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Recent experimental advances enabled the realization of mobile impurities immersed in a Bose-Einstein

condensate (BEC) of ultracold atoms. Here, we consider impurities with two or more internal hyperfine states,

and study their radio-frequency (rf) absorption spectra, which correspond to transitions between two different

hyperfine states. We calculate rf spectra for the case when one of the hyperfine states involved interacts with the

BEC, while the other state is noninteracting, by performing a nonperturbative resummation of the probabilities

of exciting different numbers of phonon modes. In the presence of interactions, the impurity gets dressed by

Bogoliubov excitations of the BEC, and forms a polaron. The rf signal contains a δ-function peak centered

at the energy of the polaron measured relative to the bare impurity transition frequency with a weight equal

to the amount of bare impurity character in the polaron state. The rf spectrum also has a broad incoherent

part arising from the background excitations of the BEC, with a characteristic power-law tail that appears as a

consequence of the universal physics of contact interactions. We discuss both the direct rf measurement, in which

the impurity is initially in an interacting state, and the inverse rf measurement, in which the impurity is initially

in a noninteracting state. In the latter case, in order to calculate the rf spectrum, we solve the problem of polaron

formation: a mobile impurity is suddenly introduced in a BEC, and dynamically gets dressed by Bogoliubov

phonons. Our solution is based on a time-dependent variational ansatz of coherent states of Bogoliubov phonons,

which becomes exact when the impurity is localized. Moreover, we show that such an ansatz compares well with

a semiclassical estimate of the propagation amplitude of a mobile impurity in the BEC. Our technique can be

extended to cases when both initial and final impurity states are interacting with the BEC.
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I. INTRODUCTION

The polaron problem [1–5] concerns the modification of the

physical properties of an impurity by the quantum fluctuations

of its environment. This ubiquitous problem naturally arises

in a wide variety of physical situations including electron-

phonon interactions [3], the propagation of muons in a solid

[6], transport in organic transistors [7], the physics of giant

magnetoresistance materials [8], and high-T C cuprates [9].

Recently, in Refs. [10–35] the polaron problem was considered

in the context of quantum impurities in ultracold atomic gases.

The unprecedented control over interatomic interactions,

external trapping potentials, and internal states of ultracold

atoms allows the realization of systems previously unattainable

in condensed matter. Examples relevant to our study include

Bose-Bose and Bose-Fermi mixtures with varying mass ratios.

Moreover, specialized experimental probes such as radio-

frequency (rf) spectroscopy [36] and Ramsey interference [37]

enable detailed characterizations of these systems, including

their coherent real-time dynamics. Furthermore, these systems

are very well characterized and can be theoretically described

using simple models with just a few parameters. Such univer-

sality arises in cold atoms because they are well isolated

from their environment, have simple dispersion relations,

and the two-particle scattering amplitudes have a universal

form fully characterized by the scattering length (except in

cases of narrow Feshbach resonances [38], which we will

not discuss here), while higher-order scattering processes

can be neglected due to diluteness. This is in contrast to

generic condensed-matter systems where universal physics is

manifested only at very low energies, while coherent dynamics

is usually difficult to probe [39].

In this article, we consider dynamic impurities in a

Bose-Einstein condensate (BEC), and demonstrate how the

spectral and dynamical properties of the Fröhlich polaron [3]

can be probed using rf spectroscopy in dilute mixtures of

ultracold atoms. For these systems, we predict the essential

spectroscopic features of a rf measurement, some of which are

constrained by exact relations, and discuss the corresponding

impurity dynamics.

Radio-frequency spectroscopy [36,40–44], along with its

momentum-resolved variant [45,46], has emerged as an

important experimental tool to study many-body physics in

cold atoms. Pertinently, rf spectroscopy can directly probe the

spectral properties of quantum impurities [12,15,16,47,48],

and has prompted theoretical investigations of impurity spec-

tral functions [34,35,49,50].

The subject of impurities in BECs has received some

attention recently, but the focus has mainly been on the

near-equilibrium properties of these systems. The effect of

impurities on BECs was studied using the Gross-Pitaevskii

[51] quantum hydrodynamic description of the coherent con-

densate wave function in Refs. [20–24,33]. Such an approach

is restricted to weak impurity-boson couplings, and downplays

the effects of quantum dynamics of the impurity, which appears

only as a classical potential acting on the collective field of the
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FIG. 1. (Color online) (a) Schematic representation of the system

comprising a BEC (blue) with a small concentration of free impurities

(red) that have two internal levels |↓〉,|↑〉, in which the impurity-

boson interaction characterized by the s-wave scattering length aIB,σ

is different. A rf pulse transfers impurities from |↓〉 to |↑〉, and

probes the emergent polaronic state of the impurity, and the dynamics

of its formation. (b) Typical rf signal shown when impurity-Bose

scattering length aIB,↑ > 0 (right), aIB,↑ < 0 (left). The rf signal

contains a coherent peak centered at the energy of the polaron

measured relative to the bare impurity transition frequency, and

with weight corresponding to the impurity quasiparticle residue Z

(see Sec. III E). There is an additional incoherent part capturing

background excitations of the BEC, with a characteristic power-

law tail (see Sec. IV A). (Inset) Attractive (repulsive) polarons

corresponding to a↑,σ < 0 (> 0), with negative (positive) energy

relative to the atomic transition frequency ω = 0.

bosons. The authors of Refs. [29–32] took quantum impurities

into account within a many-body treatment of the Bogoliubov

excitations of the BEC, but considered equilibrium properties

in the regime of weak impurity-boson interactions.

In contrast to these earlier works, we calculate the full

spectral response of dilute quantum impurities in a BEC,

and study their nonequilibrium dynamics which arise when

applying a rf signal to the system. As shown in Fig. 1(a), we

consider a BEC with a small concentration of free impurities

with two internal states. The impurities are taken to initially

be in the |↓〉 internal state, and we consider the effect of

a rf pulse which transfers them to the final |↑〉 state. In

Fig. 1(a), we present the so-called “inverse” rf protocol [16],

in which impurities in the |↓〉 state are noninteracting with

the bosons, while in the |↑〉 state they interact. Then, the

initially free impurities propagate as emergent quasiparticles,

called polarons, that are dressed by a cloud of background

BEC excitations. Correspondingly, the resulting rf absorption

signal, shown in Fig. 1(b), contains a coherent peak centered

at a frequency corresponding to the energy of the polaron

measured from the transition frequency between the states ↓
and ↑ of the bare impurity. The peak has an exponentially

suppressed weight that quantifies the amount of bare impurity

character in the polaron state. Additionally, the rf signal

contains an incoherent part corresponding to the excitations

of the background BEC, which displays a characteristic high-

frequency power-law tail. The latter is a manifestation of the

universal two-body “contact” physics studied by Tan [52,53],

and is a recurring feature of rf studies in ultracold atoms

[54–58]. We also discuss the “direct” rf protocol [15], in which

impurities initially in the |↓〉 state interact with the bosons, and

are transferred to a noninteracting |↑〉 state. Our discussion

can also be extended to the case where both internal states

of the impurity are interacting, but with different interaction

strengths.

We calculate impurity rf spectra by resumming an infinite

number of emitted Bogoliubov excitations, and thus capture

the nonequilibrium dynamics of polaron formation. Moreover,

our treatment is mathematically exact for completely localized

impurities.

The article is organized as follows: In Sec. II, we introduce

an effective model describing the impurity-BEC system and

discuss the time-dependent overlap required to calculate

impurity rf spectra. In Sec. III, we analyze the ground-state

properties of the system, and define the quantities we use to

analyze the more complicated dynamical problem of rf spectra.

In Sec. IV, we present the main results concerning impurity rf

spectra in three parts: first we demonstrate that the coherent

and incoherent parts of the rf signal are both constrained by

exact relations. Next, we present the microscopic calculation of

two types of rf measurements, so-called “direct” and “inverse”

rf spectroscopy, and lastly discuss nonequilibrium dynamics

of the impurity which arise in the course of the inverse rf

measurement. Finally, in Sec. V we summarize our results,

point out connections to existing experiments, and highlight

future directions of study.

II. MICROSCOPIC MODEL

We assume that the concentration of impurity atoms is

low, so we can neglect interactions between them, and discuss

individual impurity atoms. Thus, we consider a single impurity

of mass M , which has two internal (e.g., hyperfine) states

|↑〉,|↓〉, immersed in a BEC of a different type of atom of

mass m. The Hamiltonian of the system is given by

H = Hb + HI + |↑〉 ⊗ 〈↑|Hint↑ + |↓〉 ⊗ 〈↓|Hint↓, (1)

where Hb is the BEC Hamiltonian, HI = p̂2

2M
is the Hamil-

tonian of the impurity atom with momentum p̂, and Hintσ

describes a density-density interaction of the bosons with

impurity in state σ at position x̂:

Hintσ = gIB,σρBEC(x̂), (2)

where gIB,σ models the microscopic short-range interaction

between the atoms. Since we treat systems of ultracold atoms

for which the effective range of interactions between atoms (on

the order of the van der Waals length) is the smallest length

scale, interatomic interactions can be modeled as having zero

range [39,59], and the microscopic host-impurity interaction

can be described using the s-wave scattering length aIB,σ of

the impurity in state σ with the surrounding BEC (see also

Appendix A).

