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Abstract— Radio Frequency (RF) Tomography is proposed to 

detect underground voids, such as tunnels or caches, over 

relatively wide areas of interest.  

The RF tomography approach requires a set of low-cost 

transmitters and receivers deployed randomly on the surface of 

the ground, or slightly buried. Using the principles of inverse 

scattering and diffraction tomography, it is possible to develop a 

simplified theory for below-ground imaging, thus revealing and 

locating buried objects and hidden targets. 

In this work, we introduce the principles and our motivations 

in support of RF tomography. Furthermore, we derive simple 

inversion schemes for sensors randomly deployed in a 3D region. 

Then, we assess limitations to performance, and discuss some 

system considerations. Finally, we demonstrate the effectiveness 

of RF Tomography by presenting images reconstructed via the 

processing of synthetic data. 

 
Index Terms—Ground Penetrating Radar, RF Tomography, 

Inverse Scattering, Tunnel Detection, Buried Object Detection. 

 

I. INTRODUCTION 

N recent years, the problem of underground void detection 

and localization has become a critical task, particularly for 

protecting national borders and for monitoring sensitive areas, 

such as prisons, banks, and power plants. Additionally, tunnel 

detection is imperative for civil applications, including mining 

safety, search and rescue in devastated areas, environmental 

engineering, geophysics, archaeology and speleology. 

Presently, information concerning voids beneath the ground 

is typically obtained using different techniques, such as 

microgravity (MG) [1]-[3], electrical resistivity tomography 

(ERT) [4]-[5], seismic sensing [6]-[8], magnetotellurics (MT) 

[2], [9], and ground penetrating radars (GPR) [10]-[11]. 
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Unfortunately, MG is used for shallow targets, while MT is 

more appropriate for very deep targets [9], ERT may not work 

adequately when the impedance of the ground is high, and 

seismic methods suffer from strong external noise, lack of 

polarization diversity, weathered soils, and from high 

attenuation typically encountered [12].  

GPR appear to be the most promising and versatile 

approach. Still, it cannot be considered a reliable and practical 

method in tunnel detection for the following reasons. First, the 

resolution for classical GPRs is generally improved by using 

large bandwidth, often requiring high frequencies. However, 

due to soil properties, higher frequencies experience higher 

attenuations, and the increased frequency/bandwidth decreases 

the signal to noise ratio (SNR), and intensifies dispersion 

effects. Second, systems using lower frequencies [13] require 

electrically small wideband antennas, which results in 

elaborate wideband systems; yet, they may not provide 

adequate resolution to determine the geometry of targets. 

Third, the available frequency spectrum for some applications 

can be severely limited by external sources (e.g. broadcasting 

stations); therefore, a reliable system must operate using a 

small, discrete and selectable number of frequencies. Fourth 

the interpretation of the raw data is affected by the operator’s 

expertise and a priori information is necessary to obtain 

reliable results [10]. 

A way to overcome the attenuation losses (thus enabling 

detection at large investigation depths) has been achieved by 

emplacing GPR in boreholes [12]-[24], which generally 

provides an image of a vertical section in the plane of the logs. 

However, for the important task of tracing tunnel pathways 

and localizing adits, it is more desirable to perform 

“horizontal” prospecting, leaving as second priority the 

determination of their depth. Furthermore, boreholes are 

expensive, subject to drilling misalignments and, most 

important, are unpractical in inaccessible terrains. 

The improvement of resolution may be accomplished by 

implementing the principles of RF/Microwave tomography in 

the framework of GPR [25]-[31], referred to as GPRT. 

Although an improvement in reconstructed images may be 

achieved, GPRT still fails to be reliable for tunnel detection 

for several reasons, including: 1) GPRT is typically employed 

in a bi-static configuration, where the receive and transmit 

antennas are separated by an electrically small distance, while 

operating in proximity to the air-earth interface, therefore it 

suffers from limited view diversity (using finite observation 

domains) [32]. 2) To compensate for this limited view, an 
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increase in the amount of information is achieved by using 

multitude of tones, thus making the system wideband [28], 

[31], [33]. 3) Any GPR require the operator to be above the 

area under investigation. To date, no system has been designed 

to work effectively in remote situations where one is 

disallowed to reach the area of regard. 

