(R̂ − ggH)(diag(g))−1]

= JHJ (diag(g ⊗ g))−1vec(R̂ − ggH)

Note that for the cost function the phase of the diagonal matrix diag(g⊗g)−1 is
irrelevant, so it can be replaced by (Γ⊗Γ)−1, where Γ = diag(γ). The weighted
LOGLS cost function close to the optimum can thus be written as

min
g

‖ W
1
2

logJ
HJ(Γ ⊗ Γ)−1vec(R̂ − ggH) ‖2

If we compare this to the cost function for the weighted LS, ming ‖W
1
2

lsJ
HJvec(R̂

−ggH) ‖2 we see that these two cost functions give the same solution if

W
1
2

logJ
HJ(Γ ⊗ Γ)−1 = W

1
2

lsJ
HJ (8.26)
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Because JHJ is singular, a solution is possible only in special cases, for example
diagonal weighting matrices. For low SNRs, SNR = gHg/tr(D) ≪ 1, which is
true for most radio astronomical observations, the Wls weighting matrix is close

to diagonal: Wls = D−1 ⊗ D−1, and in this case the choice W
1
2

log = (D− 1
2 ⊗

D− 1
2 )(Γ⊗Γ) = D− 1

2 Γ⊗D− 1
2 Γ satisfies (8.26). Here we used the diagonal and

commutative properties of JHJ. Defining W = D− 1
2 Γ, the weighted LOGLS

cost function can be expressed as

min
g,k

‖ J(W ⊗ W)[vec ln(R̂) − ln(g ⊗ g) + 2πkı] ‖2

Further defining v′
R = vec(Re W ln(R̂)W), v′

I = vec(Im W ln(R̂)W), and
k′ = (W ⊗ W)k, and noting that (viz. (8.22))

(W ⊗ W) ln(g ⊗ g) = [w ⊗ I + I ⊗ w]W ln γ + ı[w ⊗ I + I ⊗ w]Wφ

where w = W1, it follows that we need to solve

γ̂ = arg min
γ

‖Jv′
R − J[w ⊗ I + I ⊗ w]W ln(γ) ‖2

φ̂ = arg min
φ,k;φ1=0

‖J(v′
I + k′2π) − J[w ⊗ I − I ⊗ w]Wφ ‖2

It is clear that this can be done in closed form as before; we omit the details.
The conclusion is that for low SNRs, we can weight by Wlog and make the

weighted LOGLS method asymptotically efficient to a good approximation.

8.3.5 Closed form using column ratios (COLR)

Unweighted COLR algorithm

Finally, we will set out to find a closed-form estimate of g, which recovers
g exactly when applied to R (hence asymptotically for R̂). The crux of this
method is the observation that the off-diagonal entries of ggH are equal to those
of R, and are known, so that we only need to reconstruct the diagonal entries
of ggH . We further note that ggH is rank 1, so any submatrix of R that does
not contain elements from the main diagonal is also rank 1. This property can
be used to estimate the ratio between any pair of columns of R away from the
diagonal, and subsequently to estimate how the main diagonal of R has to be
changed so that the resulting R′ is rank 1, or R′ = ggH . The gain vector g can
then be extracted by an eigenvalue decomposition.

For any two elements gi and gj of the complex gain vector g, define the ratio
αij = gi/gj . This ratio can be estimated from the data R by solving

ci = αijcj

where ci and cj are the i-th and j-th column of the matrix R, not including
the entries rii, rij , rji and rjj because rii and rjj also depend on the unknown
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system noise di. Solving for αij in the least squares sense gives

α̂ij = (cH
j cj)

−1cH
j ci =

∑
k �=i,j r∗kjrki∑
k �=i,j r∗kjrkj

We can subsequently estimate |gi|2 as |gi|2 = α̂ijrij , for any choice of j �= i.
This estimate can be improved if all (p − 1) available column ratios are used,
and the fact that |gi|2 is real:

|gi|2 =
1

p − 1
Re
( p∑

j=1
j �=i

α̂ijrij

)

The next step is to form R′ equal to R but with the diagonal entries replaced by
the estimates of |gi|2 obtained above. The resulting matrix R′ is an estimate of
ggH , and ĝ is found from the eigenvalue decomposition R′ = UΛUH , similarly
as in (8.14). D is obtained as D = diag(R − ggH).

With measured data, we follow the same procedure but replace R by the
sample estimate R̂. Although there is no claim that this procedure minimises
the LS cost function, its estimates are rather close and asymptotically (large
N) the true g and D are obtained. In the simulations and in the experimental
results, the column ratio method will be denoted by the acronym “COLR”.

Weighted COLR

Because of the ad-hoc derivation of the algorithm, it is difficult to establish the
statistical efficiency, and the weighting matrix which might achieve this. The
analysis of the other three gain estimation methods suggests that a weighting

matrix of the form W
1
2

col = (D ⊗ D)−
1
2 might improve the statistical efficiency

in some cases (namely, very non-uniform noise power). In the section on simu-
lations we will show that this is indeed the case. Since D is initially unknown,
we can construct the weighting matrix only after a first (unweighted) estimate
of the parameters has been made. The COLR algorithm is subsequently ap-
plied to D− 1

2 R̂D− 1
2 . The resulting gain estimate ĝw is converted to the un-

weighted gain by ĝ = D
1
2 ĝw. The diagonal estimate D̂ is obtained as before as

D̂ = diag(R̂ − ĝĝH).

8.3.6 Computational complexity

When a fast update rate for the parameter estimation is needed or when a
very large number of telescopes/antenna sensors is used, the computational
complexity of the algorithms becomes important. This is especially the case for
future generations of large radio telescopes, such as SKA and LOFAR , where
the number of telescopes will be very large (p ≥ 100). Table 8.1 lists the order
of the number of multiplicative operations required for each of the algorithms,
and the additional number of multiplications for computing weighted estimates.
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Table 8.1. Number of multiplications. (p: number of sensors, Nit: number
of iterations.)

Method unweighted weighted (add’l)
GNLS 34Nitp

3 40Nitp
3

ALS 8Nitp
3 16Nitp

3

COLR 20 p3 2 p2

LOGLS 2 p2 16 p2

The computations for determining the initial points for the GNLS and the ALS
methods have not been taken into account.

It is seen that the GNLS method is the most complex, whereas the LOGLS
method is computationally the fastest. For the GNLS method the most de-
manding operation is the calculation of the inverse of the Hessian; for the ALS
and the COLR methods it is the repeated evaluation of the SVD. (In the table,
we did not take into account the fact that faster estimators for the dominant
singular vector exist.) The LOGLS algorithm only requires a few matrix-vector
multiplications as the LOGLS estimators have simple closed form expressions,
and it is therefore the fastest method.

8.4 Simulations

First we will verify the performance of the estimation algorithms by computer
simulations, and then show results based on experimental data collected at the
WSRT.

In all simulations we use p = 8 telescope channels. Unless denoted otherwise,
the gain magnitude γi (i = 1, · · · , p) is kept fixed for each simulation. The
γi are chosen randomly in the interval γ0 − ∆γ and γ0 + ∆γ, where γ0 = 1
is the nominal gain magnitude and ∆γ is a spreading parameter. The gain
phase φi lies uniformly distributed between 0 and ∆φ, where ∆φ ≤ 2π. The
gain phase is randomly chosen and is also kept fixed during most simulations.
The astronomical source is a zero mean complex Gaussian signal with unit
power. The signal-to-noise ratio is defined as the total received power due to
the source, divided by the total noise power, or SNR = gHg/tr(D). Finally, the
system noise magnitude di lies uniformly distributed between SNR−1(1 − ∆d)
and SNR−1(1 + ∆d), where ∆d is the noise spreading parameter, ∆d ≤ 1.

For a typical online gain calibration measurement at a radio observatory,
astronomical sources are used with SNRs in the range −20 dB to −10 dB,
the integration time of the correlation data is usually several seconds to a few
minutes for a typical frequency bin resolution of 10 to 100 kHz. Therefore, for
most of the simulations, the following parameter settings are chosen: ∆γ = 0.1,
∆d = 0.1, ∆φ = 2π, and N = 215.
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In the simulations, N is the number of complex samples on which the co-
variance matrix is based and to which the gain decomposition algorithms are
applied. Finally, Nsim is the number of simulation runs from which the esti-
mation standard deviation is derived. Choosing Nsim = 256 gives a reasonable
standard deviation accuracy.

8.4.1 Convergence of GNLS and ALS

Figure 8.2 (left) shows the convergence speed (Frobenius norm of the covariance
matrix) of the weighted algorithms, when applied to a true covariance matrix R

(infinite sample case). The ALS method shows a linear decrease of the error; the
Gauss-Newton curve shows a quadratic decrease in the estimation error, as is
expected and well known from literature. The closed-form estimators produce
the correct values in one step, up to computer accuracy. Figure 8.2 (right)
shows the convergence speed for covariance matrices with noise. In this case,
the GNLS method does not show quadratic convergence because after a few
iteration steps the estimation accuracy is dominated by the noise (the CRB is
reached within a few iteration steps).

For the chosen SNRs and spread in gain and noise power, applying weights
improves the convergence speed of the ALS method, which is reduced by a factor
two. For the GNLS method, weighting does not have a significant effect on the
convergence speed for the parameter settings used.

For the ALS and the GNLS methods, an initial point is needed which is
relatively close to the true values. The results of the non-iterative methods
could be used as initial point. In the simulations, however, the true gain and
noise values with small perturbations were used as initial points.
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Figure 8.2. Convergence speed of the cost function, weighted gain estimation
algorithms applied to the true R (left), and applied to finite sample covariance
matrices (right).
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Figure 8.3. Weighted gain estimate standard deviation versus SNR, gain
magnitude SD (left), and gain phase SD (right).

8.4.2 Influence of SNR and number of samples

Figure 8.3 shows the results of a gain estimation simulation in which the gain es-
timation standard deviation is plotted versus SNR for N = 32768 samples. The
four estimator results are plotted together with the statistical efficiency bound
(CRB). For the parameter range under consideration, all methods perform close
to the bound, except for SNRs < −15 dB in which case the gain estimators are
biased, as is shown in figure 8.4. The figures show that the LOGLS and COLR
methods break down at slightly higher SNRs than the ALS and GNLS methods.

For high SNR values, the variance of the gain estimates saturates towards a
fixed value, determined by the number of samples. Indeed, at very large SNR,
the direction of g can be estimated accurately even with a single sample, but its
scaling ‖g‖, or the source power estimate, suffers from the finite sample effect.

In figure 8.5 the weighted gain estimates are plotted as a function of the
number of observed time samples for an SNR of −10 dB . The performance of
the four weighted methods does not differ much for the parameter setting used.

8.4.3 Influence of parameter spread

We will next investigate the influence of deviations of the gains and system noise
values from their nominal values. The number of samples was fixed at N = 215

and the SNR at nominal −10 dB. The gain magnitude and noise parameter
ranges are defined by γ = 100.1∆γ βγ and d = SNR−1100.1∆d βd , where ∆γ and
∆d are spreading parameters with values ranging from 0 to 10 dB, and βγ and
βd are random vectors with elements uniformly distributed in the interval [-1,1].

Figures 8.6 and 8.7 show the gain estimation standard deviation as a function
of gain spreading for the non-weighted and weighted simulations respectively.
For ∆γ = 0 dB, all gains are unity; for ∆γ = 10 dB, the gains vary between
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Figure 8.4. Weighted gain estimate bias versus SNR, gain magnitude bias
(left), and gain phase bias (right).
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samples, gain magnitude SD (left), and gain phase SD (right).
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Figure 8.6. Non-weighted gain estimation standard deviation versus disper-
sion of the gain magnitudes, gain magnitude SD (left), and gain phase SD
(right).

−10 dB and 10 dB (with respect to the nominal value of 1). The effect of the
weighting on the statistical efficiency of the LOGLS method is dramatic for
a large gain spreading parameter. The weighting does not influence the gain
magnitude estimation of the COLR method. This is expected as the COLR
weighting is a real diagonal matrix. The ALS and GNLS methods coincide
with the CRB curve, except for a large gain spread parameter value in the
non-weighted case.

Figures 8.8 and 8.9 show the gain estimation standard deviation as a function
of noise spreading for the non-weighted and weighted simulations respectively.
All non-weighted method standard deviations lie well above the CRB curves for
∆d > 2 dB and coincide with the CRB curves in the weighted case, except the
gain magnitude estimation for the COLR method.

We conclude that weighting does not have much influence if the gain and
noise values of the different telescopes are approximately equal, as in this case
the methods are already asymptotically efficient. The improvement, however, is
large if gain and noise spread become significant. In that case weighting makes
the methods (except COLR) asymptotically efficient.