We will restrict our discussion to weakly interacting Bose

gases, well described by the Bogoliubov approximation [51],

in which the condensed ground state of the Bose gas is treated

as a static “mean field,” and excitations are modeled as a bath
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of free phonons

Hb =
∑

k �=0

ωkb
†
kbk, ωk = ck

√

1 +
(kξ )2

2
, (3)

where ξ = 1/(
√

2mc) is the healing length, c the speed of

sound in the BEC, k = |k|, and where we took � = 1. In this

framework, the interaction (2) between impurity and bosons

can be rewritten as a sum of two terms. The first captures

the “mean-field” interaction of the BEC ground state with

the impurity, and the second encodes the impurity interactions

with the Bogoliubov excitations. The density of the excitations

can be expressed as a linear combination of phonon creation

and annihilation operators, and leads to the following explicit

form of the interaction Hamiltonian:

Hintσ =
2πaIB,σ

μ
n0 +

∑

k

Vkσ eik·x̂(b̂k + b̂
†
−k), (4)

with [32]

Vkσ =
2πaIBσ

√
N0

μ

(

ξk
√

2 + (ξk)2

)1/2

. (5)

Here, N0 is the number of atoms in the condensate, with

the corresponding density n0, and μ = (m−1 + M−1)−1 is the

reduced mass of the impurity.

The above approximations hold so long as the impurity-

boson interaction does not significantly deplete the condensate,

leading to the condition [20,24]

|aIB,σ |ξ−1 ≪ 1. (6)

Our treatment of the impurity-BEC system ignores the phe-

nomenology of strong-coupling physics, e.g., near a Feshbach

resonance [34], which lies beyond the parameter range (6).

The model (3), (4), with parameters (5), in its regime of

validity, constitutes a generalized Fröhlich model of polarons

in ultracold BECs [29–32].

A. rf spectroscopy as dynamical problem

A rf pulse changes the internal state of the impurity atom

without modifying its momentum. Thus, for a ↓-impurity-BEC

initial state with momentum p, energy Ei↓, denoted |i↓p〉, the

rf absorption cross section can be computed within Fermi’s

golden rule from

I (p,ω) =
∑

n

|〈n↑p|V̂rf|i↓p〉|2δ(ω − (En↑ − Ei↓)), (7)

where all states |n↑p〉 of ↑-impurity-BEC system with total

momentum p are summed over. The rf transition operator

V̂rf ∼ |↑〉〈↓| instantaneously changes the internal state of the

impurity, but the quantum mechanical state of the impurity-

BEC system is otherwise unmodified by it, i.e., the initial state

of the system |i↓p〉 is quenched. Using standard manipulations

(see e.g. [50,60]) the last expression can be rewritten as

I (p,ω) = Re
1

π

∫ ∞

0

dt eiωtAp(t), (8)

Ap(t) = eiEi↓t 〈i↑p|e−i(Hb+HI +Hint↑)t |i↑p〉, (9)

where frequency ω is measured relative to the atomic transition

frequency between states |↓〉 and |↑〉 of the bare impurity, and

where we denoted |i↑p〉 = V̂rf|i↓p〉.
Let us emphasize again: due to the instantaneous nature of

the rf spin flip, the state |i↑p〉 is identical to the initial state of

the ↓-impurity BEC system in all respects, except the internal

state of the impurity. Consequently, |i↑p〉 is different from, and

therefore higher in energy than, the ↑-impurity-BEC ground

state at momentum p,|0↑p〉. Thus, it is more convenient to

formulate the physical problem underlying the rf response

as a dynamical one rather than a traditional calculation of a

ground-state observable. Indeed, expression (9) has the form of

the quantum propagation amplitude, related to the Loschmidt

echo [61]), where an eigenstate of the HamiltonianHb + HI +
Hint↓ needs to be time evolved with Hb + HI + Hint↑. Ap(t)

can also be measured directly in the time domain using the

Ramsey sequence discussed in Ref. [50]. Analysis of (9) serves

the central goal of this paper: the calculation of impurity rf

spectra.

B. Direct and inverse rf: Momentum-resolved spectra

Two varieties of rf spectroscopy are commonly used to

probe impurity physics in cold atoms: direct and inverse

rf. In the present context, direct rf involves preparing the

system with the impurity initially in an interacting state,

i.e., in Eq. (7), the state |i↓p〉 = |0↓p〉 will correspond to the

interacting impurity-BEC state: a polaron with momentum

p. The rf pulse then flips the impurities to a final state in

which they are noninteracting, i.e., aIB,↑ ≈ 0. For the inverse rf

measurement, the scenario above is reversed, and the impurity

is initially in a noninteracting state, i.e., |i↓p〉 = |p〉↓ ⊗ |0〉 will

correspond to the decoupled momentum p bare impurity-BEC

ground state, with |0〉 the vacuum of Bogoliubov phonons, and

the rf pulse flips the impurities to an interacting final state, i.e.,

aIB,↑ �= 0.

Typically, one is interested in performing a momentum-

resolved rf measurement. In the case of direct rf, a time-of-

flight measurement following the rf pulse will directly yield

the polaron momentum distribution since, after the impurity

atoms are transferred to the ↑ state, they propagate ballistically

without being scattered by the host BEC atoms. The combined

time-of-flight and rf absorption measurements can be inter-

preted as momentum-resolved rf spectroscopy [15,45,46]. Off-

setting this advantage, the finite lifetime of the polaron [34]1

may pose a challenge to the initial adiabatic preparation of the

system required for this measurement. On the other hand, for

the inverse rf measurement, in which interactions are absent

for the initial state of the impurity, the problem of finite polaron

lifetime can be circumvented [16], but momentum resolution

is more challenging to obtain.

1For positive scattering length, the pairwise impurity-boson inter-

action potential admits a bound state, leading to an impurity-BEC

ground state formed out of bound bosons, that is much lower in

energy than the repulsive polaron which is formed out of scattered

bosons. Consequently, the repulsive polaron is a metastable state with

a finite lifetime after which it will decay into the molecular state.
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We propose the following momentum-resolved inverse

rf measurement. An external force that acts selectively on

impurity atoms (e.g., through a magnetic field gradient) can

be used to impart a finite initial momentum

p0 = −∇Vext,↓�T, (10)

where p0, the center of the momentum distribution of ↓ impuri-

ties, is the momentum transferred by applying a state-selective

external potential gradient ∇Vext,↓ for a time �T to the

impurities. A rf pulse would then transfer the initially weakly

interacting impurities to an interacting final state. The known

transferred momentum p0, combined with the absorption of

rf, would yield a momentum-resolved rf spectrum. Since the

experiment is done at a finite concentration of impurity atoms

to obtain the total absorption cross section I (p,ω) would need

to be averaged over the impurity momentum distribution (see,

e.g., the Supplemental Materials of Ref. [12]), with width

given by the thermal de Broglie wavelength, or by the inverse

of the distance between impurity atoms (if they are fermionic

and obey the Pauli exclusion principle). Typically, the width is

expected to be small due to the low temperature and diluteness

of the impurities. The advantage of such a measurement is its

insensitivity to the polaron lifetime as it requires no adiabatic

preparation [16], while also allowing a momentum-resolved

measurement, but at the cost of repeated measurements to

resolve a finite-momentum range.

III. POLARON GROUND STATE IN BEC

In order to characterize polaronic phenomena manifested

in rf spectra, it is useful to review the ground-state properties

of polarons in BECs. It is possible to tune interactions between

ultracold atoms to be effectively attractive or repulsive using

Feshbach resonances [38]. Correspondingly, the Bose polaron

comes in two varieties associated with effective attraction

(aIB,σ < 0) and repulsion (aIB,σ > 0) between the impurity and

the BEC. Moreover, at strong coupling there is an additional

transition of the attractive polaron into a bound molecular

state [34]. We will only discuss the regime of weak impurity-

Bose interactions which satisfy the condition (6) and are

captured by our Fröhlich model (3), (4), with parameters (5).

We note that the authors of Ref. [34] also considered the

spectral properties of impurities in a BEC, but considered the

regime of strong impurity-Bose coupling which occurs in the

vicinity of the Feshbach resonance. Their approach, inspired

in part by Chevy’s variational wave-function description of

fermionic polarons [62,63], separates the spectral contribu-

tions of the bound molecules and the repulsive polarons on the

repulsive side of the Feshbach resonance (aIB,σ > 0). How-

ever, their selective resummation scheme does not reduce to the

exact solution in the case of a heavy impurity, and consequently

misses the physics of the orthogonality catastrophe [64] in low

dimensions. Thus, it does not accurately describe the precise

lineshape of the incoherent part of rf spectra.

Although the analysis of the ground state of the polaron

model has been carried out previously in Refs. [65,66], we

present it here to motivate our later study of dynamics as a

generalization of the approach to the ground state.