This article extends, further improves upon, and gives a 

unified framework to preliminary ideas in RF Tomography 

proposed  in [33], [37]-[42]. In particular, Section II describes 

the concept of RF Tomography for below-ground imaging, 

Section III illustrates the principles of RF tomography, 

presenting the related forward model. Section IV describes 

several inversion schemes. Finally, Section V shows several 

reconstructed images obtained via the inversion techniques 

described in Section IV. 

II. RF TOMOGRAPHY 

To address the unsolved problems in Section I, we 

introduced a new approach based on a multi-view and multi-

static configuration, where the view (associated with the 

distributed transmitters) and the observation (associated with 

the multiple receivers) diversities increase the information 

concerning the scene [34]-[35], while reducing the spectral 

content of the probing waveform. In fact, in principle, with just 

a single frequency, it is possible to obtain high resolution 

images [34], [36]. 

The proposed approach considers two separate sets of N 

electromagnetic transmitters and M electromagnetic receivers 

(commonly referred with the generic name of Transponder). 

These transponders are placed on the ground at an arbitrary 

position properly defined by the operator. The Tx radiates a 

known waveform and exploits the diversity provided by the 

polarization state. When the probing wave impinges a buried 

dielectric or conductive anomaly a scattered wavefield is 

generated. The receivers sample the scattered electric field and 

estimate the complex valued electric field phasor at their 

locations. Subsequently, this information is relayed to a data 

collector. To ease the detection process, one transmitter and 

frequency of operation per time are activated, thus simplifying 

the receivers capability to properly discern the origin of the 

incoming wave-field. For a given sampling time, the used 

spectrum is restricted to the minimum band achievable, thus 

ensuing ultra-narrowband system architecture, low noise and 

affordable cost. To ease the set-up and portability of the 

system, sensors are intended to be “dart” shaped, as shown in 

Fig. 2. Sensors may be equipped with built-in GPS for 

precision timing and positioning, and an opportune S-Band 

communication link to transfer the collected data to the 

overhead base station. During the drop-out process, some 

sensors may end in obstructed regions, or they may fall in 

region where clutter is excessive (e.g. Tx and Rx lay in 

proximity, or they may fall over a vegetation layer) and 

eventually they may default. Indeed, the proposed 

reconstruction process accounts the eventual failure or 

obstruction of transponders, by properly neglecting corrupted 

sensors. 

 
Figure 1: RF Tomography. Transmitters send power into the ground. 

Receivers collect the scattered field and send this information to the main 

station. 

 

RF tomography may also operate using a discrete set of 

monochromatic components, opportunely selected depending 

on environmental conditions. A suitable modulation is the 

stepped FM; however, in this paper we derive conclusions that 

are independent from the type of modulation. The operating 

frequencies must allow the electromagnetic wave to penetrate 

deeply into the ground while simultaneously provide 

acceptable detection and resolution capabilities. Higher 

frequencies lead to better resolution, but strong attenuation 

limits the range of operation [60]. Conversely, if the 

frequencies are low, the corresponding resolution may be not 

adequate to localize tunnels, and the field behavior becomes 

diffusive, thus reducing the back-scattered field [29].  Based 

upon electrical parameters of rocks reported in [10], [61]-[62], 

a suitable range of frequencies for this application is the range 

1-15MHz, but the final choice strictly depends on the expected 

target type and/or depth.  

When antennas are located below-ground, three different 

modes of propagation between transmitter and scatterer, and 

between scatterer and receiver, are excited: direct, reflected 

and lateral waves [52]-[54]. Generally, the lateral mode of 

propagation is the most undesired: although it could be 

estimated and removed, its contribution to the overall field 

may be so high that it may saturate the LNA at the receiver 

side, thus masking the weak signal coming from the scatterer.  

Using vertical dipoles [40] [56], or two vertical ferrite 

loaded coils [55] as gradiometer antennas, [41], [18], [58], 

[55] [52], and a proper metallic cover coated with highly lossy 

materials, we may reduce the effect of lateral waves [42]. 

However, we remind that the proposed method is valid in 

principle for any environment, and the reconstruction accuracy 

depends primarily on the proper choice of the Green’s function 

(see Section III for details). 
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Figure 2: proposed system design for transmitters (left) and receivers (right). 