8.5 Experimental results

8.5.1 Measurement setup

So far, the accuracy of gain parameter estimations has been verified by means
of simulations. In this section, we present an experimental verification based
on collected radio telescope data. In the experiment, we observe a strong point
source in the sky with a radio telescope interferometer array, in our case the
Westerbork Synthesis Radio Telescope. The point source requirement is that
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Figure 8.7. Weighted gain estimation standard deviation versus dispersion
of the gain magnitudes, gain magnitude SD (left), and gain phase SD (right).
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Figure 8.8. Non-weighted gain estimation standard deviation versus disper-
sion of the system noise, gain magnitude SD (left), and gain phase SD (right).
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Figure 8.9. Weighted gain estimation standard deviation versus dispersion
of the system noise, gain magnitude SD (left), and gain phase SD (right).

the source angular size is much smaller than the telescope main beam power.
The time series at the baseband digital output of the telescopes are seg-

mented into short intervals, Fourier transformed, and subsequently spatially
cross-correlated resulting in complex covariance matrices for each of the fre-
quency bins, to which the gain decomposition algorithms are applied.

In our experiments, we used p = 8 of the 14 WSRT telescopes, in single linear
polarisation mode, with a maximum distance (baseline) of 1 km. The telescopes
tracked the strong astronomical point source “3C48” at a sky frequency of 1420.4
MHz with a receiver bandwidth of 1.25 MHz. An eight-channel data recorder,
equipped with eight ADCs and 8 × 32 MBytes of memory, was connected to
the telescope baseband IF system outputs. The time sample data was recorded
on CDROM and processed offline. In our experiment the earth-rotation re-
lated phase drift was compensated for, which means that during the experiment
the telescope–interferometer phase was constant. We split the data into 32
frequency bins, each with a bandwidth of 39 kHz, which fits the narrowband
assumption reasonably well (propagation delays across the array).

The data model in the experiment is R = gσ2
sg

H +D, where σs is the source
flux (known from tables). The outcome of the algorithms forms estimates for
g and D. To compare this to known telescope parameters, we first note that
the gain vector g and the noise vector n contain a common unknown electronic
amplification factor Γel (a diagonal matrix) which is frequency dependent and
cannot be obtained separately. Thus define

g = Γelg , D = DΓ2
el

where g and D are the telescope gain vector and telescope noise covariance
matrix at a location in the system prior to amplification. Note that the ratio

D− 1
2 g is independent from the electronic gain. Hence σsD

− 1
2 g = σsD

− 1
2 g.

The right hand side is the signal-to-noise ratio at the input of the low-noise
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Figure 8.10. Gain magnitude and noise power estimates (left), and gain phase
estimates (right), as function of frequency. Estimates are obtained using the
weighted LOGLS method, based on an observation the astronomical source
3C48

amplifiers. Its nominal value depends on the construction of the telescopes
(collecting area), the telescope system noise and the source flux, and is known

from calibration tables. Thus, we can compare the estimate for σsD
− 1

2 g to
the literature. In our experiment, the 3C48 source emits spectrally continuous
radiowaves at 1420.4 MHz with a source power, according to calibration tables,
which lies 13 dB below the WSRT system noise, or σ2

s |gi|2/di ≈ 0.05.

8.5.2 Experimental results

The weighted LOGLS method was applied to a WSRT telescope data set con-
sisting of p = 8 telescopes and N = 131072 samples in 32 frequency bins. The
estimates of σ2

s |gi|2, di and φi for i = 1, · · · , 8 as function of frequency are shown
in figure 8.10.

Figure 8.10 (left) confirms that the received SNR is about −13 dB for each
antenna. Note that there is a bump in the noise power curves at 1420.4 MHz.
This corresponds to the spectral line of neutral hydrogen, and is caused by
the galactic emission of our Milky Way. As the Milky Way is a spatially wide
source of radiowaves, it is not resolved by the WSRT interferometers, and is
therefore visible only in the noise estimates. Figure 8.10 (right) shows the
estimated phases of the telescopes, which are frequency dependent because of
the geometric delay of the incident source across the array. The horizontal line
corresponds to the first telescope, the steepest line to the farthest. The phase
slope over a frequency band ∆f is given by ∆φi = 2π(∆f)Li/c, where Li is the
geometric delay of telescope i. For the longest telescope distance, the calculated
phase slope over the passband is 1.9 rad, which matches the observed value.

Next, all four weighted gain estimation methods are applied to the same
dataset, but for one frequency bin only. The ratio of the gains and noise vector
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Figure 8.11. Observed signal to noise ratio (left), and estimated gain phase
(right), for astronomical source 3C48 at f = 1420.7 MHz and channel band-
width ∆f = 39 kHz.
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components, σ2
s |gi|2/di, and the observed phases are plotted in figure 8.11. All

four estimators yield the same ratios of about 0.05, the expected value. Note
that, while the variation among the telescopes of gain magnitudes and noise
power in figure 8.10 is about 3 dB, the fluctuation in the gain-noise ratios
(figure 8.11) is only 25% around the average. This is because the electronic
gain variation is quite large, and this is factored out by the division.

Finally, we investigate the effect of the data sample size N on the estimates.
The data set was split into subsets increasing in size from N = 512 to 65536 in
steps of a factor two. The number of subsets decreased correspondingly from
Nsim = 256 down to 2, as the total number of available samples is constant
(131072). Both the estimation standard deviation and the CRB are shown in
figure 8.12, where the CRB was derived from the ‘true’ values estimated from
the complete data set. There is a fair match between the observed standard
deviation and the theoretical bound, except at the edges where either N or
Nsim are too small to obtain reliable statistics.

8.6 Conclusions

In this chapter we have derived several algorithms for estimating gain and noise
parameters of a phased array from an observed covariance matrix. We have
shown asymptotically efficient weighted least square estimators, and have de-
rived several closed form estimators which, under certain conditions, are also
asymptotically efficient. For low SNRs, in the regime where all algorithms un-
der consideration are biased, the LS estimators perform slightly better than the
closed form ad-hoc algorithms. Nonetheless, the closed-form algorithms pro-
vide the essential starting points for the iterative methods (alternating LS and
Gauss-Newton LS optimization).

For uniform gain and noise vectors, the performance of the unweighted algo-
rithms is close to the CRB and weighting does not improve much. However, for
parameters with a large spread (> 3 dB), the weighting dramatically improves
the performance, making all algorithms (except COLR) asymptotically efficient,
and improving the speed of convergence for the ALS algorithm by a factor two.

An advantage of the LOGLS method is its low computational expenditure,
proportional to p2 rather than p3 as for the other algorithms. Unfortunately,
this method is not easily generalised to the estimation of multiple gain vectors,
which is needed for example in the calibration of dual-polarised telescope arrays.



Chapter 9

Polarisation gain calibration

9.1 Introduction

For unpolarised telescope arrays, a standard calibration procedure is to point
the telescopes at a strong astronomical source, and to estimate a covariance
matrix R̂, containing all correlation products between the telescope output sig-
nals. Asymptotically, R̂ converges to its expected value R which has the model
R = gσ2

sg
H + D. Here, σ2

s is the known source flux, g is a vector containing
the complex gains to be estimated, and D is a diagonal matrix containing the
unknown noise powers per antenna element (it is assumed that the noise power
is uncorrelated from one antenna to another). This is essentially the model con-
sidered by [138] [37]. Improved estimation algorithms using iterative and closed
form least squares techniques have recently been derived [18]: by incorporating
proper weighting, these methods are proved to be asymptotically statistically
efficient [21].

For dual polarised telescope arrays, much less is known. In 1995, Hamaker et
al. [63] [62] developed a matrix formalism in which the polarisation properties of
the astronomical signals and their propagation through the ionosphere and the
astronomical receiving instrument were efficiently incorporated. An iterative
procedure similar to SelfCal [146] was used to estimate the polarisation gain
coefficients, but it was not known to what solution it would converge.

In [19], the scalar gain calibration methods of [21] [18] were extended to
polarised arrays. In this chapter1 we will follow the notation and derivations
of [19] and [62], and extend them with more efficient algorithms to obtain least
squares solutions for the gain factors. We will also verify that at least three sky
sources with different polarisation states are needed to find the gain factors.

1This chapter was published in [20]
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9.2 Data model

9.2.1 Coherency

In aperture synthesis radio astronomy, the output of the interferometers is the
correlation of the field strengths at the different telescopes, also known as co-
herencies [146]. The electric field at the location of an antenna element can
be described by two linear polarisation components, stacked in a 2 × 1 vector:
ei = [eix, eiy]t. The correlation between two different telescopes i and j is a
2×2 interferometer coherency matrix Eij = E{eie

H
j }. If there are p telescopes,

each with two polarisations, then the 2p observed electric fields can similarly be

stacked in one vector: e =
(
et
1, · · · , et

p

)t
. The 2p× 2p Hermitian coherency ma-

trix E is defined by E = E{eeH} which can be written in terms of interferometer
coherency matrices Eij as

Ei,j =

[
E{eixejx} E{eixejy}
E{eiyejx} E{eiyejy}

]
, E =




E11 · · · E1p

...
. . .

...
Ep1 · · · Epp




E is dependent on frequency and time, but for our analysis we will assume that
we will work in a narrow subband and estimate the coherencies at sufficiently
short time scales.

9.2.2 Observed covariance matrix

Instead of the field strengths, each telescope measures a voltage vector vi. Their
relation is given by vi = J iei, where J i is a 2 × 2 matrix called the Jones
matrix. It also incorporates the various ionospheric and atmospheric distortions,
gain phase rotations and antenna feed polarisation leakage. Hence, the J i are
unknown and have to be estimated.

The observed voltages of the dual polarisation output signals of the tele-
scopes i and j are cross-correlated into covariance matrices Rij , for which

Rij := E{viv
H
j } = J iEijJ

H
j . Stacking the telescope output voltages vi into a

2p-dimensional vector v = [vt
1, · · · ,vt

p]
t, and defining

J =




J1 0
. . .

0 Jp


 , R =




R11 · · · R1p

...
. . .

...
Rp1 · · · Rpp




it follows that the 2p × 2p covariance matrix R is given by R = JEJH .
In practice the observations are distorted by noise. The system noise signals

of each of the two polarisation channels, ni = [nix, niy]t are stacked into a vector:

n =
(
nt

1, · · · ,nt
p

)t
. The noise signals are uncorrelated between the telescopes,

and up to a certain level also uncorrelated between the two polarisations of a
telescope. In our analysis we assume that this is the case. Then the noise matrix
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D = E{nnH} is diagonal: D = diag(σ2
1x, σ2

1y, · · · , σ2
px, σ2

py). The system noise
can be considered additive, so that the covariance matrix of the received data
can be written as R = JEJH + D.

9.2.3 Point source model

Under certain conditions, the electric field can be modelled as the contributions
of a finite number of point sources:

R =
∑

ℓ

Jℓ Eℓ JH
ℓ + D

where ℓ is the source direction and Eℓ is the coherency due to a single source
from direction ℓ. Suppose that the source has sky brightness Bℓ (a 2×2 matrix
determined by the source flux polarisation components or Stokes parameters).
The relation of Bℓ to Eℓ can be written as Eij,ℓ = wij,ℓ Bℓ where wij,ℓ is the
phase shift due to the geometric delay in an interferometer pair i-j [146]. Note
that wij,ℓ = wi,ℓwj,ℓ, where wi,ℓ is the phase shift at a single telescope. Note
that it is the same for the x and the y polarisation of this telescope. Thus define

W i,ℓ =

[
wi,ℓ 0
0 wi,ℓ

]
, Wℓ = [W t

1,ℓ, · · · ,W t
p,ℓ]

t ,

then Eij,ℓ = W i,ℓ Bℓ W H
j,ℓ, and Eℓ = Wℓ Bℓ WH

ℓ . The overall observed point
source model thus becomes

R =
∑

ℓ

JℓWℓBℓW
H
ℓ JH

ℓ + D . (9.1)

9.3 Gain calibration observations

During a calibration observation, the telescopes are pointed at a single dominant
point source in the sky, with known sky brightness. The sum in equation (9.1) is
reduced to a single term. Because the geometry of the telescope array is known,
the delay matrix Wℓ is known as well. We thus obtain the observation model

R = GBGH + D (9.2)

where we define the 2p × 2 gain matrix G by G = JW. Our objective is to
estimate G and D, assuming that estimates of R and B are available. Since
Wℓ is known, J is easily determined from G. Alternatively, R can be corrected
in advance for Wℓ, after which we can assume without loss of generality that
Wℓ = I and that G = J is direction-independent.