A. Lee-Low-Pines transformation

There exists a canonical transformation introduced by Lee,

Low, and Pines [67] (LLP) that singles out the conserved total

momentum of the system:

H̃ = eiSHe−iS, with S = x̂ ·
∑

k

kb̂
†
kb̂k, (11)

eiS b̂ke
−iS = b̂ke

−ik·x, eiS p̂e−iS = p̂ −
∑

k

kb̂
†
kb̂k. (12)

We may write the transformed Hamiltonian as

H̃ =
1

2M

(

p −
∑

k

kb̂
†
kb̂k

)2

+
∑

k

Vk(b̂
†
k + b̂−k)

+
∑

k

ωkb̂
†
kb̂k, (13)

where without loss of generality we projected the full Hamil-

tonian onto the sector σ = ↑; the same can be done in the other

sector.

The LLP transformation eliminates the impurity degree

of freedom by isolating the conserved total momentum p

of the system which becomes a parameter of the effective

Hamiltonian (13). The simplification comes at the cost of

an induced interaction between the Bogoliubov excitations,

which enocodes the quantum dynamics of the impurity, and

vanishes in the M → ∞ limit of a static localized impurity.

It was argued in Refs. [68,69] that the existence of a finite-

momentum ground state implies symmetry breaking and,

consequently, a phase transition corresponding to the “self-

localization” transition of Landau and Pekar [2]. Although we

will discuss states of the Hamiltonian (13) with arbitrary total

momentum p, it was established rigorously in Ref. [70] that

a large class of Fröhlich-type models with gapless phonons,

including the present one, can only admit a ground state with

p = 0.

We will consider eigenstates of Hamiltonian (13) with finite

total momentum p, which are not “true” global ground states

in the above sense, but are nonetheless required to calculate

momentum-resolved rf spectra using the time-dependent

overlap (9). The symmetry breaking in the present context is

not spontaneous, but rather due to the injection of an impurity

with finite momentum into the BEC. We will use the term

“polaron ground state” to refer to the lowest-energy eigenstate

of Hamiltonian (13) with a given total momentum p. We

approximate such states using a mean-field treatment.

B. Mean-field polaron solution

For a localized impurity M → ∞, Hamiltonian (13)

decouples into a sum of independent harmonic oscillators,

each of which has a coherent state as its ground state [71].

Consequently, the many-body ground state in this limit is a

decoupled product of coherent states:

|0M→∞〉 =
∏

k

eβkb̂
†
k−β∗

k b̂k |0〉, βk = −
Vk

ωk

. (14)
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Moreover, we expect by continuity2 that for an impurity

with a large, finite mass M , we can approximate the true ground

state by an optimally chosen product of coherent states:

|0↓p〉 =
∏

k

eαMF
k b̂

†
k−(αMF

k )∗b̂k |0〉, (15)

with αMF
k determined by minimizing the total energy of the

system E({αk}) = 〈0↓p|H̃|0↓p〉, which can be cast as a mean-

field self-consistency condition

αMF
k = −

Vk

ωk + k2

2M
− k‖

M

(

p − �
[

αMF
k

])
,

(16)
�[αk] ≡

∑

k

k‖|αk|2,

where we denote the total phonon momentum projected

in the direction k‖ ≡ p

|p| by the parameter �. The set of

self-consistency conditions (17) can then be reformulated as a

single scalar equation for �:

� =
∑

k

k‖V
2

k
(

ωk + k2

2M
− k‖

M
(p − �)

)2
. (17)

Having approximated the polaron ground-state wave function

using Eq. (17), we can calculate the polaron binding energy,

effective mass, and the overlap with the bare impurity.

C. Binding energy of the polaron

The binding energy is defined as the difference between the

ground-state energy of the polaron at zero momentum and the

energy of a BEC with a noninteracting impurity atom:

EB = 〈0↑p=0|H|0↑p=0〉 − 〈0| ⊗ 〈p = 0|Hb + HI |0〉
× ⊗ |p = 0〉

= 〈0↑p=0|H|0↑p=0〉 − 0

=
∑

k

{[

1 + k‖
M

�
(

ωk + k2

2M

)−1]−1 − 2
}

(

ωk + k2

2M
+ k‖

M
�

)
V 2

k +
�2

2M
, (18)

where we took an expectation value using the state (15)

optimized according to Eq. (17). Note that we did not include

the mean-field energy of the interactions between condensed

bosons and the impurity EMF = 2πaIB,σ n0

μ
in the binding energy.

The binding energy is a well-defined physical observable,

which must moreover be expressible in terms of the s-wave

scattering length, by virtue of the universality of interactions

in cold atoms (see Appendix A). However, a naive evaluation

of the sum in Eq. (18) leads to an ultraviolet (UV) divergence.

The appearance of UV divergences in physical observables is a

direct consequence of poorly approximating the fundamentally

different physics at atomic length scales. Indeed, our zero-

range model (2) pathologically couples microscopic degrees

2Note that unlike for a fermionic bath, for which the infinitely

massive impurity is a singular limit displaying the orthogonality

catastrophe, for bosons the infinite-mass limit is smoothly connected

to a system with a heavy impurity; this can be verified by examining

the effect of recoil on the density of states [72].

of freedom to the physically relevant long-distance degrees of

freedom. However, in order to describe universal properties

which are insensitive to microscopic physics, we require a

means of safely and justifiably decoupling microscopic and

macroscopic scales.

To this end, we found it most convenient to evaluate Eq. (18)

using dimensional regularization [73], which is equivalent to

the regularization scheme based on a momentum cutoff used in

Refs. [20,32,34]. The regularization amounts to the subtraction

of the leading divergence in the binding energy which takes

the form

Ediv
B → −

(

2πaIB,σ

μ

)2

n0

∑

k

2μ

k2
. (19)

Physically such a subtraction can be justified by considering

the total interaction energy of the BEC and impurity:

Eint = EB + EMF (20)

and expressing the mean-field interaction energy of the

condensate in terms of the “bare” coupling to the impurity

gIB,σ from Eq. (2):

EMF = gIB,σn0. (21)

The bare coupling can be related to the physical impurity-

boson s-wave scattering length using the Lippman-Schwinger

equation

1

gIB,σ

=
μ

2πaIB,σ

−
∑

k

2μ

k2
, (22)

which yields the following expression for the mean-field

energy, accurate to second order in aIB,σ :

EMF =
2πaIB,σ n0

μ
+

(

2πaIB,σ

μ

)2

n0

∑

k

2μ

k2
. (23)

Indeed, the second term on the right-hand side is precisely the

“subtracted infinity” required to eliminate the divergence (19).

Thus, we obtain a well-behaved binding energy which can

be expressed in closed form for a localized impurity with

M → ∞,

EM→∞
B,reg. = −

2
√

2πa2
IB,σ n0

μξ
< 0, (24)

and must be evaluated numerically for finite-mass impurities.

The details of the regularization procedure used to obtain

Eq. (24) are presented in Appendix A.

We will later need the generalized binding energy for a

finite-momentum polaron, i.e., Eq. (18) with p �= 0. As shown

in Sec. IV B, the latter quantity will contribute a shift of the rf

signal relative to the atomic transition rate between ↑ and ↓ of

the bare impurity.

D. Effective mass of the polaron

In the absence of interactions, the bare impurity propagates

as a free particle with a quadratic dispersion εI = p2

2M
. It is

useful to conceptualize the polaron also as a propagating

object, a wave packet, composed of an impurity dragging a

cloud of bosonic excitations. Such a dressing of the impurity
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will naturally imply propagation with an effectively heavier

mass. We can identify the effective mass of the polaron from its

group velocity by requiring the polaron dispersion to take the

form εpolaron = p2

2M∗ . Then, from the definition of the polaron

group velocity we find

vpolaron ≡
∂

∂p
εpolaron =

p

M∗

= ∂p(〈0↑p|H̃|0↑p〉 − 〈0↑p=0|H̃|0↑p=0〉),
p

M∗ =
p

M
− 〈0↑p|

∑

k

kb̂
†
kb̂k|0↑p〉, (25)

where in the second line we expressed the polaron dispersion as

the energy difference between the system at finite momentum

p and zero momentum. We can express Eq. (25) in terms of

the mean-field solution to find

M

M∗ = 1 −
�

p
, (26)

with the parameter �, the total momentum of the bosons,

obtained by solving Eq. (17).

Here, we note an interesting feature of the mean-field

treatment above. One finds that for a certain parameter regime,

no mean-field solution can be found due to a singularity

in the self-consistency (17). The singularity arises when the

denominator of the right-hand side of Eq. (17) admits a zero

for small k:

0 = ωk +
k2

2M
−

k‖

M

(

p − �
[

αMF
k

]) k≪1/ξ−−−→ ck −
pk‖

M∗ ,

where we used Eq. (26) to obtain the right-hand side.

Thus, we find that the mean-field treatment breaks down

when

v∗ =
p

M∗ > c. (27)

The criterion (27) is reminiscent of Landau’s criterion for

dissipationless transport through a superfluid [20], with one

important difference. The usual criterion is a purely kinematic

bound obtained by weighing the relative advantage for an

impurity to emit excitations, and does not include the effects

of interactions. The remarkable feature of Eq. (27) is the role

of interactions: it is not the bare impurity velocity that is

compared to the sound speed, but rather the effective polaron

velocity. Due to the strong dependence of the effective mass on

interactions, one finds that for a large enough interaction the

polaron is subsonic, although the corresponding bare impurity

in the absence of interactions would be supersonic.

