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Radio Frequency Traffic Classification over WLAN
Joe Kornycky, Omar Abdul-Hameed, Ahmet Kondoz, and Brian C. Barber

Abstract—Network traffic classification is the process of
analysing traffic flows and associating them to different categories
of network applications. Network traffic classification represents
an essential task in the whole chain of network security. Some
of the most important and widely spread applications of traffic
classification are the ability to classify encrypted traffic, the iden-
tification of malicious traffic flows and the enforcement of security
policies on the use of different applications. Passively monitoring
a network utilising low-cost and low-complexity Wireless Local
Area Network (WLAN) devices is desirable. Mobile devices can
be used or existing office desktops can be temporarily utilised
when their computational load is low. This reduces the burden on
existing network hardware. The aim of this paper is to investigate
traffic classification techniques for wireless communications. To
aid with intrusion detection, the key goal is to passively monitor
and classify different traffic types over WLAN to ensure that
network security policies are adhered to.

Classification of encrypted WLAN data poses some unique
challenges not normally encountered in wired traffic. WLAN
traffic is analysed for features that are then used as an input
to six different Machine Learning (ML) algorithms for traffic
classification. One of these algorithms (a Gaussian mixture
model incorporating a universal background model) has not
been applied to wired or wireless network classification before.
The authors also propose a ML algorithm that makes use of
the well-known vector quantisation algorithm in conjunction
with a decision tree - referred to as a TRee Adaptive Parallel
Vector Quantiser (TRAP-VQ). This algorithm has a number of
advantages over the other ML algorithms tested and is suited to
wireless traffic classification. An average F-score (harmonic mean
of precision and recall) > 0.84 was achieved when training and
testing on the same day across six distinct traffic types.

Index Terms—Traffic Classification, Machine Learning,
WLAN, Wi-Fi.

I. INTRODUCTION

IN the modern age, the use of encryption in communication

systems is becoming ever more common. With the intro-

duction of Long Term Evolution (LTE), cellular networks are

moving away from conventional circuit-switched voice and are

utilising Internet Protocol (IP) data packets to carry this data.

Voice over Internet Protocol (VoIP) is more prevalent due to

it offering greater transmission efficiency and allowing more

users in the same bandwidth.

For WLAN, the use of IP means that there is a wide

variety of encryption algorithms that could be used. In many

situations, this data could be encrypted at the IP layer and then

encrypted (possibly with a completely different encryption

algorithm) again when it is passed over a WLAN. When

monitoring a wireless network for unauthorised users, it is

generally not possible to perform real-time decryption at
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each node of the network to check for unauthorised access.

The concept of traffic analysis and classification was created

to ascertain whether it is possible to identify unauthorised

usage of a network purely based on features present in the

encrypted data. For example, utilising the packet sizes, the

packet inter-arrival times, as well as the encoding schemes to

distinguish between the different types of traffic (e.g., VoIP,

web browsing, or streaming video). If the traffic identified is

not what is expected on the system, then there is a possibility

of an intruder, for example, web browsing identified when

the network should be streaming video. Note that the packet

header information cannot be relied upon as it can be re-

encapsulated as another form of traffic.

Traffic classification involves analysing data flows on com-

munications links and identifying the type of content these

flows contain. This could be coarse traffic classification that

identifies the data type, for example, email, File Transfer

Protocol (FTP), web browsing etc. Or fine traffic classification

that also indicates which application was used, for example,

(in the case of email) Thunderbird, Outlook, Gmail, or Hotmail

etc. Techniques for classification of IP data are desirable

for numerous other applications, such as network monitoring,

QoS measurements, network planning, and intrusion detection

(through the identification of abnormal/malicious data flows).

Techniques for classifying Internet traffic flows can broadly

be divided into three major categories: port-based approaches,

Deep Packet Inspection (DPI), and statistical approaches.

These approaches all still have certain limitations.