R is estimated by an observation covariance matrix R̂, obtained by cross-
correlation of N samples xn of the telescope output signal vector, R̂ = 1

N∑N
n=1 xnxH

n .
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9.4 Maximum likelihood and least squares

As will be shown later in this chapter, observations are required of three astro-
nomical sources which must have different polarisation states (Rm = GBmGH+
D, m = 1, · · · , 3). As these observations are independent, the joint pdf can be
written as a product of the pfd’s belonging to the three individual observa-
tions. This leads to the following negative logarithmic maximum likelihood
formula [168].

l(G,D) =
3∑

m=1

( log |Rm| + tr(R−1
m R̂m) )

Finding the maximum of this formula involves complicated complex derivatives,
and a solution can probably only be found in an iterative form. We therefore
formulate the following least squares problem for finding G and D.

{Ĝ, D̂} = arg min
G,D

3∑

m=1

|| R̂m − (GBmGH + D) ||2F

We assume that the noise power D is identical for all three observations.

9.5 Factor analysis algorithms

In this section, we will describe factor analysis algorithms which are needed for
the polarisation gain estimations. The gain estimation algorithms themselves
will be described in the next section. We will consider the factor model [91]
R = AAH + D, where the factor A is rank-two, and we will present two
computationally efficient techniques.

9.5.1 Alternating Least Squares

A straightforward technique for trying to optimise a cost function over many
parameters is to alternately minimise over a subset, keeping the remaining pa-
rameters fixed. This was explained in section 8.3.3 and is summarised here. In
our case, let us assume at the k-th iteration that we have an estimate D̂[k]. The
next step is to minimise the LS cost function with respect to the gain vector
only:

Â[k] = arg min
A

‖ R̂ − AAH − D̂[k] ‖2
F (9.3)

The minimum is found from the eigenvalue decomposition R̂− D̂[k] = UΛUH ,
where the matrix U = [u1 , · · · , u2p] contains the eigenvectors ui, and Λ is a
diagonal matrix containing the eigenvalues λi, sorting in descending order. The

factor minimising (9.3) is given by Â[k] = [u1λ
1/2
1 u2λ

1/2
2 ] . The second step is

minimising with respect to the system noise matrix D, keeping the gain vector
fixed:

D̂[k + 1] = arg min
D

‖ R̂ − Â[k]Â[k]H − D ‖2
F (9.4)
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where D is constrained to be diagonal with nonnegative entries. The minimum
is obtained by subtracting Â[k]Â[k]H from R̂ and discarding all off-diagonal
elements. Since each of the minimising steps in the iteration loop reduces the
model error, we obtain monotonic convergence to a local minimum. Simulations
indicate that in the absence of a reasonable initial point, convergence can be
very slow.

9.5.2 Closed-form algorithm

The crux of this method is the observation that the off-diagonal entries of AAH

are equal to those of R, and are known, so that we only need to reconstruct
the diagonal entries of AAH . We further note that AAH is rank two, so any
submatrix of R that does not contain elements from the main diagonal is also
rank two. This property can be used to estimate the ratio between any triplet
of columns of R away from the diagonal, and subsequently to estimate how the
main diagonal of R has to be changed so that the resulting R′ is rank two,
or R′ = AAH . The gain factor A can then be extracted by an eigenvalue
decomposition.

To illustrate the idea, let (i, j, k) be a triplet of column indices, and let M

be a submatrix of R consisting of columns (i, j, k), and all rows with indices
unequal to i, j, k. Then M has three columns, and rank two, so that there exists
a vector v = [v1, v2, v3]

t such that Mv = 0. The vector can be found from an
SVD of M. It follows that [r′ii, rij , rik]v = 0, so that r̂′ii = −(rijv2 + rikv3)/v1.
This estimate can be improved by considering all possible triplets containing i,
and combining the ratios. After filling in all diagonal entries of R′ in this way,
a rank-two factorisation of R′ = AAH provides an estimate for the factor A.
An estimate for D is subsequently found from R − AAH .

9.6 Polarisation gain estimation algorithms

9.6.1 Closed form algorithm

One reference source
Consider a single source, R = GBGH + D, where R has been estimated and
B is known from sky tables. Using factor analysis, we can find D and a factor
A such that R = AAH + D. However, A is not unique: for any 2 × 2 unitary
matrix Q, we have AAH = (AQ)(QHAH). Hence, we can estimate A only up
to a unitary factor. It follows that G = AQB−1/2, where Q is unknown. It is
not possible to estimate G in more detail using only a single reference source.

Two reference sources
With two reference sources, we have

R1 = GB1G
H + D

R2 = GB2G
H + D
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R1 and R2 are observed, B1 and B2 are the known polarisation matrices from
the reference sources, and D is known from a factor analysis. Again, they are
unique only up to unknown 2 × 2 unitary factors Q1, Q2.

A generalised eigenvalue decomposition of the pair (B1,B2) provides the
factorisations

B1 = MΛ1M
H , B2 = MΛ2M

H , (9.5)

where M is a square invertible matrix and Λ1,Λ2 are positive diagonal matrices.
It is assumed that the generalised eigenvalues are distinct.

The same decomposition on (R1 − D,R2 − D) gives

R1 = AΛ1A
H + D

R2 = AΛ2A
H + D

(9.6)

Note that the Λ1 in both cases is the same, and also Λ2. This is because

(R1 − D) − λ(R2 − D) = G(B1 − λB2)G
H

so that (B1,B2) and (R1,R2) have the same rank reducing numbers λ.
Combining the two equations, we immediately obtain

A = GMΦ̄ ⇒ G = AΦM−1 (9.7)

where Φ = diag(φ) is an unknown diagonal matrix with unimodular diagonal
entries, representing phase ambiguities. Without further information, these
cannot be further resolved.

An alternative computation that leads to (9.7) would go via factor analysis
of R1 and R2 separately:

R1 = A1A
H
1 + D1 = (A1Q1)(Q

H
1 AH

1 ) + D1

R2 = A2A
H
2 + D2 = (A2Q2)(Q

H
2 AH

2 ) + D2

where Q1 and Q2 are unknown unitary matrices. Setting D1 = D2 = D,
comparing the two equations with the model (9.6), and inserting (9.5), we obtain

G = A1Q1Λ
−1/2
1 M−1 = A2Q2Λ

−1/2
2 M−1

The latter equality relates Q1 to Q2 as

A
†
1A2 = Q1(Λ

−1/2
1 Λ

1/2
2 )QH

2 .

This has the form of an SVD, and Q1 and Q2 can be computed as the left
and right singular vectors of A

†
1A2. However, these are unique only up to an

unknown diagonal phase matrix Φ. Hence we obtain

G = (A1Q1)Φ(Λ
−1/2
1 M−1)

where only Φ is unknown. This is of the same form as (9.7).
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Thus, we can estimate G only up to two unknown phases. With some ef-
fort, this can be converted to a more convenient normalisation: if we define a
normalised G to have positive real entries on its first row, then the normalised
G is unique. This is the best that can be expected using two reference sources.

Three reference sources
If a third observation of a point source is available, R3 = GB3G

H + D, then
the ambiguity can be further reduced to a single common phase. Indeed, after a
similar generalised eigenvalue decomposition on the pair (R1,R3), we have two
sets of equations available,

G = A1Φ1M
−1
1 = A2Φ2M

−1
2

or, denoting by ◦ the Khatri-Rao (column-wise Kronecker) product,

vec(G) = (M−T
1 ◦ A1)φ1 = (M−T

2 ◦ A2)φ2 (9.8)

or

[(M−T
1 ◦ A1) − (M−T

2 ◦ A2)]

[
φ1

φ2

]
= 0 .

Thus, [φT
1 , φT

2 ]T is the unique solution in the null space, and determined up to
a scaling φ. Inserting in (9.8), we obtain G up to an unknown scaling by φ.

9.6.2 Parallel factor analysis

In [150] [101] [175] parallel factor analysis solutions are given for the model

||R̂ − ABC||2F . Our model, which is based on a combination of three sources

B1, B2, and B3, is slightly different. Let R̃ =
[
R̂t

1 R̂t
2 R̂t

3

]t
, and let D̃ =

[Dt Dt Dt]
t
. Define also G̃B = [(GB1)

t (GB2)
t(GB3)

t]
t
, then, assuming that

D is found by using one of the factor analysis algorithms described earlier, the
Least Squares cost function to minimise is given by:

{Ĝ} = arg min
G

|| R̃ − D̃ − (G̃BGH) ||2F (9.9)

Our model differs from [175] [150] in the sense that the Bk matrices in general
are not diagonal, also our model has more structure than in [101] as the two
G matrices are identical. A solution for the cost function above can be found
by iteratively estimating the gain matrix Ĝ by Ĝ = (G̃B)†(R̃ − D̃))H and

inserting it in G̃B. For this algorithm, a good initial point is needed; one of the
two proposed closed form algorithms can be used for this purpose.

9.7 Simulations

The performance of the closed-form and parafac dual polarisation gain estima-
tion methods is studied by applying them to three generated covariance matrices
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R̂k, based on the “true” values of G, D, and Bk. The performance is quantified
by calculating the model error ||R̃ − D̃ − G̃BĜ||F . Here, the noise matrices

D̂ or D̃ are estimated using the closed-form factor analysis algorithms. In the
simulations, the Bk matrices used are:

B1 =

[
1 0
0 1

]
, B2 =

[
1.2 0.1
0.1 0.8

]
, B3 =

[
1 −0.1ı

0.1ı 1

]

The gain magnitudes are nominally one, with gain magnitude variations (over
the 2p telescope channels) up to 10%, and phase variations up to 2π radians.
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Figure 9.1. Convergence of the parafac algorithm, using the closed form
algorithm as a starting point (Nsam = 1000, p = 5, D = I, Nit = 256).

Figure 9.1 shows the convergence of the parafac method, using the closed form
method as initial point. The improvement of the parafac method with regard
to the closed form method is not dramatic. Figure 9.2 shows the model error
of the closed form method compared to the model error of the true gains. The
closed form model error is apparently very close to the model error of the true
gains.

9.8 Conclusions

We have shown that observations of at least three astronomical sources are
required to fully solve the dual polarisation gain estimation problem of radio
telescope arrays. We have presented several closed-form and iterative solutions
to the dual polarisation gain estimation problem. These solutions are not op-
timal as they do not fully exploit the structure which is present in the model.
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However, initial simulations show that, for these solutions, the model error is
close to the model error using the true gain values.





Chapter 10

Implications for future
telescopes

10.1 Introduction

In previous chapters, multichannel detection, excision, and spatial filtering tech-
niques were presented. Both theoretical analyses and experimental results were
shown. The influence of several system and signal parameters on interference
mitigation effectiveness was analysed as well. In this chapter, implications of
this knowledge for the next generation of radio telescopes will be discussed. The
focus will be on the LOFAR telescope, a large distributed aperture synthesis ar-
ray, consisting of many antenna elements. However, many of the implications for
LOFAR will also be applicable to other large-scale aperture synthesis telescopes,
such as SKA . This chapter will describe the LOFAR interference mitigation
strategy, and interference mitigation options in the LOFAR design. Finally,
some initial interference filtering results from the LOFAR Initial Test Station
(ITS) will be presented.

10.2 LOFAR interference mitigation strategy

10.2.1 The LOFAR telescope

The Low Frequency Array (LOFAR) [27,85,32] is a next-generation radio tele-
scope which is currently being designed and constructed in the Netherlands,
with possible extensions to neighbouring countries. The observational frequency
window of LOFAR will lie in the 10-250 MHz range. It is an aperture array
synthesis telescope [146,117] and will consist of order 100 telescopes, also called
LOFAR stations. These stations will be positioned in a spiral configuration over
an area with a radius of a few hundred kilometers, as well as in a more densely
populated central region, also known as the central core. Figure 10.1 shows an
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artist impression of a possible LOFAR configuration.

Figure 10.1. Artist impression of the distribution of LOFAR telescope sta-
tions in the Netherlands and Germany (left), photograph of the LOFAR initial
test station (ITS) in Borger-Odoorn (right).

Each of the stations will consist of about 100 sky noise limited dual polar-
isation antennas1. These antennas are combined in such a way that station
beams can be formed for each of the desired look directions or pointings. The
preliminary LOFAR design defines multiple beam capabilities, (non-contiguous)
4 MHz wide bands which are composed of order 200 kHz wide subbands. The
station signals are transported to a central location where they are time-delayed
in order to compensate for their geometric delay differences. After delay correc-
tion, the signals are further split into 1 kHz wide frequency channels, after which
they are correlated, integrated in time, and stored. These correlation products
are subsequently processed to form astronomical sky maps. The station and
central processing signal chains are schematically shown in figure 10.2. About
one quarter of the LOFAR stations will be located in a central area with a di-
ameter of a few kilometers, also known as the central core. Not all the design
and implementation details of LOFAR were fixed at the time of writing of this
thesis; the final LOFAR design may therefore deviate from the one sketched
here.