In Fig. 2, we plot the critical strength of interactions for

which we find polaronic solutions. We interpret the lack of

solutions in the unshaded region of the figure as a breakdown

of our ansatz. Our ansatz implicitly assumes a well-defined

polaronic quasiparticle, which fails to describe the impurity at

supersonic velocities; indeed, the authors of Ref. [34] reported

a decay of the Bose polaron into the continuum, above the

critical velocity given by Landau’s criterion.

E. Quasiparticle residue

The quasiparticle residue directly quantifies the component

of the bare impurity that remains in the interacting ground

FIG. 2. Mean-field solutions are obtained in the shaded region,

while in the upper unshaded region no solutions can be found

within our ansatz. The line separating the regions corresponds to the

condition (27) reminiscent of the Landau criterion. In the absence of

interactions, the separation occurs at the usual subsonic to supersonic

transition point p/M = c.

state. Although it is usually extracted from the residue of the

pole of the impurity Green’s function [74], it may also be

obtained as the overlap between the free and dressed impurity

wave function. Since the impurity degrees of freedom drop out

of the problem due to the Lee-Low-Pines transformation, we

obtain the quasiparticle weight from the overlap of the phonon

vacuum |0〉 and the interacting phonon ground state |0↓,p〉:

Z = |〈0|0↑p〉|2

= exp

[

−
∑

k

V 2
k

[

ωk + k2

2M
− k‖

M

(

p − �
[

αMF
k

])]2

]

= exp

[

−
∑

k

V 2
k

(

ωk + k2

2M
− pk‖

M∗

)2

]

, (28)

where we used Eq. (26) in the last line to relate the quasiparticle

weight and the effective mass.

In Fig. 3, we plotted the quasiparticle residue on a

logarithmic scale, in the three-dimensional (3D) case as a

function of the impurity-BEC mass ratio, and interaction

strength; strong interactions as well as small mass ratio

quickly suppresses Z. One finds that in spatial dimensions

D = 2,3, a quantum impurity in a weakly interacting BEC

always forms a quasiparticle, although with exponentially

suppressed weight for growing interaction strength. Moreover,

at a given impurity-BEC interaction strength, quasiparticle

residue is larger for heavier impurities, and retains a finite

value even in the M → ∞ limit. This should be contrasted to

impurities in a Fermi gas with quasiparticle residue that has the

opposite dependence on mass. In particular, due to Anderson’s

orthogonality catastrophe (OC) [64], the quasiparticle residue

Z = 0 for localized impurities with M → ∞ in a Fermi sea in

one, two, and three dimensions. Interestingly, for D = 1, the

expression (28) contains an infrared divergence which again

leads to Z = 0, and signals OC even for localized impurities in

one-dimensional (1D) Bose gases. The mechanism of the OC,

namely, the catastrophic emission of excitations in response to

an impurity, occurs independently of the exchange statistics of
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FIG. 3. (Color online) (a) Log plot of the quasiparticle weight

(which is exponentially small) as a function of interaction strength,

represented by the dimensionless quantity aIB,σ

√
n0ξ , i.e., ratio

between the mean-free path of the impurity and the length scale

over which bosons are localized, and mass ratio between impurity

and bosons mr = M/m. For any moderate interaction strength,

the quasiparticle weight is almost negligible, corresponding to an

extremely strong renormalization of the impurity. (b) Quasiparticle

weight Z plotted as a function of interaction strength aIB,σ

√
n0ξ for

a fixed mass ratio of mr = 2.5.

the many-body environment and is mainly due to the kinematic

confinement of 1D systems [75].

We will in Sec. IV show that the quasiparticle residue Z is

directly measurable via rf spectroscopy, and manifests as the

weight of the coherent part of the signal.

IV. ANALYSIS OF RF SPECTRA

In Sec. II A, we showed that in order to obtain rf spectra,

the relevant quantity is the time-dependent overlap (9), i.e., the

propagation amplitude of the initial ↓-impurity-BEC state by

the Hamiltonian associated with the ↑-impurity-BEC system:

Ap(t) = eiEi↓t 〈i↑p|e−iH̃t |i↑p〉, (29)

where we used |i↑p〉 = V̂rf|i↓p〉, with |i↓p〉 the initial state of

the ↓-impurity-BEC system at momentum p energy Ei↓, and

V̂rf = |↑〉〈↓|. Note that in order to use the LLP transformed

↑-impurity-BEC Hamiltonian, we must consider the effect of

the transformation on |i↑p〉, however, in the cases of interest to

us |i↑p〉 involves the phonon vacuum, which is invariant under

LLP.

The rf spectral response of the impurity is simply obtained

as the Fourier transform of Eq. (29). First, in Sec. IV A, we

discuss general features of the time-dependent overlap (29). In

Secs. IV B and IV C, we explicitly calculate the overlap and

corresponding rf spectra for direct and inverse rf protocols.

A. Generic features of the rf response

Starting from a straightforward Lehmann expansion [74]

of the rf response, and resolving the identity in terms of

eigenstates |m↑p〉 of the time-evolving Hamiltonian, with

energy Em↑, we obtain

I (p,ω) = Re
1

π

∫ ∞

0

dt ei(ω+Ei↓)t 〈i↑p|e−iH̃↑t |i↑p〉

=
∑

m

Re
1

π

∫ ∞

0

dt ei(ω+Ei↓−Em↑)t |〈m↑p|i↑p〉|2

= Re
1

π

∫ ∞

0

dt ei(ω−�0)tZ↑↓

×

⎛

⎝1 +
∑

m�=0

ei�mt |〈m↑p|i↑p〉|2

Z↑↓

⎞

⎠ , (30)

with

Z↑↓ = |〈0↑p|i↑p〉|2, �m = Em↑ − Ei↓, (31)

where |0↑p〉 is the ground state of the ↑-impurity-BEC

Hamiltonian (13).

We expect the low-energy contribution to I (p,ω) to be

dominated by the long-time limit of the integrand for which,

due to dephasing, we find

I

(

p,ω ≪
c

ξ

)

= lim
t→∞

Z↑↓

⎛

⎝1 +
∑

m�=0

ei�mt |〈m↑p|i↑p〉|2

Z↑↓

⎞

⎠

→ Z↑↓. (32)

This dephasing mechanism separates a coherent and incoher-

ent contribution which constitute the total rf signal:

I (p,ω) = Icoh(p,ω) + Iincoh(p,ω), (33)

with the coherent part given by

Icoh(p,ω − �0) = Z↑↓δ(ω − �0). (34)

From Eq. (31), we find that the weight of the coherent

peak of the impurity rf response is determined by the overlap

between the initial state of the ↓-impurity-BEC system, and

the ground state of the final ↑-impurity-BEC system (the

rf operator V̂rf abruptly changes the impurity internal state,

but otherwise leaves the impurity-BEC state unmodified, i.e.,

|ip↓〉 → |ip↑〉 must be thought of as a sudden quench). The

center of the peak occurs at the energy difference between the

initial and final states E0,↑ − Ei↓ measured with respect to the

bare atomic transition rate of the impurity between its internal

states.

In the case of the direct and inverse rf protocols considered

here, the weight of the coherent peak is in fact the quasiparticle

weight Z defined in Eq. (28). Indeed, for the direct rf protocol,

the impurity is initially in the polaronic ground state |i↓p〉 =
|0↓p〉, while the ground state of the noninteracting ↑-impurity-

BEC system is decoupled, i.e., in this case |0↑p〉 = |p〉↑ ⊗ |0〉,
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thus

Zdirect rf
↑↓ = |〈0|0↑p〉|2. (35)

For the inverse rf protocol, the ↓ impurity is initially

noninteracting with the bosons, and after the rf spin flip,

|i↑p〉 = |p〉↑ ⊗ |0〉, while the ground state of the interacting

↑-impurity-BEC system is the polaronic ground state |0↑p〉,
leading to

Zinverse rf
↑↓ = |〈0↑p|0〉|2. (36)

Since the impurity degrees of freedom drop out of the problem

due to the LLP transformation, in both Eqs. (35) and (36), the

overlap between initial state and final ground state defined in

Eq. (31) reduces to the overlap of the phonon vacuum |0〉 and

the interacting phonon ground state |0↑p〉 (see also Sec. III E).

Although the Lehmann analysis (30) demonstrates the

existence of an incoherent contribution to the rf signal, it does

not specify its structure without additional knowledge about

the many-body eigenstates of the system. Interestingly, again

for the particular case where one of the two internal states of

the impurity is noninteracting with the BEC, the asymptotic

behavior of the incoherent part of the rf is also constrained by

exact relations.