 

III. FORWARD MODEL 

The first step to derive a generalized tomographic inversion 

procedure is to describe a suitable forward model for the 

electric field that closely represents the actual scene, while 

keeping enough simplicity to allow for subsequent inversion.  

Let us consider the 3D geometry depicted in Fig. 3. For 

simplicity, a single operating frequency f  is adopted, but 

extension to the multi frequency operation is straightforward 

[40]. Under the monochromatic assumption, the earth is 

modeled as a homogeneous medium with constant relative 

dielectric permittivity D  , conductivity D , and magnetic 

permeability 0 . The targets (i.e. tunnels or voids) are 

assumed to reside in the investigation domain D. The sources 

are N electrically small dipoles (of length 
tl ) or loops (of 

area 
tA ) fed with current 

tI , and located at position 
t

nr  (view 

diversity). For each transmitting antenna, the scattered field 
S

E  is collected by M receivers (observation diversity), 

located at 
r

mr  points in space.  

We assume the relative dielectric permittivity profile 

 'r r  and the conductivity profile  ' r  inside the 

investigation domain D as unknowns of the problem. 

Accordingly, the inverse problem is recast in terms of the 

unknown dielectric permittivity contrast function [35], [43]: 
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In this way, the wave number inside D can be expressed as: 
 

 

 
Figure 3: 3D Geometry for the inversion model. 

 

 
     

 

2 2

0 0 0

2 2

0

' ' '

'

r

D

k j

k k 

     



 

 

r r r

r
, (2) 

 

 
0 0 0

0 0 0

/D D Dk j

k

      

  

 


. (3) 

 

The function in (1) accounts for the difference between the 

unknown dielectric permittivity of the object and that of the 

host medium. We also accounted for the conductivity profile 

in (1) and (3), because, in general, the interior surface of a 

tunnel is humid, steel reinforced or equipped with metal 

structures that sharply increase the apparent conductivity [12]. 

For each point 'r  in region D, the vector wave equation 

holds 

 

      2 2

0' ' 'Dk k     E r r E r . (4) 

 

The scattered wave in a point Dr  that is solution of (4) 

can be written in terms of integral equation of the dyadic 

Green’s function 

 

        2

0 , ' ' ' 'S

D

k d E r G r r E r r r , (5) 

 

where  'E r  is the total field in the investigation domain D, 

given as the superposition of the incident field  'IE r  (i.e. 

the field in the investigated area when objects are absent) and 

the field  S
E r , scattered by the targets. 

As it is well known, the inverse scattering problem in (5) is 

non-linear. Nevertheless, it can be recast as a linear problem 

by means of the Born approximation (BA). In fact, eq. (5) can 

be represented in operator form: 
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Where  represents the operation of convolution, and 

 represents the operation of multiplication by  . If the 

operator norm of  is less than 1, then we can expand eq. 

(6) using Neumann series [57]: 

 

      1 ... I E r E r  (7) 

 

The first order Born approximation accounts only for the 

 1 term, thus the total field inside the integrand of (5) 

can be approximated by the known incident field [64], 

yielding: 

 

        2

0 , ' ' ' 'S I

D

k d E r G r r E r r r . (8) 

 

Therefore, the inverse problem at hand is cast as the 

inversion of the linear integral equation connecting the 

permittivity contrast function to the scattered field data. The 

use of BA can be justified by considering that: 

 Tunnels (or other targets of interest) are isolated, limited in 

number and embedded in a lossy medium. Therefore, mutual 

interaction, a phenomenon ignored by BA, between tunnels 

can be assumed negligible. 

 In general, the inhomogeneities of the soil are electrically 

small, and their conductivity remains low. Therefore, their 

scattered fields are insignificant compared to the RF signal 

re-irradiated by tunnels. 

 The operator norm of  is generally 1, due to the 

exponential loss factor of the medium [68], and to the 

spherical spreading factor of the incident and scattered 

wave. 

 Our goal is to detect, localize, and approximately determine 

the geometry of the targets. Toward this objective, BA based 

inversion algorithms preserve the information on target 

localization, even when objects are strong scatterers 

(although the quantitative description of  in D is generally 

altered) [30], [43]. 