The simplest method is the Port-based approach that exam-

ines, for example, Transmission Control Protocol (TCP) port

numbers. Port-based approaches are more simplistic because

many well-known applications are associated with specific

ports, for example, Hypertext Transfer Protocol (HTTP) traffic

uses port 80 and FTP traffic uses port 21. However, it is

recognised that Port-based classification is inadequate [1],

[2], [3], [4], because many applications use dynamic port-

negotiation mechanisms to hide from firewalls and network

security tools. When sent over a WLAN, these port numbers

are typically encrypted as they do not form part of the typical

encrypted WLAN protocols. This makes analysis of WLAN

data ever more challenging.

Approaches based on DPI are usually considered very reli-

able for traffic that is not encapsulated into other application-

level protocols and for unencrypted traffic. However, the

current trends show that the portion of encrypted traffic on the

Internet is constantly increasing [5], and many applications are

using protocol encapsulation or obfuscation to evade network

policy enforced through filtering [1]. In addition, access to

the full payload is often not possible (e.g., due to privacy or

performance issues).

Statistically based approaches analyse attributes, such as
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packet size or Inter-Arrival Time (IAT) over groups of packets.

Machine Learning (ML) algorithms are then used to classify

traffic based on statistical attributes in these features.

Many large firms are making use of passive monitoring

devices to analyse WLAN [6], [7]. These monitoring devices

can be loaded onto mobile platforms and even existing office

desktops can be converted (using a WLAN dongle) to carry

out analysis when local computational load is low [8]. Existing

Access Points (APs) and network hardware can be used but

this puts extra strain on the existing network architecture.

Cheap passive devices can be used to: localise rogue APs,

spot rogue ad-hoc networks, help disconnected clients, monitor

network performance, detect Denial of Service (DOS) attacks,

find optimal hand-offs between APs, and recover from mal-

functioning APs. Improving network monitoring services is

highly important for large corporations where secure wireless

infrastructure is vast. For example, MicrosoftTM utilise approx-

imately 5000 APs, for over 25,000 users, in 277 buildings,

covering approximately 1 million square feet [8].

This paper investigates the use of low cost WLAN dongles

to passively monitor a network and perform traffic classifica-

tion. The concept here is to improve the monitoring services

available to a network for either security or analysis of net-

work performance. We focus on the application of enforcing

network security policies by identifying allowed/disallowed

WLAN traffic types. We draw together ideas from two fields:

low cost passive monitoring and statistical traffic classification.

It would be unrealistic, from a security perspective, to share

decryption keys for all APs with passive monitoring devices.

Hence, analysis is performed on encrypted WLAN data. Previ-

ous work, in the traffic classification field, had either: utilised

unencrypted WLAN, obtained features from wired portions of

the network where higher layer IP information was available

[9], or solely monitored for Wi-Fi specific attacks. As the data

is encrypted, port numbers, DPI and flow-level analysis cannot

be exploited here.

The contributions of this paper are:

• The creation of a large data set that contains data from

multiple days, using multiple traffic types (email, FTP,

web browsing, Voice over Internet Protocol (VoIP), and

video), and uses multiple applications.

• Analysis of 63 features derived from statistics based on

uplink/downlink packet length and IAT.

• Six different ML algorithms were applied to the data in-

cluding K Nearest Neighbour (KNN), Weighted KNN, a

Gaussian Mixture Model (GMM), a GMM incorporating

a Universal Background Model, a Binary Classification

Tree (BCT), and a Parallel Tree Structured Vector Quan-

tiser (PTSVQ).

• Additionally, an ML algorithm is proposed that makes

use of the well-known vector quantisation algorithm in

conjunction with a decision tree, referred to as a TRee

Adaptive Parallel Vector Quantiser (TRAP-VQ).

• An F-score > 0.84 when training and testing on the same

day and > 0.60 when training and testing on data from

different days was achieved using TRAP-VQ.