This fact was demonstrated, e.g., by the authors of

Refs. [56,58], by relating the high-frequency impurity rf

response to the momentum distribution of the many-body

system n(k). Fermi’s golden rule for the rf transition rate

of impurity atoms between noninteracting and interacting

internal states can be expressed as the convolution [58] of the

free propagator of the impurity in the noninteracting state, and

its spectral function A(k,ω) = −2 ImG(k,ω) in the interacting

state, where G is the interacting Green’s function:

I (ω) =
∑

k

∫

d�A(k,�)n(�)δ(� − ω − εk). (37)

Here, n(�) is the distribution function of the many-body

environment at energy �. To isolate the high-frequency

contribution, one can integrate the expression (37) by parts,

and use the sum rule
∫

d�A(k,�)n(�) = n(k) [74] to obtain

I (ω → ∞) ≈
∑

k

n(k → ∞)δ(ω − εk), (38)

where n(k) is the momentum distribution of the many-body

environment of the impurity. The authors of Refs. [56,58]

considered rf spectroscopy of fermions, but in the expression

above, exchange statistics only enter through n(k). Interest-

ingly, the large-momenta structure of n(k), which determines

the high-frequency rf response, is insensitive to exchange

statistics [57,76] and allows us to directly generalize the

argument for bosons. In particular, for large momenta n(k)

displays a universal power-law tail [52,53,57,77]

n(k → ∞) → C/k4. (39)

This form was discovered by Tan [52,53] who identified the

“contact” C as the density of pairs of atoms, whose binary

collisions are responsible for the emergence of this universal

feature. The asymptotic behavior (39) of the momentum

distribution in turn constrains the asymptotic behavior of the

rf response:

I (ω → ∞) ∝
{

Cω−3/2 in 3D,

Cω−2 in 2D,
(40)

leading to universal high-frequency rf tails that have been

noted in various contexts for systems of interacting bosons

and fermions [54–58].

Dimensionality of the system plays a crucial role in

determining the precise form of the rf singal. For the high-

frequency incoherent part of the rf discussed above, different

power-law tails emerged in 2D and 3D, due to the dimensional

dependence of the many-body density of states. Moreover,

as discussed in Sec. III E, the quasiparticle weight Z, which

controls the coherent part of the rf signal, attains a finite

albeit exponentially small value in 2D and 3D, while it

displays a characteristic infrared divergence in 1D. The latter

phenomenon signals the orthogonality catastrophe intrinsic

to the kinematically constrained phase space of 1D systems.

Here, the spectrum is dominated by a power-law decay (the

1D generalization of the incoherent part adds a subleading 1/ω

correction to the leading log divergence):

I (ω − �) ≈ C|ω − �|−α, (41)

where the exponent α(aIB) depends on the phase shift induced

by scattering of the impurity [50] and within our formalism is

given by the first-order Born result α ∼ n2
0a

2
IB,↑.

With this general phenomenology of the rf response in

mind, we performed a detailed microscopic calculation of

the time-dependent overlap (9) by generalizing the mean-field

approach to polaron ground states of Sec. III to the problem

of impurity dynamics.

B. Direct rf: Transition from interacting to noninteracting state

In the direct rf measurement, the system is first adiabatically

prepared in the polaronic ground state, i.e., |i↓p〉 = |0↓p〉.
Since the system is noninteracting in its final state, the

time-evolving Hamiltonian in this case is simply that of free

Bogoliubov bosons Hb =
∑

k ωkb̂
†
kb̂k.

We showed in Sec. III that the ground state can be approx-

imated as a product of coherent states [see Eq. (15)], which

moreover becomes exact in the case of an infinitely heavy

impurity. Thus, the problem of calculating the time-dependent

overlap reduces to free evolution of product coherent states:

Ap(t) = 〈0↑p|e−iHb t |0↑p〉

=
∏

k

〈0|eαMF
k b̂

†
ke−iωk t−(αMF

k )∗b̂keiωk t |0〉, (42)

with αMF
k obtained from solving Eq. (17); in the limit of a

localized impurity with M → ∞, αk → − Vk

ωk
, and there one

obtains the exact solution to the time-dependent overlap.

We find that the overlap amplitude decays quickly from

unity to an exponentially small limiting value with an
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oscillatory envelope:

Ap(t → ∞) → Ze−i�t , � = �1 + �2,

Z = exp

[

−
∑

k

V 2
k

(

ωk + k2

2M
− p·k

M∗

)2

]

,

�1 =
∑

k

V 2
k

(

ωk + k2

2M
− p·k

M∗

)2
+

2π

μ
n0aIB,σ ,

�2 =
p2

2M

(

1 −
M

M∗

)

. (43)

Here, Z is the quasiparticle residue defined in Eq. (28), and is

in agreement with the general analysis of Sec. IV A. � denotes

the energy difference between interacting and noninteracting

ground states, and consists of two contributions: �1 includes

the “mean-field” shift due to the interaction of impurity

with the static BEC ground state, and the finite-momentum

generalization of the binding energy defined in Eq. (18), and

�2 which accounts for the change in effective mass of the

impurity. As in the ground-state case, the (generalized) binding

energy was regularized as described in Appendix A.

The rf absorption spectrum can be simply obtained by

Fourier transforming Eq. (42). We present a few sample spectra

in Fig. 4. The rf absorption spectrum of the impurity contains

a coherent and incoherent contribution as expected from the

FIG. 4. (Color online) Radio-frequency spectra for different ini-

tial impurity interaction strengths. The quantity aIB,σ

√
n0ξ is a

dimensionless ratio between the mean-free path of the impurity and

the length scale over which bosons are localized (a noninteracting

BEC has completely delocalized bosons). We observe that the spectral

weight starts almost entirely in the coherent part of the spectrum,

corresponding to a nearly free impurity, and gradually shifts to

higher energies as more excitations of the BEC are generated by

increasing impurity-Bose interactions. The spectra presented above

were obtained for an experimentally relevant mass ratio M/m of 2.5;

there is a weak dependence of the spectra on mass ratio, and is not

observable on the scale shown here.

general analysis presented in Sec. IV A:

I (p,ω) = Icoh(p,ω) + Iincoh(p,ω).

The coherent peak is determined entirely by the long-time

limit of Eq. (42) which is the quasiparticle residue defined in

Eq. (28):

Icoh(p,ω − �) = Zδ(ω − �), (44)

with � defined in Eq. (43).

The spectrum contains additionally a broad incoherent

part corresponding to the short-time dynamics of polaron

destruction due to excitations generated when the impurity-

BEC interactions are removed in the course of the direct rf:

Iincoh(p,ω − �) =
Re

π

∫ ∞

0

dt ′ei(ω−�)t [Ap(t)ei�t − Z]. (45)

For concreteness, we present the leading high- and low-

frequency behaviors of the rf spectrum in the exactly solvable

case of a localized impurity; it is straightforward but tedious to

obtain identical results for mobile impurities. By expanding the

exponential in Eq. (45) to leading order, we can approximate

Eq. (45) using

Iincoh(ω − �) ≈ Re
Z

π

∫ ∞

0

dt ei(ω−�)t
∑

k

∣

∣

∣

∣

Vk

ωk

∣

∣

∣

∣

2

e−iωkt

= Z
∑

k

∣

∣

∣

∣

Vk

ωk

∣

∣

∣

∣

2

δ(ω − � − ωk)

= Z

∫

d�

2π2

(
√

2�2 + 1 − 1)d/2

�2
√

2�2 + 1
δ(ω − � − �)

=
Z

2π2

[
√

2(ω − �)2 + 1 − 1]d/2

(ω − �)2
√

2(ω − �)2 + 1
. (46)

Thus, we find the following limiting behaviors of the incoher-

ent rf response:

Iincoh

(

ω − � ≫
c

ξ

)

∝
{

(ω − �)−3/2 in 3D,

(ω − �)−2 in 2D,
(47)

Iincoh

(

ω − � ≪
c

ξ

)

∝
{

(ω − �) in 3D,

C1 + C2(ω − �)2 in 2D.
(48)

We see that the high-frequency tails of the rf spectra in

Eqs. (45)–(47) are in agreement with the general functional

form required by Eq. (40). This provides a nontrivial consis-

tency check to our microscopic approach. We now generalize

our approach to consider the more complicated dynamics

involved in the inverse rf measurement.

C. Inverse rf: Transition from noninteracting

to interacting state

In the inverse rf measurement impurities are transferred

from an initially noninteracting state to an interacting state,

with aIB,↑ finite and aIB,↓ ≈ 0. We again consider the time-

dependent overlap (9), but the associated dynamics can not

be reduced to free evolution as in the direct rf in Sec. IV B.

However, the case of the localized impurity is once again
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amenable to an exact solution, and inspires an approximate

treatment of the mobile impurity.

1. Dynamics of a localized impurity

Like the ground state of the localized impurity-BEC system,

the time-evolving wave function of the system is also a product

of coherent states, but with time-dependent parameters. The

initial free Hamiltonian Hb is modified after the switch on

of interactions to Hb + Hint. Crucially, the two Hamiltonians

are related by a canonical transformation. We introduce the

displacement operators D(α) = e
∑

k(αkb̂
†
k−α∗

k b̂k) which shift the

mode operators

D−1(α)b̂kD(α) = b̂k + αk.

Then, for the appropriate choice of shift αk = Vk

ωk
, we find

D−1(Hb + Hint)D = Hb + �, with � a constant number.