The incident field, i.e. the field radiated in the earth medium 

from a point source located at position 
t

nr  can be expressed in 

terms of Green’s functions as 

 

     ˆ', ',I t t t

n n n nQ E r r G r r a , (9) 

 

where 
0

t tQ j l I  for an electrically small dipole, or 

0

t tQ j A I  for an electrically small loop and ˆ t

na  is the 

(electric or magnetic) dipole moment direction. 

Additionally, the field received by a dipole or loop with 

moment direction ˆ r

ma  positioned at 
r

mr  due to an equivalent 

(in terms of 
I

nE )  current distribution defined inside the 

investigation domain D can be expressed as [28] 
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Substituting (9) in (10) we obtain the scalar forward model 

for the scattered field is 
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From (11) and (9), we can also determine the total field 

experienced at the receiver in time domain 
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The second term represents the direct coupling between Tx 

and Rx, and it can be considerer a source of deterministic 

clutter. The random variable  N t can be modeled as 

Gaussian process with zero mean and variance equal to the 

noise power 

 

    010log 10log        dBWN a BP F B K T    (13) 

 

Where B  is the bandwidth, BK is the Boltzmann constant, 

0T is the environmental temperature, and the external noise 

figure aF  can be inferred by consulting [63]. 

Tomography is inherently suited for noise mitigation, since 

it is ultra-narrowband (therefore, NP  is intrinsically very low), 

and by simply averaging n samples of the same signal we 

obtain a theoretical SNR increase of n . Furthermore, the 

clutter contribution in (12) is generally low-correlated with the 

value of the scattered field, meaning that the combination of 

view and observation diversities randomizes the static clutter. 

This implies that, by sampling the field at different locations, 
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the static clutter may be treated as a compound noise with zero 

mean, and, similarly to the time domain case, the overall SNR 

increases by a factor (at least in principle) proportional to 

NM . 

To obtain the electric field in phasor form from (12), the 

instantaneous received field can be mixed with two coherent 

oscillators to retrieve the in-phase and quadrature components. 

In fact, the real and imaginary phasor components are: 
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Hence, the real and imaginary part can be inferred by 

integration over the period T : 
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2

Im , , , sin

t T

t r t r

n m n m

t

t t dt
T



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IV. INVERSION PROCEDURES 

From a mathematical point of view, the problem of finding 

the dielectric contrast function is to compute the inverse of the 

linear operator L  in (11). We are also assuming that noise 

and clutter contributions are minimal so that they can be 

considered as perturbations on the measured data. 

A way to compute 
1

L  is to perform a numerical inversion 

of L . Let us collect the sampled field data in an ordered 

vector   ,S S t r

n mE E r r  of length NM, and discretize the 

domain region D in K voxels, each one located at position 

'kr : the contrast dielectric permittivity can be embodied in a 

column vector   'k   r  of length K, and it represents 

the set of unknown parameters. After this discretization, eq. 

(11) can be rewritten in a matrix form 

 

 
SE L , (17) 

 

where L  now is a matrix with dimensions NM K , and 
SE ,  are column vectors.  

The problem is then to invert the relation (17). Since L is not a 

square matrix, we need to consider its pseudoinverse that we 

still indicate with 
1L . Due to the usual location of Tx, Rx and 

targets, L  is generally severely ill conditioned. A common 

way to quantify the behavior of L is by inspection of its 

condition number  . For the operator L  it is quite common 

to obtain values of   above 
610 . This leads to artifacts in the 

reconstruction process, particularly exacerbated when noise 

(thermal, external, quantization) or clutter is impinging on the 

receivers.  

According to the accuracy required from the system, we 

present four inversion strategies: 

 Levenberg-Marquardt (LM) regularization procedure. 

This method is relatively accurate for any 

environmental condition and it is robust in presence of 

noise. It requires a proper choice of a regularization 

parameter. 

 Truncated Singular Value Decomposition (TSVD). 

This method is also relatively accurate in any scenario 

and fairly resistant to noise interference. This method 

also offers deeper insight into the physics behind the 

reconstruction, and the output can be easily adjusted 

by properly selecting the number of meaningful 

singular values. Also, the number of retained singular 

values in TSVD plays the same role of the LM 

regularization parameter. 