In addition to synthesis imaging capabilities, LOFAR also supports other
modes, such as:

• transient detection using wideband waveform signal processing or space-
time array processing (STAP) [67].

• tied array beamforming, that is, summing the station output signals co-
herently instead of correlating them.

1Actually, LOFAR will have different antenna concepts for different frequency bands, the
Low Band Antenna for frequencies below 90 MHz, and the High Band Antenna for frequencies
above 110 MHz
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Figure 10.2. Schematic overview of LOFAR . The antenna signals in a sta-
tion are amplified using low noise amplifiers (LNAs), filtered and digitised, and
added using appropriate complex weights (beamforming). After beamforming,
the signals are compensated for their relative geometric delay differences, fil-
tered further, and finally are correlated between the stations. These correlation
products rij(t, f) are used to generate astronomical sky images.

• antenna based buffering of 1 second duration at full-digitised bandwidth
for limited detection/triggering capabilities.

However, the focus in this chapter will be on aperture synthesis, as this is the
main observing mode.

The LOFAR initial operations phase is scheduled to start in 2006; the target
date to have LOFAR fully operational is 2008. Figure 10.1 shows a photograph
of the LOFAR Initial Test Station (ITS), which became operational in December
2003.

10.2.2 Interference mitigation strategy

LOFAR will operate in bands allocated to radio astronomy as well as in bands
where other spectrum users are active. It is estimated that 4 MHz wide fre-
quency bands will be needed for which 80% bandwidth can be recovered in order
to achieve the sensitivity and the required dynamic range specified in [27, 85].
Here it is assumed that 20% bandwidth loss due to interference, outside the
bands allocated to radio astronomy, does not lead to a dramatic decrease in
sensitivity of the instrument as a whole. For the 80 % cleanest frequency bins
within a 4 MHz band, it is also assumed that the interference at station level
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is either at a 1-3 (station) sky noise sigma level, or can be reduced to this
level by RFI mitigation techniques. If the interference and the telescope meet
certain requirements, the interference can be reduced to power levels which lie
below the sky map noise. The rationale behind this is explained in the follow-
ing sections. Both the LOFAR interference mitigation approach and some of
the factors influencing mitigation effectiveness will be described. The focus is
on mitigation in the digital domain; it is assumed that the analog sections of
the receiver remain linear. In [13] it is shown that a 12 bit ADC has sufficient
dynamic range to allow observations close to strong transmitters.

Interference mitigation approach

Which fraction of the spectrum can be used for radio astronomy depends on
spectrum occupancy statistics and on the interference power levels relative to
the noise in the sky maps. It also depends on telescope design, and on interfer-
ence mitigation effectiveness. LOFAR will be one of the first radio telescopes
in which RFI mitigation techniques form an integral part of the system design.
Initially, LOFAR will be equipped with relatively simple mitigation techniques.
An important aim of the design is that it should be possible to add new in-
terference mitigation functionality at a later stage, without major hardware
and image processing redesigns. As LOFAR is, to a large extent, a software
telescope2 this flexibility will be built-in.

The calibration and imaging capabilities of LOFAR [109] include removal of
relatively strong cosmic sky sources such as Cas.A from the observed data sets
and images. This process not only removes the source from the map, but also its
spatial sidelobes, which might otherwise overlap with the sky region of interest.
This suggests that mitigation techniques need to suppress interference at least
down to the Cas.A flux level. If the interferer meets certain requirements,
then it spatially behaves just like a cosmic source. This would mean that it
can be removed with standard signal processing approaches. The interferer
requirements are: the interfering source must be spatial point source, and it
must be quasi stationary with a fixed or slowly varying spatial signature vector.
It is also assumed that the number of interferers that need to be suppressed is
limited, as computing resources are limited.

Clearly, much research is needed to verify these assumptions. However, spec-
trum monitoring observations [12] and initial test observations at both the ITS
in the 10-40 MHz band [170,17] and the WSRT in the 110-180 MHz band indi-
cate that successful observations can be carried out. The LOFAR interference
mitigation strategy is based on the assumptions mentioned above and distin-
guishes three steps:

• Selecting the cleanest frequency subbands within the LOFAR bands.

• Reducing RFI levels by RFI mitigation down to Cas.A power flux levels.
2Software telescope is defined analogously to the term software radio, a concept in which

radio waves are sampled and signal processing (decoding, demodulation) is done in (embedded)
software.
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• Further reducing RFI levels to levels below the noise in the sky maps.

Step one: selection of clean subbands
The first interference defence is to select subband frequencies in such a way

that the number of received interfering signals is minimised. This obviously only
works for spectral continuum observations, not for spectral line work. Monitor-
ing observations [12, 41, 35] have been carried out to investigate spectral oc-
cupancies. Figure 10.3 shows a monitoring observation carried out in 2002 at
the LOFAR central core site, for which the median and 90 percentile spectra
are plotted. In this particular example, the system noise is dominated by the
receiver noise, and less than 20% of the frequency bands (outside the 87.5-108
MHz FM radio band) were occupied with signal powers exceeding 0 dBµVm−1.

Many transmitters in the LOFAR bands have bandwidths of approximately
1-3 kHz. This roughly matches the LOFAR frequency resolution of 1 kHz. This
implies that affected frequency bins can be excised with only a moderate de-
crease in system sensitivity, assuming that less than 20% of the selected 4 MHz
(non-contiguous) spectrum bands are affected. The remaining 80 % needs to be
free from interference, before or after interference mitigation.
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Figure 10.3. LOFAR monitoring spectrum, obtained in 2002 in Drenthe, The
Netherlands. Visible are the FM radio band (87.5-108.0 MHz), T-DAB digital
radio (229 MHz), mobile use such as paging and marine telephone (170,160
MHz), and TV carrier waves (182.25,187.75 MHz). The band 150.05-153.00
MHz has a (shared) radio astronomy allocation.

Step two: reduction of interference down to the level of Cas.A
The second step in the strategy is to suppress interference in the subbands

down to the Cas.A power flux level, using interference mitigation techniques.
These techniques will be applied at time scales up to order 10 seconds. In order
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to estimate the required interference attenuation levels, the observed spectrum
power fluxes need to be related to the LOFAR sensitivity. Figure 10.4 illustrates
the levels involved. The vertical axis represents radio wave flux levels and sensi-
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Figure 10.4. LOFAR sensitivity levels.

tivities in Jy, where 1 Jy = 10−26 W m2 Hz−1, the horizontal axis representing
the frequency. The upper curve corresponds to a transmitter flux level3 of 0
dBµVm−1, where it is assumed that the transmitter power is concentrated in
a 1 kHz band. The curve “antenna sky noise” shows the sky noise flux Ψ as a
function of frequency, as would be observed with a single polarisation LOFAR
antenna dipole. It is based on the sky temperature, given by the approximate
formula [27,87]

Tsky ≈ Tsoλ
2.55 (K) (10.1)

and on a formula [87,124] relating sky temperature Tsky to flux density Ψ.

Ψ =
2k

λ2
TskyΩ (Jy) (10.2)

3The electric field power unit dBµVm−1 for an electric field E in Vm−1is defined by
20 10log(106E)
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Here Ω is the antenna solid angle (assumed to be 4 Sr), k the Boltzmann con-
stant, Tso is 60 ± 20 K for angular distances to the galactic plane larger that
10◦, and λ is the wavelength in m. According to the ITU radio noise recommen-
dation [70], the environmental RF noise floor in rural, residential and business
areas typically lies 5 to 20 dB above sky background noise, and for quiet rural
areas, it lies ≈ 5 to 10 dB below background noise. In practical situations, these
levels are strongly time and frequency dependent and also dependent on location
and height. Note that for the LOFAR central core location in the Netherlands
the sky background noise has already been detected for several bands [170],
which means that in those cases the “rural curve” mentioned in [70] is too pes-
simistic. In order to keep the number of curves in the figure limited, these radio
noise curves have not been drawn.

Curve “Cas.A” represents the flux level of the astronomical source Cas.A [5],
one of the strongest sky sources in the radio frequency regime. A few dBs below
Cas.A lies the station beam noise level, which will be calculated next.

Effect of station beamforming on SNR
In a station, order 100 antennas are combined in a phased array beamformer .

One or multiple output beams are constructed by summing the antenna signals,
after applying suitable beamformer weights w. Assume that there is a single
dominant source at a direction sℓ with spatial signature vector aℓ. Further
assume that the source has a signal waveform sℓ(t) and power σ2

ℓ = E{sℓ(t)
2}.

Let p be the number of antennas in the two-dimensional array, and stack the
array element position vectors in an antenna location matrix R, as in equation
(2.19). For aℓ this yields:

aℓ = γ ⊙ e−2πλ−1Rsℓ (10.3)

where γ is a vector containing the antenna element gains, which may differ
among the antennas. Note that R is a (p × 3) matrix and sℓ a vector of length
3, also note that aH

ℓ aℓ = γHγ. Define the array steering vector wo for the
direction so by

wo =
1√
p

e−2πλ−1Rso (10.4)

For this classical beamformer the steering vector is normalised, wH
o wo = 1.

Dropping time indices, let the array output vector x be defined by

x = alsl + n (10.5)

where n is the i.i.d. array noise vector with E{nnH} = σ2
nI. For this system, the

array beamformer output y = wH
o x and its power, the “dirty beam” [95, 151]

ID(sℓ, s0) = E{|y|2} can be described by

y = wH
o aℓ sℓ + wH

o n (10.6)

ID(sℓ, s0) = wH
o aℓa

H
ℓ wo σ2

ℓ + σ2
n

=
1

p
σ2

l |γte−2πλ−1R(sℓ−so)|2 + σ2
n (10.7)
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The latter expression is derived using relation (B.14). When the source direction
and look direction coincide, sℓ = s0, and when antenna gains are unity: γ = 1,
the beamformer output can be written as:

ID(sℓ, sℓ) = p σ2
ℓ + σ2

n (10.8)

The SNR scales linearly with the number of antennas in a phased array, a well-
known fact in array processing. For 100 antennas in a phased array beamformer
this means an increase in sensitivity of 20 dB. This explains that the station
sensitivity curve lies 20 dB below the single-antenna sky noise curve in figure
10.4.

In the lower part of figure 10.4, two “LOFAR sensitivity” curves are drawn,
both for 1 kHz bandwidth and for a synthesis array of 100 stations. The two
curves differ in integration time: 1ms for the upper curve (corresponding to one
sample moment or “snapshot”), and 4h integration time for the lower curve.

As a reference, the ITU-R RA769 radio astronomy protection criterion [69]
is given. It roughly states the RFI level at which the error in determining
signal power exceeds 10%, for an integration time of 2000 s. The curve is
based on bandwidth values mentioned in [69], which are larger than the 1 kHz
LOFAR frequency resolution. For example, the depicted value of 11 dBJy at
13.385 MHz corresponds to 50 kHz bandwidth and 2000 s integration. The
value at 13.385 MHz for four hours of integration and 1 kHz bandwidth would
be 10 10 log(

√
50 × 2000/1 × 4 × 3600) = 4 dB higher.

Step three: reduction of interference down to levels below the sky noise in the
map

The third step in the strategy is reducing interference from ’Cas.A’ level
down to sky image noise levels. This step is closely related to the image making
process, and it involves long integration times. Assuming that the interferers
are spatial point sources, removing them should in principle not be too differ-
ent from removing astronomical sources such as Cas.A. In addition to selfcal
and CLEAN, other methods such as spatial filtering in the image formation
process [94], and new calibration approaches [110] could be used as well. Long-
term and short-term stationarity issues as well as estimation biases [98,119,147]
are relevant here and need careful consideration. However, this is not pursued
any further in this thesis.

Spectral dilution

Two additional effects help reduce the observed interference. The first is
spectral dilution. Suppose that in a LOFAR band a single narrowband RFI
spatial point source with spatial signature vector ar and power σ2

r is present.
The corresponding covariance model for a single frequency channel, as defined
before, is R = σ2

rara
H
r + σ2

nI, where σ2
n is the i.i.d. telescope noise power. The

power of the RFI source in the covariance product rij is diluted by a factor N−1
f

when averaging all Nf frequency channels in the band. Its standard deviation
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std(rij) can be expressed as

std(rij) =

√
1

Nf
riirjj (10.9)

(cf. equation C.15), assuming that the signals in different frequency channels
are independent, and assuming that RFI can be modelled as Gaussian noise.
The standard deviation decreases with

√
Nf , whereas the RFI power in the

covariance product rij decreases with Nf . This leads to a spectral dilution fac-
tor which scales with

√
Nf . Further investigation is needed to determine the

power level above which excision is better than spectral dilution for practical
cost-effective systems.