• We also utilise a pre-classification stage to further im-

prove the cross-day classification performance. This stage

identifies which training data set best matches the condi-

tions of the testing data. This increases the worst cross-

day F-score from 0.60 to 0.66.

The remainder of this paper is organised as follows. In

the next section, we provide an overview of traffic analysis

and classification algorithms as well as related work. Section

III provides our experimental WLAN test-bed setup and the

data set collection. In section V, we present feature collation,

extraction, and selection. Section VI presents the machine

learning algorithms used. Section VII presents the results

obtained and analyses the performance. Finally, the paper is

concluded in section VIII.

II. RELATED WORK

In the previous section, we highlighted the need to move

away from port and DPI based approaches and focus on statis-

tical methods of traffic classification. In traditional traffic clas-

sification this is due to many applications using unpredictable

port numbers and encrypting or modifying data payloads to

prevent DPI. Even when ignoring security/encryption issues

and focusing on QoS applications of traffic classification,

techniques not reliant on packet contents are advantageous

due to the many issues highlighted with Integrated Services

(IntServ) [10] and Differentiated Services (DiffServ) [11]

based QoS management. Past papers in this area have made

use of ML algorithms to classify statistical features in the data.

These algorithms are generally utilised in two phases: the

training phase and the testing phase. In the training phase,

features are extracted from a particular traffic type. These

features are typically values calculated over multiple packets,

e.g., maximum packet length or mean packet IAT. Features can

be extracted from all packets in a flow or simply from packets

flowing in one direction (i.e., directionality can be incorporated

as a feature [12]). Features from multiple different traffic types

are then used to train an ML algorithm. The flows are either

analysed in their entirety or further broken down into sub-

flows using a sliding window for analysis, e.g., split the data

into 0.5 second windows and calculate the features in each

window. In the testing phase, when a new traffic flow appears

on the network, statistical features can be extracted and the

aforementioned ML algorithm can then attempt to identify

what type of traffic is present.

One of the first papers in this area used expectation max-

imisation to classify wired network traffic into three generic

traffic categories (bulk transfer, small transactions and multiple

transactions) [13]. Since then many papers have attempted to

analyse traffic types and perform coarse (identifying traffic

type) and/or fine (also identifying the application used) traffic

classification using a variety of techniques:

a) Nearest Neighbour: Where a decision is made on a

testing point’s assignment based on its proximity to neighbour-

ing points in the training data [14], [15].

b) Clustering approaches: k-means [16], Density-based

spatial clustering (DB-SCAN) [16], subspace clustering [17].

c) Discriminant analysis: Linear Discriminant Analysis

(LDA) [14], Quadratic Discriminant Analysis (QDA) [14],

Support Vector Machines [18].
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d) Probabilistic techniques: Maximum Likelihood esti-

mation [19], regularised maximum entropy [20], Naive Bayes

[21], AutoClass [16], Bayesian network [22], Bayesian Neural

network [23].

e) Decision Trees: basic decision trees [24], [25], Deci-

sion Tree J48 [26], Reduced error pruning [26], C4.5 decision

tree [22], [27], Random Forest Decision Tree [28], Context

Tree Weighting (CTW) [28].

f) Neural Networks: Artificial Neural Network

(ANN)[25], Flexible Neural Tree (FNT) [29], Radial

Basis Function Neural Network (RBFNN) [30], Multilayer

perceptron [30].

g) Genetic algorithms: Sequential Forward Selection

(SFS) [31], Symbiotic bid-based genetic programming [32],

Multi-Objective Genetic Algorithm [33].

h) Miscellaneous: Pearson’s Chi-Squared test [34], Lo-

gistic regression model [35], Adaboost [20], score level fu-

sion using multiple implementations of the LindeBuzoGray

(LBG)+Splitting algorithm [36].