Thus, we can directly solve the time evolution of the initial

state using the displacement operators as follows:

|φM→∞(t)〉 = ei(Hb+Hint)t |0〉

= e−i�tD−1

(

Vk

ωk

)

eiHb tD

(

Vk

ωk

)

|0〉

= e−i�t
∏

k

e
Vk
ωk

(b̂k−b̂
†
k)
e

Vk
ωk

(b̂
†
ke−iωk t−b̂keiωk t )|0〉,

leading to an expression for the wave function of the form

|φM→∞(t)〉 = e−�(t)−i�t
∏

k

e
Vk
ωk

(e−iωk t−1)b
†
k |0〉, (49)

with

�(t) ≡
∑

k

∣

∣

∣

∣

Vk

ωk

∣

∣

∣

∣

2

(1 − e−iωkt ), � ≡
∑

k

V 2
k

ωk

+
2π

μ
aIB,↓n0.

2. Dynamics of a finite-mass impurity

Inspired by the exact time-evolving wave function of the

localized impurity-BEC system, a product of time-dependent

coherent states, we make an analogous ansatz for finite-mass

impurity-BEC system:

|φ(t)〉 = e−iχ(t)e
∑

k αk(t)b̂
†
k− 1

2
|αk(t)|2 |0〉. (50)

The variational wave function (50) represents a mean-field ap-

proach to dynamics: the wave function factorizes for individual

phonons, so each phonon indexed by momentum k evolves

in an effective time-dependent oscillator Hamiltonian, whose

frequency ωk(t) is renormalized by the other phonon modes.

Projecting the Schrödinger equation onto the variational

state (15) (see, e.g., [78,79]) we obtain equations of motion

for the variational coherent state parameters:

χ̇(t) =
p2

2M
−

∑

k,k′

k · k′

2M
|αk|2|αk′ |2 +

1

2

∑

k

Vk(αk + α∗
k),

iα̇k(t) =

(

�k −
p · k

M
+

k

M
·
∑

k′

k′|αk′(t)|2
)

αk(t) + Vk,

(51)

with �k = ωk + k2

2M
.

We solved the differential Eq. (51) numerically using a

standard computational package.3 We found that the inverse

rf spectrum is qualitatively quite similar to the direct rf

spectrum calculated in the previous subsection. In light of

the general phenomenology of rf responses presented in

Sec. IV A, the similarity between the two rf spectra is not

surprising since both involve transitions between interacting

and noninteracting impurity-BEC states, which constrains the

high- and low-frequency parts of the rf response.

3. Dynamical ansatz as optimal estimate

of time-dependent overlap

Here, we demonstrate that the time-dependent mean-field

approach, which is tailored to solve the general dynamics

of the interacting Hamiltonian, gives a good semiclassical

approximation to the specific propagation amplitude in Eq. (9).

Using the LLP transformation, this amplitude can be written

as

Ap(t) = 〈i↑p|e−iHt |i↑p〉 = 〈0|e−iHt |0〉

= 〈0|e−i{ 1
2M

(p−
∑

k kb̂
†
kb̂k)2+

∑

k[ωkb̂
†
kb̂k+Vk(b̂

†
k+b̂k)]}t |0〉, (52)

where the phonon vacuum |0〉 is time evolved by the Hamil-

tonian (13) for a given time t , and the overlap of the resulting

state is measured with respect to the initial vacuum.

As an alternative approach to calculating such a propagation

amplitude, we may formulate Eq. (52) as a path integral, i.e.,

a sum over configurations of the semiclassical velocity profile

of the impurity, and compare the mean-field ansatz with the

saddle point of such a path integral (see Appendix B for more

details).

We obtain the path-integral formulation by introducing

into the time-dependent overlap (52) a classical field ϕ(t),

corresponding to the fluctuating impurity velocity. This is

justified by the Hubbard-Stratonovich (HS) identity, which

is typically used in equilibrium quantum field theory to

decouple interacting systems by using a random variable to

mimic fluctuations of the system. In a similar spirit, we use

ϕ(t) to decouple the interaction between bosons in Eq. (52)

and introduce a corresponding path integral to sum over all

configurations of ϕ(t):

Ap(t) =
∫

D[ϕ(t)]ei
∫ t

0
dt ′ M

2
ϕ(t ′)2

×〈0|e−i
∫ t

0
dt ′{ϕ(t ′)·(p−

∑

k kb̂
†
kb̂k)−

∑

k[ωkb̂
†
kb̂k+Vk(b̂

†
k+b̂k)]}|0〉.

(53)

As seen above, the HS decoupling reduces the originally inter-

acting bosonic Hamiltonian to a quadratic form, allowing us to

integrate out the bosons exactly. We may then approximate the

resulting path integral, now over ϕ(t) alone, by a saddle-point

3Solutions of Eqs. (51) are naively UV divergent. Imposing a sharp

cutoff gives rise to unphysical oscillations at the cutoff frequency.

To avoid this problem, we introduced a soft cutoff Vk → Vke
−k2/2�2

,

choosing � large enough to obtain converged results for relevant

observables.
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FIG. 5. (Color online) (a) Real part of the (rescaled) solution

of saddle-point equation (54) plotted for mr = 75.0,
√

n0ξaIB,σ =
0.25, p/Mc = 0.6; we obtained a family of trajectories parametrized

by tf , the total propagation time for which the amplitude (52) was

required. Each individual trajectory is a time-evolving function of

t < tf, and can be interpreted (after rescaling) as the time-dependent

momentum of the impurity. Note the symmetry of the saddle-point

trajectories around t = tf/2, which arises because they optimize

Eq. (52), the amplitude for a time-evolving state to return to its initial

value. This is in contrast to the time-dependent mean-field solution

which simply propagates forward to the steady state at time tf (cf.

Fig. 6). (b) Imaginary part of the saddle-point trajectories are shown

for the same parameters. The imaginary part shares the symmetry

property of the real part, but is typically smaller in magnitude. While it

does not lend itself to direct interpretation as the physical momentum

of the impurity, it is necessary to properly optimize the propagation

amplitude when expressed as a path integral equation (53).

treatment

ϕs(t
′) =

p

M
+

∑

k

V 2
k k

M

∫ t

t ′
dt1

∫ t ′

0

dt2e
−i

∫ t1
t2

dt ′′[ωk−k·ϕs (t ′′)]
.

(54)

The details of our derivation of Eq. (53) and its saddle-

point equation (54) are provided in Appendix B. Our saddle-

point approximation yields an optimal ϕs(t), shown in Fig. 5,

which we can then use to evaluate the time-dependent overlap

Eq. (52). We checked that this approach is in agreement with

the results of the time-dependent mean-field analysis, but at

significantly greater numerical effort.

Thus, we conclude that the mean-field ansatz for the

dynamics of the impurity optimally estimates the rf response.

In the remainder, we present the main features of the dynamical

mean-field solution.

FIG. 6. (Color online) Impurity momentum as a function of t

after switching on interactions. Strong interactions lead to small

asymptotic impurity momentum (corresponding to heavy effective

mass). Additionally, the momentum develops decaying oscillations

associated with internal mode of the polaron.

4. Inverse rf and nonequilbrium dynamics

Although the prominent features of the rf spectrum appear

identical for the direct and inverse rf, there are differences in the

details: both measurements involve Hamiltonian evolution of a

noneigenstate [see Eq. (9)], however, the inverse measurement

involves more complicated dynamics compared to the direct

rf; the dynamics of the latter is trivially determined by a

noninteracting Hamiltonian (see Sec. IV B). However, due to

the strong impurity renormalization by BEC interactions, the

complicated nonequilibrium dynamics of the impurity does not

manifest in spectra, which are enveloped by the exponentially

small spectral weight Z [see Eq. (45)].

Fortunately, our dynamical mean-field solution (51) ap-

proximates the full time dependence of the system and can be

used to study observables beyond the rf spectrum. We studied

the time evolution of the momentum of the impurity, following

the abrupt switch on of interactions. The results plotted in

Fig. 6 show how the impurity relaxes to a steady state at

long times. For weak interactions, the impurity loses a small

portion of its momentum to the bosonic bath, corresponding to

a minimally dressed polaron with large quasiparticle weight.

The steady-state momentum of the impurity decreases rapidly

with interactions which we interpret as the onset of strong

dressing and a reduction in quasiparticle weight. We also

point out a surprising feature emerging at strong interactions:

decaying oscillations in the impurity momentum. We con-

jecture that quenching the impurity interaction to large values

excites a long-lived internal excitation of the emergent polaron;

unfortunately, no signature of this phenomenon manifests in

the rf spectrum due to exponential suppression of weight for

strong interactions, but it would be interesting to study this

behavior in an experiment directly probing the nonequilibrium

dynamics of the impurity, e.g., exciting the internal structure

of the polaron by resonantly driving it in a trap. Note that

such transient oscillations in the relaxation dynamics of

impurity-bath systems appear to be a generic phenomenon

and have been observed previously, e.g., Refs. [80,81].
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FIG. 7. (Color online) The asymptotic velocity attained by the

impurity as a function of impurity-BEC interaction aIB, for a given

initial momentum in the nonequilibrium steady state (NESS, solid

red line) and the ground state (GS, dashed black line).