Spatial dilution
The second effect which reduces interference is spatial dilution. In the aper-

ture synthesis mode, snapshot images are made and are further integrated to
form a sky map. Sky sources move with respect to the baseline vectors dur-
ing an observation. The data processing corrects for this motion, so that the
snapshots can be added coherently. Interferers, on the other hand, do not move
with respect to the baseline vectors or move differently. This means that in the
snapshot averaging process RFI sources are diluted. This is not (necessarily)
true for the dilution of the RFI spatial sidelobes, which may overlap with a sky
region of interest.

The dilution of an RFI point source is comparable to the dilution of a nar-
rowband signal due to frequency averaging: the system noise standard deviation
decreases with the square root of the number of snapshots N whereas the RFI is
reduced (as it moves around the map) by the number of snapshots. This means
that if a point source is reduced to the station noise level, it will be reduced
to below the integrated noise level by further integration (snapshot averaging).
This statement will be now be explained.

Consider a simplified model in which there is one interfering source with a
snapshot spatial signature vector ak, and interferer source direction sk, so that

ak = γ ⊙ e−2πλ−1Rsk (10.10)

Note that, as before, aH
k ak = γHγ, and that aH

k ak = p for γ = 1. The
signature vector ak for each of the snapshots k may differ, the interferer power
σ2

r is assumed constant. Further assume i.i.d. noise with power σ2
n, so that the

array covariance for the kth snapshot is given by:

Rk = σ2
raka

H
k + σ2

nI (10.11)

The snapshot beam output power Is
D(so

k) is given by Is
D(so

k) = wH
k Rkwk, where

the steering vector wk corresponding to the direction so
k is given by

wk =
1√
p

e−2πλ−1Rso
k (10.12)



188 CHAPTER 10. IMPLICATIONS FOR FUTURE TELESCOPES

It has unit norm, wH
k wk = 1. The beam power ID of all combined N snapshots

yields:

ID =
1

N

N∑

k=1

Is
D(so

k) = σ2
n + σ2

r

1

N

N∑

k=1

|wH
k ak|2 (10.13)

Now assume that for the mth time index, k = m, the steered beam is pointed
at the interfering source: wm = am/

√
aH

mam, and that the interference enters
the beam via its sidelobes for k �= m. Under these assumptions the beam takes
the form

ID = σ2
n +

1

N
σ2

rγHγ +
1

N
σ2

r

N∑

k=1
k �=m

|wH
k ak|2 (10.14)

The second term of the expression above is the interferer power term, spatially
diluted with the factor N . Assuming γ = 1 and ignoring the finite sample effect
(ÎD = 1

N

∑
k wH

k R̂kwk), this term reduces to p σ2
r/N . The third term is the

“sidelobe term”. If the assumption is made that the steering vector and the
interferer source spatial signature vector are independent from each other, then
the third term could be modelled as a random walk problem. This can be seen
as follows. Insert the expressions for the vectors wk and ak in |wH

k ak|2, where
the directions so

k and sk are assumed to be random and independent:

|wH
k ak|2 =

1

p

∣∣∣∣
[
e−2πλ−1Rso

k

]H [
e−2πλ−1Rsk

]∣∣∣∣
2

=
1

p

∣∣∣1te−2πλ−1R(sk−so
k)
∣∣∣
2

(10.15)

Under the assumptions made, this expression represents a two dimensional ran-
dom walk problem [166]: z =

∑p
i=1 eΘi , with Θ a uniformly distributed random

variable in the interval [0, 2π), and with E{|z|2} = p. This results in the follow-
ing approximate equation

ID ≈ σ2
n +

1

N
pσ2

r + σ2
r (10.16)

The second term of this equation is the spatially diluted interferer signal. The
third term is the interferer sidelobe contribution. It shows that the interferer
signals entering via the sidelobes are not spatially diluted.

The beamformer output variance is calculated next, in order to relate the
sky map noise to the diluted interference power as described above.

Sky map variance
In the sky map noise analysis it is assumed that there is only system noise,

and no strong cosmic source or interference. The beamformer output noise
power can be described by using the array beamforming model as described
before

ID = E{|y|2} = E{wH x̂x̂Hw} = wHRw = σ2
n (10.17)
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The beam output power variance σ2
b = var(ÎD) is given by:

σ2
b = var(wHR̂w) (10.18)

= (w ⊙ w)Hvar(R̂)(w ⊙ w) (10.19)

= (w ⊙ w)Hvecdiag(R)(vecdiag(R))t(w ⊙ w) (10.20)

= σ4
n(w ⊙ w)H11t(w ⊙ w) (10.21)

The variance of ÎD can be approximated, assuming that p is large and that
the locations of the LOFAR stations are not regular so that they yield arbi-
trary phases φi. In this case, expression (10.12) takes the form w = (1/

√
p)

(eφ1 , · · · , eφp)t, where φi is considered a random variable. Now (w⊙w)H 11t

(w ⊙ w) can be written as follows

(w ⊙ w)H11t(w ⊙ w) =

p∑

i=1

w2
i w2

i +

p∑

i,j=1
i�=j

w2
i w2

j (10.22)

This expression also represents a two dimensional random walk problem [166].
The first term is obviously equal to p−1, the expected value of the second term
is zero. The power variance due to system noise only, can therefore be approx-
imated by

σ2
b =

σ4
n

p
(10.23)

So far the analysis was based on one snapshot, that is, one sample moment in
time. For N snapshots, the (u, v) aperture is spatially sampled with pN sample
points, which means that for N snapshots, the p values in equation (10.23)
must be replaced by pN . This leads to the following conclusion: if an interferer,
moving relative to the sky, crosses the field of view under consideration, and
if this interference is reduced to the station noise power levels, then further
snapshot averaging will reduce it to below the noise in the sky map, the reason
being that the noise rms in the map decreases proportionally to (pN)−

1
2 , and

the spatially diluted interference level decreases at least as fast as (pN)−1. This
is not true in case only the interferer spatial sidelobes enter the field of view
under consideration.

It may be necessary to suppress the interference to levels below those de-
scribed in the paragraphs above. One reason for this may be that the inter-
ference does not fulfill the requirements given earlier. A second reason may
be that the calibration process is hampered by the interference. Small inter-
ference residuals may introduce calibration distortions which become apparent
only after long integration times. However, it seems feasible that even in densely
populated regions such as the Netherlands, the station sky noise level can be
reached for wide frequency ranges. It is also expected that the integrated sky
noise levels can be reached for several frequency bands.
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10.2.3 Interference mitigation options

This section will briefly describe interference mitigation options for LOFAR,
followed by some of the choices that have been made. Figures 10.5 and 10.6
schematically show the signal chain for a LOFAR station and for the central
data processing. The difference with figure 10.2 is that it also shows interfer-
ence mitigation options at various locations in the signal processing chain.

The interference mitigation measures mentioned in the second step of the
strategy can be applied at several locations in the signal chain. It strongly
depends on the system design which is the optimal location. This is determined
by various factors, such as number of data bits of the beams, data transport
load, number of correlator input bits, linearity of the RFI mitigation methods,
computational load, etcetera.

For LOFAR it was decided to apply only fixed or very slowly time-varying
spatial nulls at station level. Fast-changing interferer nulling directions would
lead to fast changes in the (sidelobe) gains and this would hamper the calibra-
tion.

Flagging or excising can best be done on a central level because interference
is often localised in space. This means that interference may be present in one
or a few stations, but not visible in all interferometer outputs. Flagging or
excising at station level would, therefore, often remove too many data. More
mitigation options will be described in the next section.

Interference mitigation options at the stations

The main purpose of a LOFAR station is to digitise the dual polarisation
antenna outputs, to form subbands and to sum the antenna signals in order to
create (multiple) beams. In a station, wide-band burst-like interfering signals
can be detected and excised directly after the ADC. Examples of such signals
are lightning and radio emissions from sparking high power voltage lines. The
excised samples have to be replaced with zeros or with some value determined
from the signal statistics. Another requirement is that the fraction of blanked
samples is recorded, in order to account for the calibration of the sensitivity loss
due to excising.

Another method, besides blanking, is to apply spatial filtering in the beam-
forming stage. In a separate calibration process at the station, the direction or
spatial signature of the interferer is measured. Spatial nulls toward the interferer
are subsequently applied by adjusting the beamformer weights. Beamforming
in the LOFAR stations is done with order 200 kHz beams, a choice which was
made for reasons of cost and computational load. This bandwidth is relatively
large, which means that spatial nulls will be optimal for one frequency only.
Multiple nulls and spectrally and spatially wide nulls are possible, but these
reduce the degree of freedom. Another issue is whether the spatial filter should
be fixed or adaptive. Optimising the spatial filtering capabilities is an important
topic which requires further study.
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Figure 10.5. Interference mitigation options in LOFAR at station level.
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After the second spectral filter, interference excision can be done for each of
the 1 kHz channels. An advantage of doing this excision at the station level,
and not centrally, is that the data rate will be reduced. The reason is that
strong interfering signals need many bits to represent both the interference and
the weak cosmic signal. A White Gaussian Noise (WGN ) cosmic signal can be
described accurately by one to three bits [146]. For several reasons, however,
it was decided to shift the 1 kHz spectral filter from the station to the central
processing area.

Parametric methods can be applied as well. In the figure they are located
after the beamformer stage, but they could be located before the beamformer
as well.

Finally, the output data stream of a station can be compressed. However,
most astronomical signals are white Gaussian noise signals whose waveform
must be preserved up to the correlation process. Data compression therefore
only works if interference can be removed or if only part of the data bit range
is used.

Interference mitigation options in LOFAR central processing
The signals from the stations are correlated and integrated at the central

processing site, as is shown in figure 10.6. Before correlation, the signals can
be redistributed. This opens up the possibility to add a station reference beam,
directed at an interferer, to the correlation process. This reference beam will
have a high INR ratio, and can be used for improved post-correlation spatial
filtering purposes. The aim is to select bands free from transmitters or interfer-
ence, and to reduce occurring interference to levels below the Cas.A flux level.
Many post-correlation spatial filtering and interference subtraction techniques
can be carried out. Further studies will have to determine the most suitable
ones. Spatial filtering in LOFAR central can also be done before the correlation
process, but it is computationally and financially more efficient to do it after
correlation.

Another type of mitigation is excision, which can be done conveniently af-
ter correlation on 1 to 100 ms data. This is an important option, as many
transmitters and interferers in the LOFAR bands are intermittent.

Finally, interference mitigation techniques and mitigation distortion correc-
tions can be applied parallel to the map-making process. The goal here is to
suppress the interference to levels below the noise in the map.

Design choices
Initially only relatively simple interference mitigation measures will be ap-

plied to LOFAR. In a later phase, more complicated scenarios will be added.
The LOFAR design is such that new methods can, in principle, be added with-
out major hardware or software redesigns. The main reasons for a limited
complexity in the initial phases of LOFAR will now be described.

A first obvious constraint on complexity is that the computing power re-
quired for interference mitigation should be an order of magnitude less than



10.2. LOFAR INTERFERENCE MITIGATION STRATEGY 193

Figure 10.6. Interference mitigation options in LOFAR central processing.
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that required for the astronomical signal processing. Only in special cases is
spending a major portion of the computing resources on RFI mitigation accept-
able. A second reason for relatively simple techniques is that the calibration of
LOFAR [109,110] requires stable station beams. Only slowly varying (sidelobe)
gains are allowed, otherwise the calibration process will not converge. For this
reason, only spatial filters with fixed or slowly varying nulls are considered at
the station level, as fast interference tracking would change the station beams
too rapidly. A third reason is that for radio astronomy, interference mitigation
is a relatively new field, and that the effects of interference mitigation related
distortions cannot (yet) be fully removed from the data sets. Finally, even with-
out interference mitigation it is a challenge to build LOFAR, to calibrate it, and
to make sky maps with very high sensitivities.

10.3 LOFAR interference mitigation: initial re-
sults

The purpose of this section is to demonstrate the spatial filtering capabilities
of a LOFAR station. The aim is also to verify some of the claims in the
LOFAR interference mitigation strategy. It is specifically shown that spatial
filtering at the station level recovers the strongest astronomical sky sources.
The spatial filter tests were carried out with ITS data.