 Back Propagation approach. This method works 

properly only when the operator L  is well 

conditioned.  This implies that it can be used only for 

particular configurations and when the SNR is 

relatively high. However, the computational time is 

drastically reduced. 

 Fourier-Bojarski approach. This is the fastest inversion 

scheme and it is suited for far field probing and near-

lossless Green’s function. It privileges speed instead of 

accuracy. 

A. Levenberg-Marquardt Regularization 

An efficient method to compute the inverse of an ill 

conditioned matrix is by using the Levenberg-Marquardt 

regularization procedure [2]. In this way, the contrast dielectric 

permittivity is estimated as 

 

  
1

ˆ H H SE 


 L L I L , (18) 

 

where 
H

L denotes the adjoint of L , and   is the 

regularization parameter in the Tikhonov sense, which needs 

to be advantageously selected. Since a proper choice of   

may be a difficult task, our initial guess for   is the mid-point 

value of the singular value dynamic range of L . Sometimes, it 

is necessary to determine   through a constrained 

optimization solution before a meaningful, sharp and low 

blurred image is reconstructed [2], [69]. This implies a 

(computationally expensive) matrix inversion for each attempt 

that may become necessary. To accelerate this process, the 

SVD decomposition may be used, which is described next. 

B. Singular Value Decomposition 

A more efficient way to invert the ill conditioned matrix 

L was proposed in [34]-[35], [43], and takes advantage of 
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singular value decomposition. In fact, L  can be decomposed 

as 

 

 
HL USV , (19) 

 

where S is a diagonal matrix containing the ordered singular 

values is  of L . The pseudoinverse of L  can be written as: 

 

 
† † HL VS U (FIX THIS EQUATION) (20) 

 

Singular values of 
1S  that are considerably large compared 

to 
11/ s  represent the sensitive directions of L : along these 

directions, small amounts of noise or clutter in the sampled 

electric field will lead to a large (undesired) deviation of  .  

A way to remove this sensitivity is to consider only the first k 

smaller singular values of 
1S  and setting to zero the 

remaining large ones. This strategy is commonly referred to as 

“Truncated SVD” [66]. In this way, the dielectric profile can 

be estimated as  

 

 
†ˆ H

k  VS U . (FIX THIS FORMULA) (21) 

 

The SVD method can be also very useful to properly 

dimension the  parameter in the LM method. In fact, if we 

rewrite (18) in terms of (19) we obtain: 

 

 

 
1

†

2

2

1
diag

H H

Hi

i i

s

s s







 

 
  

 

L L L I L

V U
 (22) 

(THE EQUATION SHOULD FIT IN ONE LINE) 

Truncated SVD and the SVD representation of the LM method 

in (22) have a remarkable feature. In both cases, once the 

evaluation of the singular system of L  is performed, (19), the 

reconstructed image is simply computed by a (fast) matrix 

multiplication, as in (20). This means that a new image is 

obtained by varying the number of singular values (for the 

truncated SVD method) or varying   (for the LM method), 

and it can be computed extremely fast (often in real time). 

C. Back Propagation 

The approximate number of computations to perform the SVD 

of L  is 
3 29 12K MNK  [47]. When the size of the matrix 

is large, the evaluation of (19) may become prohibitive and an 

alternative efficient strategy has to be pursued. In this case, we 

choose to invert equation (17) by estimating the contrast 

permittivity function as 

 

  
1

ˆ H H S H SE E


 L L L L , (23) 

where the computation is performed usin the adjoint matrix.  

The inversion by means of the adjoint matrix holds 

theoretically when: 

 

          H H    LL L L I , (24) 

 

where   I represents a scaled identity matrix. This result 

implies that, in principle,   1H L L . However [47] 

 

      
2 2

H H   L L L L . (25) 

 

Therefore, the use of the adjoint for the inversion can be 

considered a good tool only when the singular values of L  

exhibit a limited dynamic range. In this case, it is possible to 

give an explicit formula for the solution of (23) in terms of 

each 'kr : 

 

 

    

    

* 2 *

0

1 1

*

ˆ ' , '

, ' ,

N M
r r

k m m k

n m

t t S t r

n k n n m

Q k

E


 

  



r a G r r

G r r a r r

 (26) 

 

Eq. (26) is commonly referred to as matched filtering, 

migration or back-propagation [67]. This technique is suited 

for parallel processing [33]. 