In many of the papers mentioned above, TCP port numbers

or values extracted from DPI were included as features to

be passed to ML algorithms. Therefore, if available, they

would be used as features alongside statistics based on packet

length, IAT etc. Our specific application of WLAN monitoring

precludes the use of port numbers and DPI; therefore we only

use features based on packet length and IAT. While techniques

exist to modify packet length and IAT to circumvent traffic

analysis [37], these techniques incur significant overheads (in

terms of processing and latency) and are hence not investigated

here.

Previous work in this area was also able to break traffic

types up into a series of smaller flows (by analysing forward-

ing addresses and dead periods or breaks in the traffic). As

forwarding information is not available here, we do not make

this distinction, and flow-level statistics are not utilised. In

a network security application of traffic classification where

decisions need to be made as packets come into the system,

knowing that a flow was malicious or against network policy

after it has traversed the network is not useful, i.e., classifica-

tion should be timely and continuous [38].

III. DATA SET

In this section, we present the developed experimental

WLAN test-bed and the measurement tools and techniques that

were used for capturing the data set. Basic WLAN architecture

generally consists of an Access Point (AP) and one or more

remote devices (clients) that connect to the AP over radio

links. The AP generally connects to a wired network (e.g.,

an xDSL link), acting as a gateway point between the wired

network and the wireless network and it is commonly Internet

enabled. The architecture of the experimental test-bed used

in this paper is illustrated in Figure 1. PC #1 was provided

with a WLAN router/AP, which was an Edimax (BR-6675nD)

450 Mbps wireless concurrent dual-band Gigabit iQ router,

forming the indoor infrastructure WLAN. The WLAN wireless

router/AP was connected to a University Campus Local Area

Network (LAN), which in turn had provided the connectivity

to the Internet.

Fig. 1. Experimental WLAN test-bed architecture

At PC #1, a number of different applications were provided,

such as video streaming, FTP, web browsing, email, and

Skype. PC #2 was provided with a WLAN USB adapter,

which was an Edimax (EW-7733UnD) 450 Mbps wireless

802.11a/b/g/n dual-band USB adapter. This was used for

collecting the decrypted version of the transmitted traffic

over the setup WLAN network for reference purposes. In

addition, PC #2 ran the Wireshark [39] tool for monitoring

and collection of the measurements. PC #3 running Ubuntu

13.04 was provided with a WLAN USB adapter, which was

a TP-Link (TL-WN722N) 150 Mbps high gain wireless USB

adapter. This was used to capture all the encrypted traffic that

was transmitted over the WLAN network. In addition, PC #3

ran the Wireshark tool to capture all the encrypted traffic.

In this work, six popular Internet applications were used

to generate the Internet traffic data set. The data set included

different traffic types: video streaming, FTP, web browsing,

email (using a client), email (using a web browser), and VoIP

using Skype. In addition, each of the aforementioned traffic

types was collected with different variations. For example, the

most popular web browsers were utilised in the data set collec-

tion, including Internet Explorer, Firefox, Safari, and Chrome.

Table I lists the Internet applications that were used for the data

set. The data set was constructed by collecting the traffic of

the different considered Internet applications on four different

days, where each day had included the collection of traffic that

was generated by each of the considered applications. Table

II shows how the data set was constructed.

The Video Streaming traffic data set collection was con-

ducted using the Darwin Streaming Server (DSS) RTP/RTSP

server that was running at PC #1 and the Apple QuickTime

7 client that was running at PC #2. Four video test sequences

with different image resolutions and motion characteristics

were used. Each raw video test sequence was compressed

offline using the H.264/MPEG-4 AVC reference software [40].