10.3.1 Beamforming and imaging with ITS

ITS consists of 60 sky noise limited single polarisation dipoles, and is configured
in a five-armed spiral. This configuration is shown in figure 10.7, together with
its snapshot (u, v) configuration. The antenna outputs are connected to low
noise amplifiers, filtered by a 10-35 MHz filter, and digitised with a sampling
frequency of 80 MHz. ITS operates in the frequency band 10-40 MHz, and the
observed signals are directly digitised without the use of mixers. The data can be
stored either as time series or as covariance matrices. The effect of spatial filters
was demonstrated by applying them to antenna covariance matrices obtained
with ITS. For the experiments, a 8192 sample length, Hanning tapered, FFT
was used. This yields a frequency resolution of 9.77 kHz. The spectra were
correlated and integrated to 6.7 seconds, yielding a 60 × 60 covariance matrix
for each of the 4096 frequency bins. This station covariance output mode is
not a standard LOFAR mode, but is used for testing and calibration purposes.
With ITS, all-sky images were made. The same beamforming data processing
was used as described in section 10.2.2. The procedure starts with stacking the
antenna outputs in a vector x. Its covariance matrix R = E{xxH} is composed
of an astronomical sources matrix Rv, and a diagonal noise matrix D. After a
whitening step applied to R, a sky image was made by means of beamforming.
Each pixel of the sky map was obtained by applying a direction weight vector w

which represents the geometric phase rotations. Define the array output signal
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Figure 10.7. LOFAR ITS station antenna configuration (left) and station
snapshot uv coverage (right).

y by y = wHx, and its power P (θ, φ) by P (θ, φ) = E{y2}, then

P (θ, φ) = wHRw = wHRvw + σ2
n (10.24)

where (θ, φ) are the zenith and azimuth spherical coordinate angles. Calculating
P (θ, φ) for each of the beam directions over the entire sky yields an all-sky map.
The results are plotted in the direction cosine coordinates (l,m). This imaging
process closely resembles the two-dimensional Fourier transform traditionally
used in synthesis imaging. One of the differences is that a regular telescope
positioning grid is not required in the beamforming process.

10.3.2 Spatial filtering at station level

On February 26th 2004, a 6.7 s duration night time observation was carried out
with ITS in the frequency range 10− 40 MHz. The spectra showed that at that
time a major portion of the band did not contain transmitters and interference
at levels above the sky noise. Figure 10.8 shows the eigenvalue distribution of
a part of the observed band with one of the strongest transmitters.

The eigenvalues were calculated after whitening the covariance matrix R.
The dominant eigenvalue of the interferer data is 20 dB above the noise. The
second eigenvalue lies ≈ 1% above the mean noise level. This can be fully ex-
plained by the finite sample effect, assuming that the interferer is a narrowband
point source. The estimation of the interferer direction is distorted by noise,
which leads to an underestimation of its power. The remaining energy then
leaks to the other eigenvalues, especially to the second as they are sorted ac-
cording to magnitude. The increase of the second eigenvalue is of the order of
the rms differences between the eigenvalues of the no-interference case. This
assumes that the interferer is a strong source with λ1 ≫ λ2.
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The spatial filter which will be applied is tuned at the frequency of the inter-
ference, at 26.75 MHz. In actual LOFAR stations, however, beams will be made
with order 200 kHz bandwidth. Figure 10.8 therefore shows a theoretical calcu-
lation of the two largest eigenvalues for a transmitter with varying bandwidth,
see for instance section 3.3.1. This figure indicates that strong interference can
be suppressed up to at least 30 dB using a rank one model. Figure 10.9 shows
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horizon(left), and the same image after spatial projection filtering (right).

an ITS all-sky image, which is obscured by a transmitter on the horizon in
the east-south-east direction. The sources Cas.A, Vir.A, and the North Polar
Spur are not visible due to the transmitter spatial sidelobes. The data set was
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filtered by the standard procedure described in chapter 6. The covariance ma-
trix R is whitened by data at nearby frequencies, which are not affected by
interference. The next step was to apply an eigenvalue decomposition on the
whitened data Rw. An interferer projection matrix P⊥ was formed using the
eigenvector belonging to the largest eigenvector. Filtered sky images were made
by beamforming, using the filtered covariance matrices:

P (θ, φ) = wHP⊥RwP⊥w (10.25)

No distortion correction was applied at this stage. The resulting sky image is
shown in figure 10.9. The sources Cas.A, Vir.A, and the north galactic spur
are visible again, and the interferer on the horizon is suppressed below the
sky noise. Its spatial sidelobes are suppressed to levels clearly below Cas.A, and
Vir.A, and slightly above the station sky noise. Further analysis [170] shows that
this interference can be suppressed to the sky noise background by additional
calibration procedures. What this shows is that moderately intense interferers
can be suppressed to levels below Cas.A and even down to station noise levels.
This result supports the validity of the second step in the interference mitigation
strategy. However, this result is based on one example only, and more study is
needed.

10.4 Conclusion

In this chapter a LOFAR interference mitigation strategy was presented. The
strategy relates interferer powers to the system noise levels of the antenna, the
stations and the sky maps. Interference mitigation options were discussed and
some design considerations in relation to mitigation were presented. It was
shown that moderately intense interferers can be suppressed to levels close to
the station noise. On the basis of a theoretical analysis it is expected that
this interference can be further reduced to levels below the noise in the sky
maps. The analysis presented assumes that several requirements concerning the
interferer and the system are met. Many of the tools needed to verify these
requirements are described and used in this thesis, and are easily adapted for
use in LOFAR or SKA.

Further study is needed, for example to investigate the influence of mul-
tipaths, the bandwidth, and the extendedness of the interferers on the effec-
tiveness of mitigation. Signal distortions due to mitigation, and interference
residuals after mitigation also need further study. Another issue deserving fur-
ther study is the suppression of intermodulation products. As LOFAR is going
to operate in an environment with very strong transmitters, some intermodula-
tion products will probably be visible in parts of the band. A simplified version
of the intermodulation product model described in section 2.5.2 was used to
predict its spatial behaviour [17]. This study shows that the model describes
the phenomenon accurately, and that even intermodulation products can be
spatially suppressed.





Chapter 11

Conclusion

11.1 Main results

In this thesis, modern array processing techniques have been applied to narrow-
band multichannel interference detection and excision, and for narrowband spa-
tial interference mitigation filters in radio astronomy. By exploiting the struc-
ture in the array output covariance matrices, new results were found, such as
upper limits on interference residuals after excision and spatial filtering. This
result was derived by means of a theoretical analysis, and effects which limit the
detection and estimation accuracies have been investigated. Using a subspace
approach, the effect of bandwidth, extendedness of the impinging sources, and
multipath effects on the detection and estimation effectiveness were found. In
addition, the effect of the finite sample effect1 has been quantified. For the
WSRT these effects were presented in term of eigenvalue ratios. Interference
attenuation numbers of 20 to 40 dB have been found at the WSRT and at other
radio telescopes. In the literature, reports of numbers exceeding 40 dB are very
rare. In view of the effects described above, this is to be expected.

The advantage of a multichannel approach in detection, excision and spa-
tial filtering was demonstrated by using WSRT data; the attenuation numbers
observed match with the theoretical ones. For the spatial projection filter, a
distortion correction was applied. The telescope-transmitter stationarity re-
quirements for this correction filter were expressed in terms of matrix condition
numbers. For four different types of transmitters and modulation types, these
condition numbers were determined experimentally. It was found that for the
WSRT , approximately one minute integration time is needed to ensure accept-
able signal distortion levels.

By applying reference antennas to a telescope array, spatial filtering effective-
ness can be improved. Adding a reference antenna has the additional advantage
of not reducing the degrees of freedom. This probably leads to less signal dis-

1Finite sample effect: estimation error due to a limited number of samples.
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tortions, but it is required that the reference antenna noise level is lower than
the telescope noise levels; otherwise the system noise increases unacceptably.
Phased-array tiles are highly directional, such as ASTRON’s THEA tile. Using
this tile as a reference at the WSRT it was shown that the effectiveness of the
spatial filter improves indeed. It was also shown that it is advantageous to use
as much a-priori information of the covariance matrix structure as possible; it
leads, for example, to a more stable filter.

For a single polarisation array with unknown complex gains which observes
one dominant source, it was shown that weighted least square gain estimators are
asymptotically efficient. Closed-form estimators were derived as well, and under
certain conditions these are also asymptotically efficient. The Cramer-Rao Lower
Bound on the parameter accuracies, a technique previously unknown in radio
astronomy, was established to estimate the gain phase and gain magnitude es-
timation errors. It was shown that the phase and magnitude estimates are
independent.

A factor analysis approach was applied to a dual polarised array model, in
order to estimate the model components. A closed-form solution was found
for the least squares minimisation of the model error; it turned out that at
least three sky sources with different polarisation states are needed to find the
telescope complex gain factors. This three-source requirement follows directly
from the model solutions, a result which is difficult to achieve otherwise.

Finally, an interference mitigation strategy was given for the LOFAR teles-
cope. The interference power levels observed in spectrum monitoring data were
linked to the LOFAR sensitivity levels. It was shown that under certain condi-
tions, interference mitigation techniques and spatial dilution effects will reduce
the interference to levels below the integrated noise levels. In two-dimensional
aperture arrays such as LOFAR, spatial dilution is the two-dimensional equiva-
lent of fringe rotation dilution in a one-dimensional array and in interferometer-
based analysis.

11.2 Suggestions for further research

So far, most research in interference mitigation was done on pre-correlation or
post-correlation data-sets of seconds to minutes. Only very limited research
was dedicated to the effects of interference and interference mitigation residues
on the astronomical end products [96, 67]. Obviously, as the astronomical end
product is what matters in the end, this is an essential field; devoting new
research efforts to it would be well-justified.

In radio telescopes, the approaches often used for calibration and image
making are selfcal [66] and CLEAN [130]. An essential step in map making is
estimating the astronomical (point) source direction and then subtracting the
source from the map. This may also be done in the Fourier transformation
domain, the uvw space. Estimation errors lead to residues in the map. The
question is whether the theoretical noise levels in the map can be reached, given
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a certain power flux versus the source numbers distribution of astronomical
sources. A related question is whether these low noise levels can be reached in
case there is interference which may or may not be attenuated by mitigation
methods. These questions are currently particularly relevant for telescopes such
as LOFAR. A first step in finding answers could be defining a representative
model and deriving Cramer-Rao bounds for the parameter estimators.

There are several ways to improve the proposed multichannel detectors and
spatial filters. As the focus in this thesis is on processing single narrowbands,
an extension of the detectors and filters would be combining adjacent frequency
channels. In case an interferer is present in all of those frequency channels, this
approach will improve the effectiveness of mitigation.

Beam-former stages in large-scale phased array telescopes such as LOFAR may
be implemented as wide-band beam-formers. The bands are narrow enough to
ensure acceptable beam squint2, but are too wide to fulfil the narrow-band re-
quirement. Filters which are designed under the narrow-band assumption will
therefore be less effective. Multiple narrow-band filters can be implemented as
wide-band filters and vice versa. These are issues which are closely connected
to implementation in telescope hardware. Studies on wide-band interference
mitigation are therefore highly relevant and require further attention.

The data models derived in this thesis can be expanded and effectively used
for studies of the effects of instrumental errors on the astronomical end products.
For example, intermodulation modelling [17] yields practical information of the
effects of intermodulation products on the sky maps.

The filter residues of the spatial subtraction filter also require further study.
For the spatial subtraction filter more knowledge of the involved signals is needed
than for the projection filter, but it is not yet clear which of the two filters leads
to the lowest residues. This could also be studied in the context of image making,
in which Clean is the subtraction filter equivalent.

Given the spectrum trends towards a denser use of digital wide-band com-
munications [139], it is worthwhile to direct more resources to interference mit-
igation using a-priori knowledge [43,162].

This thesis has shown that the mitigation effectiveness is determined by pa-
rameter estimation and detection accuracies. These accuracies are influenced
by telescope properties such as spatial telescope distribution, system noise level,
integration time, and channel bandwidth. Transmitter and interference prop-
erties are important too, such as emitted power and distances to the different
telescopes of an interferometer array. It has also been shown in this thesis
that applying fixed spatial filters before and after correlation is mathematically
equivalent. This assumes that the signal parameters mentioned above are the
same before and after correlation. In a more general sense the question now
arises where in the signal chain a specific mitigation method should be applied
in order to be most effective. To answer this question a comparative study is
needed of the effects of specific telescope and transmitter conditions on filtering

2Beam squint: different sections in the frequency bands have different phased array beam
shapes and beam directions.
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effectiveness. For example, spatial filtering at a phased-array telescope station
is to be preferred to post-correlation filtering if the interferer is present at only
one or a few stations. In case the channel bandwidth of a phased-array tele-
scope station is much larger than the post-correlation channel bandwidth and
the interferer bandwidth, then post-correlation spatial filtering is advantageous.