We emphasize that although the coherent peak of the

rf spectrum is characterized by the ground state of the

interacting impurity-BEC system (see Sec. IV A), the steady

state reached by the impurity following a sudden switch on

is different from the interacting ground state. This can be

seen formally by taking the long-time limit of the expectation

value of an arbitrary observable Ô. Performing a spectral

decomposition of this quantity highlights the appropriate

ensemble description of the steady state of the system:

lim
t→∞

〈i↑p|Ô(t)|i↑p〉 →
∑

n

|〈i↑p|n↑p〉|2〈n↑p|Ô|n↑p〉. (55)

The right-hand side expressed in terms of |n↑p〉, the time-

independent eigenstates of the final Hamiltonian, represents

the diagonal ensemble which characterizes the long-time

behavior of a generic closed quantum system [82]. Clearly,

the steady state of the system is different from its ground state

and is in fact an ensemble which includes the ground state, but

also contains additional excitations.

Within our formalism we approximate the dynamics of the

system using a time-dependent product of coherent states. We

expect that such an approximation can also capture the long-

time steady-state expectation value of operators, i.e., the long-

time limit of the coherent state product approaches Eq. (55).

We found strong evidence of this fact; we plotted in Fig. 7 the

steady-state (SS) and ground-state (GS) group velocity of the

impurity defined as

vSS,GS =
pSS,GS

M
, (56)

where the steady-state value of the impurity velocity was

calculated using the long-time limit of our coherent state

product Eq. (50), while the ground-state value was calculated

using Eq. (15). We observe a quantitative difference between

the two quantities. The quasiparticle residue Z [see Eq. (28)]

on the other hand is approximately equal (difference typically

less than 1 part in 106 for many different parameters) when

calculated using the two states. This supports the picture of the

impurity steady state we put forward in Eq. (55), and is also

consistent with the general argument about the coherent peak

of the rf response presented in Sec. IV A.

V. CONCLUSIONS AND OUTLOOK

We studied the fate of quantum impurities in BECs, and

discussed the manifestation of polaron physics in rf spec-

troscopy. Population imbalanced dilute mixtures of degenerate

ultracold atoms, either Bose-Fermi [83–88] or Bose-Bose

[89–94] mixtures, in which the role of the majority many-body

environment is played by bosons, are the ideal settings in

which to explore this rich physics. We require sufficiently low

temperatures for which the bosonic environment will condense

and can be modeled as a weakly interacting BEC. Crucially,

the atoms playing the role of quantum impurities should have

hyperfine structure which can typically be addressed by rf

pulses, and we require control over the interactions between

impurity in different hyperfine levels and BEC. Ideally, one

of the hyperfine levels should be weakly interacting with

the BEC, which will allow the faithful realization of the

predictions in our article.

Experiments are always done at low, but finite temperature,

while our approach models the system at zero temperature.

We expect the zero-temperature approximation to be quite

reasonable for a Bose gas well below the transition temper-

ature (T ≪ Tc) since in this regime the number of thermal

excitations scales as ∝T 4 [51], and corrections to equilibrium

properties of the impurity-Bose system will be vanishingly

small. Additionally, we expect impurity dynamics to only

be modified at long times on the order t � �/T , as was

seen in, e.g., Ref. [50]. Thus, for T ≪ Tc all the relevant

phenomena reported in this article will be observable at shorter,

experimentally accessible time scales. The inverse of the time

scale also sets a resolution limit on the spectral properties of the

impurity, which can be interpreted as the characteristic scale

of thermal broadening of sharp features such as the polaronic

peak.

The modest requirements discussed above are attainable

using currently available experimental systems and techniques,

thus we expect that our predictions can be tested in the near

future. We consider a few particularly relevant experiments

below.

A. Relation to experimental systems

Bose-Bose mixtures of Rb87-K41 [90,92] and Rb87-

Cs133 [91,94], as well as the Bose-Fermi mixture of Na23-

K40 [88], are promising candidates in which to realize the

polaronic physics of heavy impurities in BECs. In the three

systems considered, the heavy impurities, respectively Rb87,

Cs133, K40, have intrinsic mass ratio M/m ≈ 2 with respect

to the BEC atoms, which can be further enhanced by a

state-selective optical lattice. Moreover, all of the experimental

systems satisfy the criteria outlined previously: low tempera-

tures sufficient to achieve BEC are routinely attained, atoms

can be reliably trapped, interatom interactions can be tuned

via carefully mapped out Feshbach resonances, and impurity

atoms have hyperfine levels which can be addressed using

rf. To quantify the impurity-BEC interactions which can be

attained in these systems, we define a dimensionless ratio
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geff = ξn0a
2
IB between the average correlation length of the

BEC ∼ ξ to the mean-free path of the impurity ∼1/(n0a
2
IB).

We find that for the systems considered, intermediate interac-

tions up to geff ≈ 2–3 can be attained using resonant tuning

of scattering lengths, while ensuring the condition (6) for the

validity of our theoretical approach is satisfied.

B. Related problems

Our treatment in this article missed aspects of strong cou-

pling physics near a Feshbach resonance which are experimen-

tally accessible and theoretically rich. Given the possibility

to form bound molecules for large positive impurity-boson

interactions, it is quite possible that the system admits a polaron

to molecule phase transition; this is especially pertinent, given

the impossibility of quantum phase transitions in Fröhlich-type

models, and thus will clearly involve physics beyond such a

model. Moreover, as a more nontrivial probe of the rich phase

diagram afforded by the impurity-BEC system, it would be

interesting to study the decay of the attractive polaron into the

“true” molecular ground state of the system.

The dynamics of polaron formation and internal excitation

structure of polarons are relatively unexplored areas of

research. Indeed, within our current framework, we observed

coherent oscillations in the course of the relaxation of the

impurity into a polaronic state (see Fig. 6), which we

interpreted as signatures of the internal structure of the polaron.

It would be worthwhile devising a more elaborate theoretical

description of the internal structure of the polaron, which

may be probed in an experiment by resonantly driving the

impurity-BEC system, and could shed light on the dynamics

of polaron formation. One can also consider other nontrivial

probes of polaron dynamics, such as the effect of driving

Bloch oscillations of lattice impurities [95]. Such a scenario

is particularly exciting as it is experimentally feasible using

optical lattices.
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APPENDIX A: UV REGULARIZATION OF POLARON

BINDING ENERGY

Here, we describe the regularization of UV diver-

gences which arise in our model of impurity-BEC

interactions

Hint =
∫

dx dx′gIB,σ δ(x − x′)ρBEC(x)ρI(x
′), (A1)

which assumes zero interaction range. Such a model is a rea-

sonable treatment of interactions in dilute atoms [39,59], that

occur predominantly via two-particle collisions. Moreover, for

low-energy collisions, the two-particle scattering amplitude

attains a universal form given by

fIB,σ (k) =
−1

1/aIB,σ + ik
, (A2)

which depends only on the s-wave scattering length aIB,σ .

Consequently, the effect of interactions enters all physical

observables only through the measurable s-wave scattering

length, which completely encodes the physics of two-particle

collisions, and leads to universality in ultracold atoms.

However, for large enough energies, the scattering am-

plitude (A2) is no longer universal, and is sensitive to the

microscopic details of the true interatomic potential. The

appearance of UV divergences in physical observables is a

direct consequence of poorly approximating this fundamen-

tally different atomic-scale physics. Indeed, the zero-range

model (A1) pathologically couples short (atomic) distance to

long-distance degrees of freedom. On the other hand, if one is

only interested in universal properties, which are insensitive to

microscopic physics, then one requires a means of safely and

justifiably decoupling microscopic and macroscopic degrees

of freedom. The renormalization group provides the formal

means of achieving such a decoupling [73], but in the present

case we require only a very trivial example of renormalization,

which amounts to “the subtraction of an infinity.” We demon-

strate this approach, called dimensional regularization, on the

binding energy defined in Eq. (18).

Consider the limit of a localized impurity M → ∞ where

the binding energy simplifies to

EM→∞
B = −

∑

k

V 2
k

ωk

k≫1/ξ−−−→ −n0g
2
IB,σ

∑

k

2μ

k2
. (A3)

We wish to subtract the leading UV divergence on the

right-hand side, but this procedure is a priori unjustified. To

construct a rigorous prescription we invoke analytic continuity:

we take the continuum limit
∑

k →
∫

dDk
(2π)D

letting spatial

dimension D temporarily be a complex-valued parameter. We

will restore it to integer dimension, e.g., D = 3, at the end

of the calculation. Such a procedure leads to the important

identity

∫

dDk

(2π )D
1

k2
= 0, D ∈ C. (A4)

Identity (A4) allows us to subtract the leading UV diver-

gence from all quantities which require regularization, includ-

ing the binding energy, since it amounts to the mathematically

allowed subtraction of zero by analytically continuing to

complex dimension D. Thus, we find the following regularized
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finite expression for the energy:

EM→∞
B,reg. = − lim

D→3

∫

dDk

(2π )D

(

V 2
k

ωk

−
2μn0g

2
IB,σ

k2

)

= −
2
√

2πa2
IB,σ n0

μξ
< 0. (A5)

Moreover, we can use the same prescription to obtain the

binding energy of a polaron formed by a finite-mass impurity.