Each compressed video test sequence was then encapsulated

into an MP4 encapsulation format for transmission using the

DSS server. The FTP traffic was collected in two different

ways. The first was web-based, i.e., using the four different

Internet browsers. The second was using FileZilla [41] Server
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TABLE I
LIST OF INTERNET APPLICATIONS USED

Application
Name / Traffic
Type

Software Server/ Website/ Varia-
tions

Video streaming Darwin Stream-
ing Server and
Quicktime

Different video test se-
quences

FTP Internet Explorer,
Firefox, Safari,
Chrome, Filezilla

Different FTP servers

Web browsing Internet Explorer,
Firefox, Safari,
Chrome

Browsing through differ-
ent websites

Web based email Internet Explorer,
Firefox, Safari,
Chrome

http://www.hotmail.com

Client based
email

Thunderbird https://www.mozilla.org/en-
GB/thunderbird/

Skype / VoIP Skype Different Skype conversa-
tions

TABLE II
DATA SET CONSTRUCTION

Day # 1 2 3 4

Date 23/09/13 10/10/13 23/10/13 20/03/14

Day Mon Thur Wed Thur

Classes collected: (thousands of packets)

Client based emailing 30 32 32 69

FTP 154 390 77 114

Skype / VoIP 239 335 291 93

Video streaming 2 24 23 27

Web browsing 96 78 105 125

Web based email 1.4 1.2 1.4 1.9

(FileZilla Server-0.9.41) and Client (FileZilla 3.6.0. 2), which

is an open source free FTP software solution. The Web

Browsing traffic was generated by browsing different websites

with different content using the four different Internet browsers

for durations of 3 to 5 minutes each. For the Email traffic,

two types of Email were considered in the data set collection,

including web-based email using the four different Internet

browsers and client-based email using Mozilla Thunderbird

[42]. Skype is a popular proprietary Voice over IP (VoIP)

Internet application that allows making voice/video telephone

calls over the Internet. Skype normally uses a Sinusoidal

Voice Over Packet Coder (SVOPC). Skype traffic was used for

collecting voice only, video only, and voice and video traffic

combinations with each session lasting for 5 minutes.

IV. DATA SET ANALYSIS

The first step in analysing the captured wireless trace files

was to extract or filter the desired conversation traffic from

the many other conversations that were captured both from the

target WLAN and other University WLAN devices operating

in the same area. In addition, the aim of this step was to

investigate whether there were features that could be extracted

from the Radio Frequency (RF) domain over a WLAN wireless

network and whether such features could be utilised effectively

for the purpose of classifying the different types of traffic being

carried over a WLAN network.

In the unencrypted domain, features for traffic classification

can be obtained from the packet headers in the TCP/UDP

and the IP layers, such as the TCP/UDP port numbers, IP

addresses, payload information, etc. However, in the encrypted

domain, where the WLAN MAC-layer frames are usually en-

crypted, the available information is very limited. Such limited

information from the MAC header could only include the

MAC address, Service Set Identifier (SSID), traffic direction

(uplink or downlink), RF signal strength, and the frame types.

In addition, it is only possible to get the packet lengths, packet

timestamps, and the packet inter-arrival times.

The desired traffic conversations were filtered from the

many other conversations that were captured over the tar-

get WLAN network and other University WLAN devices

operating in the same area by utilising the un-encrypted

Source/Destination 6-byte MAC address parameter. Upon

filtering the desired traffic conversation for each captured

session, the second step was to analyse each individual traffic

type in terms of its average Frame or Packet Length/Capture

Length and average Frame or Packet Inter-Arrival Time (IAT)

characteristics, which were obtained using the Wireshark tool,

in order to get an insight into its features and behaviour. For

example, the Frame Length/Capture Length and the Frame

inter-arrival Time features could be used to get an insight into

the type of traffic, since different traffic types use different

packet sizes and hence different Frame Lengths and also

different inter-arrival times.

V. FEATURE COLLATION

The filtered (based on MAC address) Wireshark capture files

were exported into MATLABTM for analysis. From this data,

features were extracted and used to train various ML algo-

rithms. The Wi-Fi data was encrypted and therefore only basic

information on the data was available in addition to the access

point’s and user’s MAC addresses. Only the MAC addresses

were used to filter the data. As the data was encrypted, non-

flow specific packets (e.g., network management etc.) were

also included in the data. This was done to make the system

as realistic as possible. Two key attributes were utilised by the

ML algorithms in order to perform traffic classification:

• Packet length, measured in number of bytes, defined

as the captured packet length that was obtained from

analysing the captured Wireshark traces.