A closely related research topic is stacking mitigation methods, that is, si-
multaneously using different mitigation techniques. It would be interesting to
find out under which conditions it is useful to stack these techniques, and which
combined attenuation levels can be reached.

11.3 Conclusion

This thesis presents a mathematical framework for interference mitigation in
the digital signal processing domain. Such a framework yields an efficient way
to represent the filtering problem, to solve it, and to estimate effectiveness. The
framework was originally introduced in Radio Astronomy by Leshem and van
der Veen [93], and by Hamaker et al [63]. In this thesis, the mathematical
models are extended, applied to experimental data, and their effectiveness is
analysed. The rigour of this mathematical approach makes it a promising tool
for further interference mitigation studies.
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Abbreviations

ASTRON Netherlands Foundation for Research in Astronomy, Dwingeloo,
The Netherlands

ATA Allen Telescope Array
CDMA Code Division Multiple Access
CRB Cramer-Rao lower bound
DAB Digital Audio Broadcast
DOA Direction Of Arrival
DSP Digital Signal Processor
DVB Digital Video Broadcast
EMC Electro Magnetic Compatibility
FIM Fisher Information Matrix
FM Frequency modulation
FOV Field of view
GLONASS Global Positioning System, Russian Federation
GPS US Global Positioning System
GSM Global System for Mobile communications
HTSC High Temperature Super Conducting
i.i.d. Independent and identically distributed
INR Interference to noise ratio
ITS LOFAR Initial Test Station
IRIDIUM Low earth orbit based global communications system
LNA Low Noise Amplifier
LOFAR LOw Frequency ARray
LS Least squares
ML Maximum Likelihood
NOEMI Nulling Obstructing Electro Magnetic Interferers
Pdf Probability density function
RAST Radio astronomy service
RF Radio Frequency
RFI Radio Frequency Interference
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SINR Signal plus interference to noise ratio
SKA Square Kilometer Array
SNR Signal to noise ratio
SNIR Signal to noise plus interference ratio
SVD Singular Value Decomposition
TDMA Time Division Multiple Access
THEA THousand Element Array
TUDelft Delft University of Technology, Delft, The Netherlands
UWB Ultra Wide Band
VLA Very Large Array
VLBI Very Long Baseline Interferometry
WGN White Gaussian Noise
WSRT The Westerbork Synthesis Radio Telescope
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Mathematical relations

B.1 Vectors and matrices: products and opera-
tors

This section lists properties of matrix and vector products which are used
throughout this thesis. For complex matrices A,B,C,E and vectors a,b, c,d of
compatible dimensions, and for diagonal matrices D = diag(d), D1 = diag(d1),
D2 = diag(d2), the following relations hold.

Kronecker products

(A ⊗ B)(C ⊗ E) = AC ⊗ BE (B.1)

(A ⊗ B)−1 = A−1 ⊗ B−1 (B.2)

(A ⊗ B)H = AH ⊗ BH (B.3)

ln(a ⊗ bH) = ln(a) ⊗ 1 + 1 ⊗ ln(b) (B.4)

∂(a ⊗ b)

∂ct
=

∂a

∂ct
⊗ b + a ⊗ ∂b

∂ct
(B.5)

vecdiag(A ⊗ A) = vec(vecdiag(A)(vecdiag(A)H)) (B.6)

Hadamard product relations

abt ⊙ cdt = adt ⊙ cbt (B.7)

(AD) ⊙ C = A ⊙ (CD) (B.8)

A ⊙ (CD) = (A ⊙ C)D (B.9)

(A ⊙ B)H = AH ⊙ BH (B.10)

(A ⊖ B)H = AH ⊖ BH (B.11)

aH(b ⊙ c) = bt(a ⊙ c) (B.12)

(a ⊙ eb)H(a ⊙ eb) = aHa (B.13)

(a ⊙ eb)H(c ⊙ ed) = (a ⊙ c)te(d−b) (B.14)
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Khatri-Rao product relations

(A ⊗ B)(C ◦ E) = AC ◦ BE (B.15)

(A ◦ B)H(C ◦ E) = AHC ⊙ BHE (B.16)

(D1D2) ◦ A = (D2 ◦ A)D1 (B.17)

(A ◦ B)H = AH ◦ BH (B.18)

(Ip ◦ Ip)
H(Ip ◦ Ip) = Ip (B.19)

(B.20)

Vectorisation

vec(ABC) = (Ct ⊗ A)vec(B) (B.21)

vec(ADC) = (Ct ◦ A)d (B.22)

Trace operations

tr (AB) = tr (BA) (B.23)

tr(AB) = vec(At)tvec(B) (B.24)

aHBc = tr (aHBc) = tr (B caH) (B.25)

tr (bHa) = bHa = tr (abH) (B.26)

‖A‖2
F = (vec(A)Hvec(A))

= tr (vec(A)vec(A)H) (B.27)

tr (A + B) = tr (A) + tr (B) (B.28)

tr (xHAx) = tr (AxxH) (B.29)

Selection matrices

Define J : (p2 − p) × p2 such that for any p × p matrix A, vec′(A) = Jvec(A).
Note that J is easily constructed from a p2 × p2 identity matrix by removing its
rows 1, (p + 1) + 1, 2(p + 1) + 1, · · · , p2. Then

J ≡ [Ip−1 ⊗ [0p, Ip],0p2−p] (B.30)

JHJ = I ⊗ I − (I ◦ I)(I ◦ I)H (B.31)

JJH = Ip (B.32)

(JHJ)2 = JHJ (JHJ is idempotent) (B.33)
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Miscellaneous product relations

D1ADH
2 = A ⊙ (d1d

H
2 ) (B.34)

D−1
1 AD−H

2 = A ⊖ (d1d
H
2 ) (B.35)

(A1B · · ·ApB) = (A1 · · ·Ap)(Ip ⊗ B) (B.36)

abH = bat (B.37)

K∑

k=1

akbk = [a1 · · ·aK ]




b1

...
bK


 = Ab (B.38)

(ew)Hea = 1te(a−w) (B.39)

diag(D1ADH
2 ) = D1D

H
2 diag(A) (B.40)

B.2 Multivariate complex PDF

The multivariate joint probability density function for a normally distributed
real or complex valued vector x can be found by using characteristic functions
[104,167]. Let X be defined as a sequence of N time sampled instances of x: X =
(x1 · · ·xN ), and let Θ be the model parameters. The real valued N (µ,RΘ) and
complex valued CN (µ,RΘ) multivariate distributed joint probability density
function pN (X|Θ) and pCN (X|Θ) are given by [81]:

pN (X|Θ) =

N∏

n=1

1

(2π)
1
2 p|RΘ| 12

e−
1
2 (xn−µ)HR

−1
Θ (xn−µ) (B.41)

=
1

(2π)
1
2 Np|RΘ| 12 N

e−
1
2 N tr(R−1

Θ R̂) (B.42)

pCN (X|Θ) =

N∏

n=1

1

πp|RΘ|
e−(xn−µ)HR

−1
Θ (xn−µ) (B.43)

=
1

πNp|RΘ|N
e−N tr(R−1

Θ R̂) (B.44)

These normally distributed probability density functions are completely deter-
mined by the mean vector µ and the covariance matrix RΘ, and all higher order
moments can be expressed in term of µ and RΘ. The fourth order moments
for the N (µ,RΘ) distribution, for example, can be expressed [104,167] as

E{x1x2x3x4} = E{x1x2}E{x3x4} + E{x1x3}E{x2x4} +

E{x1x4}E{x2x3} (B.45)

and the fourth order moments for the CN (µ,RΘ) distribution resembles the
real case. For zero-mean, circular symmetry complex random variables however,
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the third term E{x̄1x̄3}E{x2x4} is zero [167, 81, 104]. The resulting expression
is:

E{x̄1x2x̄3x4} = E{x̄1x2}E{x̄3x4} + E{x̄1x4}E{x2x̄3} (B.46)

B.3 Matrix inversion

This section gives several expressions for matrix inverses. In these expressions
it is assumed that the matrices have compatible dimensions and that they are
invertible. The first expression is the inverse of the matrix product AB which
can be written as

(AB)−1 = B−1A−1 (B.47)

Another useful formula, the matrix inversion lemma, can be expressed in several
forms:

(A + BCD)−1 = A−1 − A−1B (DA−1B + C−1)−1DA−1

= A−1 − A−1BC (I + DA−1BC)−1DA−1

= A−1 − A−1B (I + CDA−1B)−1CDA−1 (B.48)

A special case of the matrix inversion lemma is Woodbury’s identity:

(A + bbH)−1 = A−1 − A−1bbHA−1

1 + bHA−1b
(B.49)
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Covariance of matrix
estimates

For the analysis of the data models, the simulations and the interpretation
of the processed observed data, an estimate of the variance of the covariance
matrix estimate R̂ is essential. In this appendix, the formula for the covariance
of the covariance matrix estimate is given, together with a proof. Both the
non-weighted and weighted covariances are given.

C.1 Matrix covariance

For calculation of the covariance cov(R̂) of the covariance matrix estimate R̂,

the starting point is the definition of R̂n in terms of the array output complex
voltage vector xn at time instance n: R̂n = xnxH

n . The time N -sample average
of the covariance estimate is given by:

R̂ =
1

N

N∑

n=1

xnxn
H (C.1)

and it is assumed that the array output vector x is i.i.d. WGN with E{R̂} =

E{R̂n} = R. The p2 × p2 covariance cov(R) of R̂ is defined as

cov(R̂) ≡ E{ [vec(R̂) − vec(R)] [vec(R̂) − vec(R)]H } (C.2)

where

vec(R̂) =
1

N

N∑

n=1

vec(xnxH
n ) =

1

N

N∑

n=1

x̄n ⊗ xn (C.3)

Expanding the expression for cov(R̂) and inserting E{vec(R̂)} = vec(R) yields:

cov(R̂) = E{ vec(R̂)vec(R̂)H} − vec(R)vec(R)H (C.4)
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Inserting the expression for R̂ in the previous equation yields

cov(R̂) = E{ 1

N2

N∑

n=1

N∑

n′=1

(x̄n ⊗ xn) (x̄n′ ⊗ xn′)H } − vec(R)vec(R)H (C.5)

If n �= n′, assuming that the array output sample vectors xn at different times
are independent, then the (n, n′)th element of the first term of the previous
equation can be written as

E{ (x̄n ⊗ xn) (x̄n′ ⊗ xn′)H } = E{ (x̄n ⊗ xn)} E{ (x̄n′ ⊗ xn′)H }
= E{vec(R̂n)} E{vec(R̂n′)H} (C.6)

= vec(R)vec(R)H (C.7)

If n = n′, then the (n, n)th element of the first term of the previous equation
can be written as

E{ (x̄n ⊗ xn) (x̄n′ ⊗ xn′)H } = E{ x̄nx̄H
n ⊗ xnxH

n } (C.8)

= E{ ̂̄Rn ⊗ R̂n } (C.9)

Inserting these results in the equation for cov(R̂) yields

cov(R̂) =
1

N
E{ ̂̄Rn ⊗ R̂n } − 1

N
vec(R)vec(R)H (C.10)

Note that E{ ̂̄Rn ⊗ R̂n } = R̄ ⊗ R + vec(R)vec(R)H , which can be derived in
a straightforward manner, by using the following mixed moment relationship
between the CN (0,R) distributed variables x1n,x2n,x3n, and x4n (cf. section
B.2)

E{x̄1nx2nx̄3nx4n} = E{x̄1nx2n}E{x̄3nx4n}
+ E{x̄1nx4n}E{x2nx̄3n} (C.11)

where xin is the ith array sensor output at time instance n. Recall that E{xinxjn}
= Rijn. This leads to the following expression for cov(R̂)

cov(R̂) = 1
N R̄ ⊗ R (C.12)

In [111], a slightly different approach is chosen to calculate cov(R̂), but with
the same result.