D. Fourier-Bojarski Approach 

A simple and fast approach (albeit less accurate) is to take 

advantage of the Fourier relation arising between scattered 

field and object shape, as discussed in the literature about 

diffraction tomography. 

In fact, if targets and sensors are distant enough so that the 

propagating wave is TEM (normally occurring when the fields 

are primarily propagating as 1/ r ), then the forward model 

can be expressed as explained below.  

We define the unit norm direction of propagation vectors as: 

 

 ˆ ˆ ˆ ˆsin cos sin sin cost t t t t t

n n n n n n       l x y z , (27) 

 ˆ ˆ ˆ ˆsin cos sin sin cosr r r r r r

m m m m m m      l x y z . (28) 

 

 

Using the paraxial approximation, the transmitting Green’s 

function at the generic position 'r  inside region D can be 

simplified as: 

 

  
   ˆexp exp '

, '
4

t t

D n D nt t

n n t

n

jk r jk
G

r

  


l r
r r , (29) 

 

while the receiver Green’s function can be expressed as 
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  
   ˆexp exp '

',
4

r r

D m D mr r

m m r

m

jk r jk
G

r

  


l r
r r . (30) 

 

Therefore, for a pair of transmitters and receivers, the scattered 

field can be rewritten as [36] 

 

   

   

2

0

2

ˆ ˆ
,

16

ˆ ˆ' exp ' '

t r
r m

t r
S t r n m

n m t r

n m

t r

D n m

D

Djk r rk
E Qe

r r

jk d





 
 

   
 

a a
r r

r l l r r

,.

(31) 

where the quantity  ˆ ˆt r

D n mk l l  can be represented by a 3D 

vector 

 

  ˆ ˆt r

mn D n mk k l l . (32) 

 

Eq. (31) is then rewritten as [33] 

 

 

 
 

   

2

0

2

ˆ ˆ

16

' exp ' '

t r
m n

t r
S n m

mn t r

n m

mn

D

Djk r rk
E Qe

r r

j d





 
 

 

a a
k

r k r r

.. (33) 

It is useful to consider a normalized version of the 

previousequation 

 

 
 

 

   

2

2

0

16

ˆ ˆ

' exp ' '

t r
n m

t r
S Sn m

mn mnt r

n m

mn

D

Djk r rr r
E e E

Qk

j d





 




  

k k
a a

r k r r

 .(34) 

This result can be interpreted in the following way: each 

collected sample  S

mnE k  returns the value of the mnk  

spectral component of the contrast function  ' r . 

Theoretically, if we have enough samples to fully populate the 

spectral representation of  ' r , the discrete function 

 S

mnE k  can be approximated, in the limit, as a continuous 

function  SE k , and (34) can be interpreted as a 3D inverse 

Fourier transform of the permittivity contrast function. 

Therefore, we can reconstruct an image of the underground by 

direct Fourier transformation of eq. (33), i.e. 

 

      ˆ ' exp 'S

K

E j d   r k k r k , (35) 

where the domain of integration K  is the support of  SE k . 

By inspection of (32), we conclude that when the sensors 

completely encircle the target, K  is a sphere of radius 2 Dk . 

In other words, the available information from the spectral 

content of  ' r  is limited up to the spectral component 

contained inside a sphere of radius 2 Dk . Therefore, the 

reconstructed image of the dielectric profile will be a low pass 

filtered version of the true image.  

By studying the impulse response of (34), we showed that 

the minimum resolution achievable using Fourier-Bojarski 

approach is / 3Dd   [39]. For half space problems, the 

resolution is further reduced [49]. 