• Packet Inter-Arrival Time (IAT), measured in seconds,

defined as the time between the arrival of two consecu-

tive packets. Measured by analysing captured Wireshark

traces.

The data was put into windows of 0.5 seconds with an

80% overlap. Through experimentation with the training data,

0.5 second windows were found to give better classification

performance than other sizes. An 80% overlap was used as

some classes had minimal amounts of traffic flowing; hence,

a large overlap was used to increase the effective amount of

feature vectors and further improve the performance of the

classifiers.
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Analysis of the WLAN traffic showed a vast difference

in the statistics between the uplink and downlink. Therefore,

uplink and downlink features were calculated separately. In

each window, for the two main features mentioned above, 10

different statistics were calculated in the uplink and downlink

directions, refer to Table III. All permutations were calculated,

so that 10 different statistics were calculated for 3 different

directional flows (uplink, downlink and ratio of uplink versus

downlink) for each of the 2 input measurements. 3 extra

features were calculated based on number of packets in the

uplink and downlink in each window. Hence, (10 statistics x 3

directional flows x 2 input measurements) + 3 extra features =

63 features. For example, some of the resulting features were:

Kurtosis of the downlink packet length, mean of the uplink

packet inter-arrival time, ratio of uplink-to-downlink Kurtosis

of packet length etc.

This yielded a total of 63 features for analysis. It was

reasoned that statistics, such as Kurtosis, skew, and variance

would highlight that variation within a window as a traffic

flow was set-up or highlight the variation in the flow itself.

For example, during the set-up and initialisation of a VoIP

call, the size of the packets would increase over time to enable

transmission of video and audio. This would cause a skew in

the packet size data as an observation window is slid through

the captured data.

Although the data set contained Wireshark traces from

multiple days, to keep these experiments realistic, only a single

day’s worth of traces were used to train/adapt the parameters

of each ML algorithm. Once trained, each ML algorithm could

then be verified/tested against unused samples from the same

day or tested on another day’s set of traces.

TABLE III
FEATURES EXTRACTED FROM WIRELESS TRAFFIC DATA

Input measurements
(2)

Directional
flows (3)

Statistics Calculated
(10)

- Packet length - Uplink - Mean

- Packet inter-arrival
time

- Downlink - Median

- Ratio (uplink /
downlink)

- Mode

- Standard deviation

- Maximum

- Minimum

- Range

- Skew

- Kurtosis

- Sum

Extra Features (3)

- Number of uplink packets

- Number of downlink packets

- Ratio of number of uplink-to-downlink packets

The raw feature vector in the uplink direction is denoted by

ru(p, n), where p and n are used to address the pth packet in

the nth window. Similarly, rd(p, n) denotes the raw feature

vector in the downlink direction. The resulting features were

then generated by applying the appropriate function (see table

III), to the raw feature data:

x(n) =

















f(ru(p, n))
f(rd(p, n))

f(ru(p, n))/f(rd(p, n))
Qu(n)
Qd(n)

Qu(n)/Qd(n)

















(1)

Where Qu(n) indicates the number of uplink packets in

window n, Qd(n) indicates the number of downlink packets

in window n, and f is a vector of functions that has been

populated by the list in the third column of Table III:

f = [fmean, fmedian...fsum]
T

(2)

As an example, fmean has the following form:

fmean(ru(p, n)) =
1

Qu(n)

Qu(n)
∑

p=1

ru(p, n) (3)

The resulting feature vector x(n) has 63 elements and

describes the statistics of each window in the uplink and

downlink directions. Each of the features were centralised

(by subtracting the mean), extreme outliers were removed

(values outside of 5 standard deviations were removed from

the training set), and the resulting data was normalised (by

dividing by the largest value). Five standard deviations were

chosen as the data did not have a Gaussian distribution and

hence using a low number of standard deviations did not

prove effective here. This method removes extreme outliers

that severely affected the statistics of the data while preserving

as much of the underlying distribution of the data as possible.