Define the variance of the covariance matrix estimate as follows:

var(R̂) ≡ E{(R̂ − R) ⊙ (R̂ − R)} (C.13)

Using the formula for the covariance of the covariance matrix estimate, this can
be written as

var(R̂) =
1

N
unvec(vecdiag(R̄ ⊗ R)) (C.14)

or as

var(R̂) = 1
N vecdiag(R) vecdiag(R)H (C.15)
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C.2 Weighted matrix covariance

Suppose a covariance matrix R is weighted with matrix W, giving the weighted
matrix Rw and its estimate R̂w:

Rw ≡ WRWH (C.16)

R̂w = WR̂WH (C.17)

The covariance of R̂w, cov(R̂w) ≡ E{[vec(R̂w)−vec(Rw)][vec(R̂w)−vec(Rw)]H}
is found by inserting the expressions for Rw and R̂w in equation (C.12), and
using relation (B.1). The result is:

cov(R̂w) = (W ⊗ W) cov(R̂) (W ⊗ W)H (C.18)

where N is the number of samples. Following equation (C.15), the variance is
given by

var(R̂w) = 1
N vecdiag(WRWH) vecdiag(WRWH)H (C.19)

For example, suppose that the data model is given by R = Ro + D, where
Ro is a matrix representing the astronomical and interference signal covariance,
and where D is the diagonal noise matrix. A diagonal weighting matrix WD

leads to a simple form for the variance. Let WD ≡ D− 1
2 , where D is assumed

to be known from calibration measurements, then the normalised covariance
matrix RWD

is given by:

RWD
= WDRWH

D = D− 1
2 RoD

− 1
2 + I (C.20)

and, using (B.40), its variance by

var(R̂WD
) = D−1 var(R̂) D−1

=
1

N
D−1 vecdiag(R)vecdiag(R) D−1 (C.21)

As a second example (cf. sections 2.3.1, 2.6, 10.2.2, and 10.3.1) consider
the beamformer output or “dirty beam” ID: ID = wHRw, where w is the
beamsteering or weighting vector, and R is the covariance of the array output
signals. As wHRw is a scalar, vecdiag(wHRw) = wHRw, and:

var(ÎD) = var(wHR̂w) =
1

N
|wHRw|2 =

1

N
I2
D (C.22)

which means that the variance of the beamformer output power scales with I2
D,

which is a well known fact.





Appendix D

Derivation of FIM
components

In this appendix, we elaborate on the form of the Fisher information matrix in

(8.4)–(8.5). Fγ can be written as Fγ = ∂(ḡ⊗g)
∂γt = ∂ḡ

∂γt ⊗ g + ḡ ⊗ ∂g
∂γt where

∂ḡ
∂γt ⊗ g = (I ◦ G)Φ̄ and where ḡ ⊗ ∂g

∂γt = (Ḡ ◦ I)Φ. It follows readily that

Fγ = (Ḡ ◦ I)Φ + (I ◦ G)Φ̄ (D.1)

Fφ = ı
(
(Ḡ ◦ I)ΓΦ − (I ◦ G)ΓΦ̄

)
Is (D.2)

Fd = I ◦ I

where Is is a selection matrix, equal to the identity matrix with its first column
removed, so that the derivative to φ1 is omitted.

The FIM can be partitioned as

M =




Mγγ Mγφ Mγd

Mφγ Mφφ Mφd

Mdγ Mdφ Mdd


 (D.3)

We now show that

Mγφ = FH
γ (R̄−1 ⊗ R−1)Fφ = 0 (D.4)

Mdφ = FH
d (R̄−1 ⊗ R−1)Fφ = 0 (D.5)

so that1

M−1 =


(Mγγ − MγdM
−1
dd Mdγ)−1 0 ∗

0 M−1
φφ 0

∗ 0 (Mdd − MdγM
−1
γγ Mγd)

−1




1∗ denotes certain sections of the matrix that are not of interest.
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which indicates that the phase parameters are decoupled from the gain magni-
tude and noise parameters.

To show (D.4), we start with equation (D.4): Mγφ = FH
γ (R̄−1 ⊗ R−1)Fφ,

where inserting the Jacobians (D.1), (D.2) produces

Mγφ =
(
(Ḡ ◦ I)Φ + (I ◦ G)Φ̄

)H
(R̄−1 ⊗ R−1) ·

·ı
(
(Ḡ ◦ I)ΓΦ − (I ◦ G)ΓΦ̄

)
Is

Factoring out this equation produces four terms,

Mγφ = ıΦ̄((ḠHR̄−1Ḡ) ⊙ R−1)ΓΦIs

−ıΦ̄((ḠHR̄−1) ⊙ (R−1G))ΓΦ̄Is

+ıΦ((R̄−1Ḡ) ⊙ (GHR−1))ΓΦIs

−ıΦ(R̄−1 ⊙ (GHR−1G))ΓΦ̄Is

This can be expanded using G = g1t = Φγ1t, and by defining R = ΦRaΦ̄

where Ra is a matrix containing the absolute values of the elements of the
matrix R. The result is:

Mγφ = ıΦ̄((1γtΦΦ̄R−1
a ΦΦ̄γ1t) ⊙ (ΦR−1

a Φ̄))ΓΦIs

−ıΦ̄((1γtΦΦ̄R−1
a Φ) ⊙ (ΦR−1

a Φ̄Φγ1t))ΓΦ̄Is

+ıΦ((Φ̄R−1
a ΦΦ̄γ1t) ⊙ (1γtΦ̄ΦR−1

a Φ̄))ΓΦIs

−ıΦ((Φ̄R−1
a Φ) ⊙ (1γtΦ̄ΦR−1

a Φ̄Φγ1t))ΓΦ̄Is

By noting that ΦΦ̄ = I, it follows that all factors Φ and Φ̄ cancel each other.
Since the second and the third term of the equation cancel each other, and so
do the first and fourth term, Mγφ = 0. In the same way it can be shown that
Mφd = 0. The nonzero FIM components can be derived following the same
procedure. The results are, using the definition α = γtR−1

a γ, and using the
fact that M is Hermitian:

Mγγ = 2(αR−1
a + R−1

a γγtR−1
a )

Mγφ = Mφγ = 0

Mγd = Mdγ = 2(1γtR−1
a ⊙ R−1

a )

Mφφ = 2It
sΓ(αR−1

a − R−1
a γγtR−1

a )ΓIs

Mφd = Mdφ = 0

Mdd = R̄−1 ⊙ R−1 = R−1
a ⊙ R−1

a

The FIM components are real and do not depend on φ. This proves that
the estimation accuracy bounds are independent of the particular values of the
phases.
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Samenvatting

Radiofrequentie storingsonderdrukking in de ra-
dioastronomie

Met radiotelescopen worden waarnemingen gedaan ten behoeve van onderzoek
naar de structuur en dynamiek van het heelal. De waar te nemen objecten staan
op grote afstand en zijn doorgaans erg zwak. Om toch zinvolle waarnemingen te
kunnen doen is een extreem grote gevoeligheid nodig. Deze gevoeligheid wordt in
de radioastronomie bereikt door gebruik te maken van grote telescoopspiegel- en
antenneoppervlakten, door in brede waarneemfrequentiebanden te meten, door
versterkers met lage ruiskarakteristieken te gebruiken en door gedurende lange
tijd een object waar te nemen (integreren in tijd). De Westerbork Synthese
Telescoop bijvoorbeeld heeft als standaard meettijd 12 uur. Deze aanpak levert
een gevoeligheid op die tien orden van grootte beter is dan die in de meeste
communicatiesystemen.

Door de technologische vooruitgang in de microelectronica in de afgelopen
decade kunnen telescopen in principe nog veel gevoeliger gemaakt worden.
Voorbeelden hiervan zijn de Low Frequency Array (LOFAR), een Nederlandse
“phased array” radio telescoop die op dit moment in de constructiefase is, en
de Square Kilometer Array (SKA), een internationale telescoop die zich nog
in de concept studiefase bevindt. Echter, de technologische vooruitgang heeft
er ook voor gezorgd dat nieuwe radiocommunicatiesystemen ontwikkeld zijn.
Er is een toename zowel in het aantal systemen als in verscheidenheid. Nieuwe
signaalmodulatie en coderingssystemen zijn ontwikkeld, zoals bijvoorbeeld Ultra
Wideband technieken. Door deze ontwikkeling is het gebruik van het frequentie-
spectrum intensiever geworden en komt het vaker voor dat communicatiesyste-
men de radioastronomische waarnemingen verstoren. Deze verstoring wordt
radiofrequentie interferentie (RFI) of electromagnetische interferentie (EMI) ge-
noemd.

Om de invloed van storende radiosignalen op de radio astronomische waarne-
mingen te reduceren, kunnen filtertechnieken toegepast worden. Om te begin-
nen dienen de telescoopontvangers voldoende lineair gedimensioneerd te zijn.
Dit gebeurt onder andere door het toepassen van geschikte componenten, meng-
schema’s en analoge filters. Na digitalisatie van de ontvangen signalen kunnen de
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stoorsignalen gereduceerd worden met behulp van digitale filtertechnieken. Dit
proefschrift richt zich op dit soort digitale technieken, toegepast op apertuur-
synthese waarnemingen. Apertuursynthese is een waarneemtechniek waarbij
een grote telescoop gesynthetiseerd wordt door de signalen van vele kleintjes,
een zogenaamd “array”, te combineren. Deze waarneemmode is gekozen om
diverse redenen: ten eerste omdat de nieuwe generatie radiotelescopen van het
synthese-type zullen zijn vanwege praktische grenzen aan de grootte van tele-
scoopspiegels; ten tweede omdat array-filtertechnieken, ten tijde van het starten
van het onderzoek, niet of nauwelijks onderzocht waren in de context van de
radioastronomie.; en ten slotte omdat de onderzochte technieken “blind” zijn in
die zin dat er weinig of geen a-priori infomatie nodig is om de filters goed te
laten werken. Het voordeel hiervan is dat de methoden relatief eenvoudig zijn
en toepasbaar op een uitgebreide klasse van stoorsignalen.

Het onderzoek in dit proefschrift bouwt voort op de datamodellen, detectie-
technieken en interferentiefilters van A.J. van der Veen en A. Leshem [93] en
op de polarisatiemodellering van onder andere J. Hamaker [63]. De door hen
afgeleide matrixmodellen voor de signaalverwerking worden in deze thesis op een
aantal punten verder uitgewerkt en uitgebreid met onder andere een multipad-
model voor stoorsignalen en een oplossingsmethode voor polarisatie calibratie.
Hoewel de modellen naast een matrixrepresentatie evengoed als sommaties van
scalaire grootheden uitgedrukt kunnen worden, biedt de matrixrepresentatie
een aantal voordelen. Ten eerste is er het voordeel van compacte notatie en
ten tweede nodigt een overzichtelijke schrijfwijze uit tot het vinden van on-
derliggende structuren in het probleem en tot nieuwe opossingsbenaderingen.
Een bijkomend voordeel is dat er in de statistische signaalverwerkingsliter-
atuur oplossingen gevonden zijn voor vraagstukken die dezelfde mathematische
matrixmodellen blijken te hebben als sommige modellen in de radioastronomie.

In deze thesis zijn storingsdetectietechnieken en ruimtelijke filtertechnieken
onderzocht, gesimuleerd en uitgetest op radioastronomische waarnemingen. Deze
methoden zijn gebaseerd op lineaire algebra “subspace” technieken. De effec-
tiviteit van deze filters is onderzocht en de beperkingen ervan zijn in relatie ge-
bracht tot systeemparameters zoals de gebruikte kanaalbandbreedte, integratie
tijd, signaal-ruis verhouding, maar ook tot spatiële bronafmetingen en multipad-
effecten. Verder is de waargenomen effectiviteit vergeleken met de theoretische
verwachting.

Zowel voor detectie als voor het ruimtelijk filteren worden in deze thesis
eigenwaarde ontbindingen gebruikt. Deze techniek kan alleen goed toegepast
worden als de ruis van de telescopen zodanig geschaald wordt dat de waar-
genomen ruisvermogens voor alle telescopen gelijk zijn. Om dit te bereiken
zijn calibratiemethoden onderzocht. In deze thesis zijn methoden uit de factor-
analyse gebruikt, maar ook zijn nieuwe methoden ontwikkeld. Twee van deze
ontwikkelde algoritmen zijn gepatenteerd. Verder is bij deze analyse de Cramer-
Rao bound gebruikt om de theoretische calibratieparameter schattingsnauw-
keurigheid vast te stellen. Deze techniek is een standaardtechniek in bijvoor-
beeld de statistische signaalverwerking, maar binnen de radio astronomie is deze
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techniek nieuw.
Tenslotte is onderzocht hoe interferentie filtertechnieken het beste kunnen

worden toegepast in de LOFAR telescoop. Naast een analyse zijn er spatiële
filtertesten uitgevoerd met het LOFAR testsation ITS.

Albert-Jan Boonstra, 14 juni 2005.
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