In real cases, where a finite number of sensors are deployed 

(i.e. the spectral domain is undersampled) and external noise 

affects the measurements, the resolution is lower, and artifacts 

in the reconstructed image are very common. Severe smearing 

and blurring effects originate mainly from the invalidity of the 

paraxial approximation. In fact, paraxial approximation holds 

when the maximum angle between the ray passing through the 

origin and the ray intersecting the boundary of the region D is 

negligible. A way to overcome this limitation is to segment the 

region D in smaller analysis regions and consider an inverse 

problem for each sub-region. Then, for each sub-region a 

(smaller) FFT is carried out, and the resulting sub-images are 

concatenated to form the final image [39]. 

The undersampling of the spectral domain can be corrected 

with several approaches, such as tri-linear interpolation [50] of 

the available samples, or using projection on convex sets [51] 

and smoothing of the peaks in the spectral domain to estimate 

the missing samples [39]. 

V. SIMULATIONS  

We present some simulation results to test the proposed 

underground imaging system. A set of 6 transmitters and 26 

receivers, operating at 5 MHz, are arbitrarily emplaced below 

ground at a depth 0.15 md   ˆt r a a x , as shown in 

Fig 4. Two empty cylindrical structures of radius 1m   

(representing two tunnels) are assumed to be embedded in a 

host medium with relative dielectric permittivity 10D  , 

and conductivity 
45 10  S/mD
   [62], at a depth 

25 mh  . The corresponding attenuation can be computed 

using [65] 

 

 
0

0

8.68  dB/m
2

D

D

a


 
 . (36) 

 

The forward scattered field was synthesized using two 

methods: Born and FDTD. To mimic the real environment, we 

used the FDTD simulator GPRMAX [70]: the instantaneous 

scattered electric field has been correlated using (15) and (16) 

to retrieve the phasor form of the electric field. To show the 
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accuracy of the proposed forward model, the scattered electric 

field has been computed simultaneously using the forward 

model in (11), and using the Green’s dyad for the 

homogeneous space (with the same properties of the soil), i.e. 

[44]: 

 

  
'

2

1
, '

4 '

Djk

D

e

k 

 
   

 

r r

G r r I
r r

. (37) 

 

This assumption is reasonable when the sensors are 

deployed at the air/ground interface, the frequencies involved 

are relatively low, and targets are assumed to reside nearly 

perpendicular to sensors. The shallower the scatterer, the 

higher the lateral mode; furthermore, lateral modes 

predominate when targets reside at low grazing angles from Tx 

or Rx. 

Nonetheless, more accurate models can take into account the 

distortions due to half-space or layered geometry by simply 

selecting the proper Green’s function under a spectral form 

[28], [44]-[46], or by numerically computing the Green’s 

function using method of moments or fast eikonal equation 

solvers. 

Clutter mitigation was possible because of the exact 

knowledge of the dyadic Green’s function of the problem, 

which enabled the accurate determination (and subsequent 

cancellation) of its value. Random Gaussian noise has been 

added to the data according to [63]. Nevertheless, the SNR can 

be reduced to a desired value by appropriately sampling and 

averaging the received field, as discussed in Section IV.  

After having performed the 3D tomographic inversion 

(using a mesh of 1
3m  per voxel), we plotted only the 

horizontal section at 25m depth (constant depth slice), with the 

aim of better visualizing the performance of the proposed 

inversion schemes. For more complex scenarios, a full 3D 

image might be necessary. 

All images have been filtered by a hard cancellation for any 

voxel whose value is less than 5% of the maximum value. 

The inversion procedure using Fourier-Bojarski method has 

a different (coarser) voxel size equal to / 4D , because 

sampling at finer discretization does not provide more 

information (due to the proximity to the resolution limit [39]), 

while it dramatically increase the sparsity of the Fourier 

domain, leading to severe artifacts. 

Figure 5 shows the validity of the Green’s function of the 

homogeneous space (37): when the error between the 

theoretical Green’s function and the actual electric field passes 

the value of 100%, measures may become inaccurate. For this 

reason, we chose to place transmitters and receivers in 

proximity to the targets, so that the expected error by using the 

homogeneous Green’s function is minimized. It is important to 

mention that the proximity of sensors is not advantageous for 

the quality of the reconstructed image: if we could separate 

sensors, geometric diversity would be increased, but a 

different Green’s function needs to be used. 