The same mean and standard deviation found in the training

phase was used in the testing phase. This meant that testing

data could be analysed as a new window of features arrived

into the system.

VI. MACHINE LEARNING (ML) ALGORITHMS

In order to be clear on how the data was used, x(n) ∈ R
63x1

is a generic term that describes the feature vector, whereas

xtrain(n) and xtest(n) represent the portions of the data that are

used for training and testing the ML algorithms. For example,

day 1 could be used to create xtrain(n) and day 3 data could

be used to create xtest(n) so that training and testing could

be performed on data from different days. Similarly, xtrain(n)
and xtest(n) could come from the same day’s worth of traces;

however, they never overlapped. The following classification

systems were used:

A. K Nearest Neighbour (KNN)

This system analyses each point xtest(n) separately and

compares it to the K nearest points from xtrain(n) denoted

by: xtrain(k1),xtrain(k2)...xtrain(kK). The classes of these neigh-

bours are then analysed. The class that occurs most frequently

in these neighbours is then chosen as the output class for point

xtest(n).
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B. Weighted K Nearest Neighbour (WKNN)

This system is very similar to KNN; however, the decision

is not based on a majority vote. Instead xtrain(n) is divided

up into the different classes. xtest(n) is then compared to each

class within xtrain(n) and the K nearest neighbours from each

class are selected. The class with the smallest total euclidean

distance between xtest(n) and its K nearest neighbours are

then chosen. This method has been proven to be more effective

than K Nearest Neighbour (KNN) in a variety of applications

[43].

C. Gaussian Mixture Model (GMM)

A GMM is constructed based on the training data from

each class separately. xtrain(n) is split into different classes

and the GMM parameters are obtained using the Expectation

Maximisation (EM) algorithm [44]. The GMM forms a para-

metric distribution of the following form:

pc(x(n)) =

L
∑

i=1

ac,iN(x(n)|µc,i,Σc,i), (4)

Where pc(x(n)) gives the probability that point x(n) be-

longs to class c, L is the number of mixing components

in each GMM and ac,i ≥ 0 are the component weights
(

∑L
i=1 ai,c = 1

)

. Each Gaussian component N is charac-

terised by: µc,i the multivariate component means and Σc,i

the symmetric semi-positive definite component covariance

matrices. A GMM is created for each class and training data

from the other classes is then used to set an appropriate

acceptance threshold for each of the GMMs. Throughout

this paper, the Equal Error Rate (EER) was used to set the

acceptance threshold. This threshold was set using only the

training data. The system puts the feature vector under test

through the GMM for each class to see whether its probability

falls above or below the aforementioned threshold. Therefore,

using this method, a single feature vector could be accepted

by models from multiple classes.

D. Gaussian Mixture Model Universal Background Model

(GMM-UBM)

This is the same as the GMM system; however, the prob-

ability of the feature vector under test is scaled back by the

probability of the point falling into a background model [44].

Throughout this paper, the background model is constructed

by utilising the GMMs from all the other classes aside from

the one under test:

log(pc=t(x(n))−
∑

c 6=t

log(pc(x(n))) (5)

Where t indicates the class currently being focused on. Hence,

if there is a component of feature vector x(n) that gives rise

to a high probability in the target class and also all the other

classes, it will be given a lower resultant probability than in

the GMM case. To the best of our knowledge, the GMM-UBM

algorithm has not been used to classify wireless or wired traffic

data before.

E. Binary Classification Tree (BCT)

The features in the training data are analysed and all

possible binary splits are evaluated, for example, all data that

has feature Y ≥ splitη is in one branch whereas Y < splitη
is put in the other. At each node η, Gini’s Diversity Index

(GDI) is used to assess the quality of the binary split dictated

by splitη . Stopping criteria are met when all nodes are pure

(nodes contain only data from a single class) or when all nodes

contain fewer than a very small number of points. A separate

tree is used for each class. This system also makes use of

bootstrapping (sampling with replacement) to create multiple

trees from each data set. xtest(n) is then classified by a majority

vote from the ensemble of decision trees [45].