There, the subtracted quantity retains the form of identity (A4),

but has a different prefactor. The actual computation of the

energy (18) needs to be performed numerically in this case.

APPENDIX B: PATH-INTEGRAL FORMULATION

OF TIME-DEPENDENT OVERLAP

Here, we consider the time-dependent overlap

A(t) = 〈ψi |e−iHt |ψi〉, (B1)

which describes the return probability of a nonstationary initial

state |ψi〉, following time evolution by a Hamiltonian H. It

typically arises in the context of quantum quenches, where it

plays the same role as the partition function in equilibrium

statistical mechanics. To take this analogy further, we wish to

formulate the time-dependent overlap (B1) as a path integral,

which is a standard formulation of the usual partition function.

In addition to being of general theoretical interest, in the

present context it provides a practical means of calculating

the response of an impurity in a BEC to a rf signal. Indeed, as

described in Sec. II A of the main text, the impurity rf response

is in fact the Fourier transform of Eq. (B1).

Specifically, we consider the return amplitude of an initially

decoupled impurity-BEC state, after time evolution by an

interacting Hamiltonian, leading to the expression

Ap(t) = 〈0|e−i
∫ t

0
Hdt ′ |0〉

= 〈0|e−i{ 1
2M

(p−
∑

k kb̂
†
kb̂k)2+

∑

k[ωkb̂
†
kb̂k+Vk(b̂

†
k+b̂k)]}t |0〉. (B2)

This quantity determines the “inverse” rf response (see

Sec. IV C of the main text). Note that by using the Lee-

Low-Pines (LLP) transformation outlined in Sec. III A, we

dispensed with the impurity degree of freedom in the Hamil-

tonian, and mapped the impurity dynamics onto an interaction

between phonons. Additionally, the initial state |0〉 is simply

the phonon vacuum, and is unaffected by the LLP.

Using the Hubbard-Stratonovich (HS) identity

e− i
2M

(p−
∑

k kb̂
†
kb̂k)2

=
∫ ∞
−∞ dϕ(t ′)ei[ M

2
φ(t ′)2−iϕ(t ′)·(p−

∑

k kb̂
†
kb̂k)]dt ′

∫ ∞
−∞ dϕ(t ′)ei M

2
ϕ(t ′)2

, (B3)

in each interval dt ′ we introduce a time-dependent classical

field ϕ(t ′). This leads to the following path-integral formula-

tion of the time-dependent overlap (B2):

Ap(t) = N

∫

D[ϕ(t)]ei
∫ t

0
dt ′ M

2
ϕ(t ′)2

×〈0|e−i
∫ t

0
dt ′{ϕ(t ′)·(p−

∑

k kb̂
†
kb̂k)−

∑

k[ωkb̂
†
kb̂k+Vk(b̂

†
k+b̂k)]}|0〉,

(B4)

normalized by N =
∫

D[ϕ(t)]ei
∫ t

0
dt ′ M

2
ϕ(t ′)2

.

The path-integral notation is a compact representation of

the measure

∫

D[ϕ(t)] = lim
N→∞

N
∏

j=1

∫ ∞

−∞
dϕ(tj ),

which accounts for our discretization of the time interval t into

N → ∞ infinitesimal windows of size dt ′. Correspondingly,

we also decomposed the bosonic Hamiltonian

H [b̂
†
k,b̂k,ϕ] =

∑

k

[(ωk − ϕ · k)b̂
†
kb̂k + Vk(b̂

†
k + b̂k)], (B5)

into a sum of N discrete terms which we rewrote as an integral,

to precision dt ′:

ei
∫ t

0
Hdt ′ =

N
∏

j=1

eiH [b̂
†
k,b̂k,ϕ(tj )] + O(dt ′) = ei

∫ t

0
dt ′H [b̂

†
k,b̂k,ϕ(t ′)].

Hamiltonian (B5) contains at most quadratic terms in

bosons, enabling us to “integrate them out.” We do so by

noting that the dynamics of bosons due to such a quadratic

Hamiltonian can be exactly described by a decoupled product

of time-dependent coherent states (cf. the discussion of

localized impurities in Sec. IV C of the main text). Thus, we

demand

e−i
∫ t

0
dt ′H [b̂

†
k,b̂k,ϕ(t ′)]|0〉 =

∏

k

|αk(t)〉, (B6)

with |αk(t)〉 of the coherent state form

|αk(t)〉 = eiχk(t)eαk(t)b̂
†
k−α∗

k(t)b̂k |0〉. (B7)

By taking the time derivative of the two sides of Eq. (B6),

and using the explicit form (B7) to differentiate the right-hand

side, we obtain differential equations for the coherent state

parameters

α̇k(t) = −i{[ωk − ϕ(t) · k]αk(t) + Vk}, (B8)

χ̇k(t) = −
Vk

2
[αk(t) + α∗

k(t)], (B9)

which can be solved by recognizing that Eq. (B8) contains the

total time derivative of αk(t)exp[−ik ·
∫ t

0
ϕ(t ′)dt ′ + iωkt].

Thus, we obtain

αk(t) = −iVk

∫ t

0

dt1e
−ik·

∫ t

t1
dt ′[ωk−ϕ(t ′)]

, (B10)

χk(t) = V 2
k

∫ t

0

dt1

∫ t1

0

dt2 sin

[∫ t1

t2

dt ′[ωk − ϕ(t ′) · k]

]

.

(B11)

The expectation value

E[ϕ(t)] = 〈0|e−i
∫ t

0
dt ′H [b̂

†
k,b̂k,ϕ(t)]|0〉, (B12)

appearing in Eq. (B4), can be rewritten using Eq. (B6) and the

coherent state property

〈0|eαb†−αb|0〉 = e− 1
2
|α|2

to yield

E[ϕ(t)] = e
∑

k[iχk(t)− 1
2
|αk(t)|2], (B13)
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which allows us to rewrite the time-dependent overlap (B4) in

the form

Ap(t) = N

∫

D[ϕ(t)]ei
∫ t

0
dt ′[ M

2
ϕ(t ′)2−p·ϕ(t ′)]E[ϕ(t)]

= N

∫

D[ϕ(t)]ei
∫ t

0
dt ′[ M

2
ϕ(t ′)2−p·ϕ(t ′)]e

∑

k[iχk(t)− 1
2
|αk(t)|2].

(B14)

Equations (B10) and (B11) can be substituted in Eq. (B14),

leading to a path integral over ϕ(t) alone:

Ap(t) = N

∫

D[ϕ(t)]eiA[ϕ(t)], (B15)

with action given by

A[ϕ(t)] =
∫ t

0

dt ′
[

M

2
ϕ(t ′)2 − ϕ(t) · p

]

+ i
∑

k

V 2
k

×
∫ t

0

dt1

∫ t1

0

dt2 exp

[

−i

∫ t1

t2

dt ′[ωk − ϕ(t ′) · k]

]

.

(B16)

Thus, using the HS identity and the exact solution of the

bosonic Hamiltonian (B5) in terms of decoupled coherent

states, we showed that the path integral (B15) with the

action (B16) is an exact reformulation of the time-dependent

overlap (B2). However, further progress requires an approxi-

mation scheme to treat the non-Gaussian path integral, which

involves a retarded self-interaction of the impurity velocity

field ϕ(t). To this end, we estimate Eq. (B15) within a saddle-

point treatment by extremizing action (B16) with respect to

ϕ(t). Thus, we obtain the following saddle-point equation:

ϕs(t
′) =

p

M
+

∑

k

V 2
k k

M

∫ t

t ′
dt1

∫ t ′

0

dt2e
−i

∫ t1
t2

dt ′′[ωk−k·ϕs (t ′′)]
.

(B17)

The solution of Eq. (B17) represents a single trajectory that

approximates the path-integral form of the overlap (B15) by

identifying the most dominant contribution to it. The solution is

a time-dependent velocity profile defined up to the propagation

time t at which the time-dependent overlap is evaluated.

Moreover, as can be seen from Eq. (B17), it is symmetric

around t/2 and ϕs(0) = ϕs(t) = p

M
, the bare velocity of the

impurity. This unique feature of the velocity profile is due

to the requirement of the time-evolving state to return to

its initial value, by construction of the quantum propagation

amplitude (B1).

We solved Eq. (B17) iteratively, taking a lattice of time

and momentum points. Moreover, in the numerical procedure

we dealt with the UV divergence inherent to the zero-range

model (see Appendix. A) by introducing a soft cutoff for large

momenta, into the interaction of the form e−k2/�2

, and choosing

� large enough to obtain converged results. The numerical

effort required to solve Eq. (B17) was significantly greater

than the mean-field approach outlined in the main text (see

Sec. IV C). On the other hand, the difference in value of the

time-dependent overlap was negligible when computed using

the two approaches. Thus, we evaluated rf spectra using the

time-dependent mean-field approach, confirming its validity

based on this agreement.
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[46] M. Feld, B. Fröhlich, E. Vogt, M. Koschorreck, and M. Köhl,
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