In Figure 6, a comparison between the scattered field 

generated by the FDTD simulator, and the scattered field 

obtained using the forward model presented in Section III is 

shown. The abscissa represents the sequence of 

transmitter/receiver pairs, and it is not related to the range. The 

absolute value is generally confined within a range of 5dB: 

sharp peaks are occurring because the Born field predicts the 

field to be close to zero, while the mesh generated in the 

FDTD simulator returns an averaged value within the cell, 

which is generally not exactly zero. The phase difference 

between Born field and FDTD generated field is contained 

within the range of 30º of error: sharp peaks corresponds to the 

regions where the field is close to zero, and they are not 

influencing the overall reconstruction process. 

Fig. 7 shows the reconstructed image using the (fast) 

Fourier-Bojarski method: although the resolution is coarse, 

basic traces of the two tunnels can be discerned. However, the 

back-propagation method (see Fig. 8) is clearly showing 

higher resolution capabilities, while keeping the computational 

cost at minimum. For high level image reconstruction, 

regularized methods are paramount. In Figure 9, the image has 

been reconstructed using LM method (in its SVD variant), and 

the regularization parameter has been empirically selected in 

order to achieve the sharpest solution. In Figure 11, an image 

reconstructed using TSVD is shown: we assume that 10% of 

the total singular values represent the sensitive directions of 

L and therefore they will be not included in the reconstruction 

based on TSVD (see Fig. 10). This threshold has been chosen 

heuristically, and it may vary according to the geometry and 

the SNR. 

 

VI. CONCLUSIONS 

We proposed a practical method for tunnel detection that 

does not require boreholes, and is easy to be deployed and that 

covers relatively wide areas. 

We applied diffraction tomography and inverse scattering 

principles to our geometry. We proposed four simple methods 

to reconstruct images that are suited for the environment 

encountered in practical situations.  

Finally, we showed several reconstructed images, and in all 

cases the location of the two tunnels is discernible when noise 

is low, while tunnel detection amid high noise is only possible 

when LM and TSVD methods are used. 

In particular, by comparing Figs. 7, 8 with Figs. 9, 11, it is 

clear that LM and TSVD methods yield higher quality images. 

Therefore, if the computational load is not a consideration, 

these two methods should be preferred, and become imperative 

when environmental conditions are hostile. 

The proposed strategy offers the following advantages: 

 RF tomography is able to surveil from local/shallow to 

global/deep areas of regard, and rapidly focus on specified 

areas, by simply changing frequency of operation and the 

delimitation of the investigation domain D. 

 The system is suited for both cooperative and denied scenes, 

where the physical presence of the human operator is 

hazardous. 
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 The ultra-narrowband sensor design and the system 

architecture are fiscal and manpower affordable solutions. 

 The sensor deployment is arbitrary, and modular (i.e. the 

addition or removal of sensors does not compromise the 

remainder of the system) 

 The resolution of the system is sub-wavelength and range-

independent. 

However, many aspects still need deeper investigations, 

such as more accurate inversion models, the use of different 

Green’s functions, improved methods of direct path 

cancellation, or more considerations on the actual soil and 

antennas behavior.  

In particular, the issue of unwanted lateral waves should be 

addressed in two ways: by investigating clutter suppression 

techniques, or by defining a suitable Green’s function that 

accounts for this effect. We are currently pursuing further 

research in both directions. 
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Figure 4: Geometry for the simulation (top view). 

 
Figure 5: snapshot of the relative error between the transmitted field of a 

source in homogeneous medium, and a source in an half-space medium, as 

described in Section V.(HOW DO YOU DEFINE THE RELATIVE 

ERROR?) 

 

 

 
Figure 6: comparison between scattered field generated by FDTD simulation, 

and scattered field obtained using Born approximation: amplitude difference 

(top) and phase difference (bottom). 
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Figure 7: Reconstructed image using Fourier-Bojarski approach. 

 

 
Figure 8: Reconstructed image using back-propagation.  

 
Figure 9: Reconstructed image using LM method by.   has been empirically 

selected.  

 
Figure 10: singular values behavior (in dB and normalized to the first singular 

value) of the L operator. 

 

 
Figure 11: Reconstructed image using TSVD. The number of singular values 

used has been empirically selected.  

 

 
Figure 12: Reconstructed image using TSVD and scattered field data from the 

forward model in Section III. 
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