F. Parallel Tree Structured Vector Quantiser (PTSVQ)

The PTSVQ algorithm can be seen as an extension of the

Tree Structured Vector Quantiser, which is in turn an extension

of the well-known Vector Quantiser (VQ). A VQ algorithm

will attempt to represent the input data using a number of code

symbols. The aim of a VQ algorithm is to find a series of code

symbols that minimise the distortion between an input vector

(xtrain(n)) and its representation if quantised to the location of

the corresponding code symbol:

D(xtrain(n)) = ||xtrain(n)− γ(xtrain(n))||
2 (6)

Where γ is the VQ decoding function and D is the distortion.

The above is typically achieved through fast and efficient

algorithms, such as the K-means algorithm. The TSVQ utilises

a tree-based search method to further improve the VQ algo-

rithm. The data in each branch of the tree is clustered and

the distortion analysed (to begin with, all the data is used).

If the decrease in the distortion is above a pre-specified value

then the number of clusters is increased again. Otherwise, the

clusters are dealt with separately (each cluster forms a branch

in the tree structure) and another VQ algorithm is applied to

each branch separately. This continues until the distortion has

gone below a threshold or when there is an insufficient number

of points in each branch. Therefore, the distortion in this tree

structure is given by:

DM
J (xtrain(n)) =

∑J
j=1

∑

xtrain(n)∈cell j ||xtrain(n)−mM
j ||

2

N
(7)

Where M represents the scale or branch number, J is the

number of cells at branch M and N represents the number of

observations. Therefore, if
DM

J−1
−DM

J

DM

J

is above a threshold then

the number of clusters is increased, otherwise more branches

are formed. The PTSVQ creates a TSVQ instance for each

class. During the testing phase, each data point is run through

all of the TSVQ instances and assigned to the class whose

model yields the smallest distortion measure.

G. TRee Adaptive Parallel Vector Quantiser (TRAP-VQ)

The TRAP-VQ algorithm has been proposed in this paper

and will be shown to be effective when classifying wireless

network data. The other ML algorithms tested have a series
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of drawbacks. Therefore, the possibility of creating a new or

modified ML algorithm was investigated.

An overview of the TRAP-VQ algorithm is shown in Figure

2. Note that class(n) indicates the class of the nth point

in x(n), tol is a tolerance value, target indicates the class

currently being analysed, and max cells is the maximum

number of cells allowed to represent the target or non-target

data at each node in the tree. Initially, all the data xtrain(n) is

passed into TRAP-VQ. The testing data xtest(n) is then passed

through this tree structure and compared with the centroids at

each node. Each element of the testing data is classified based

on the label of the node it ends up falling into at the bottom

of the tree.

H. Discussion of TRAP-VQ Versus Other ML Algorithms

The TRAP-VQ algorithm was designed to require limited

prior information. Other systems are reliant on users adjusting

parameters, such as the number of clusters or the number of

Gaussian components within GMM systems. TRAP-VQ needs

to know the maximum number of allowed branches at each

node, but it analyses the data and decides on an optimum

number itself.

The only prior knowledge required is for the user to set the

max cells value (see Section VI-G). It will be shown in the

main results (Section VII) that TRAP-VQ is not sensitive to

changes in this value. In fact another version of the algorithm,

referred to as TRAP-VQ (bin), used a max cells value of

1 and hence creates a binary decision tree. This version of

TRAP-VQ produces similar results to the main TRAP-VQ

algorithm. TRAP-VQ (bin) is slightly slower to execute in the

testing phase due to a larger tree structure but is significantly

faster to train. Throughout this paper, tol was set to zero

and hence the system will stop training when all nodes are

pure. Through experimentation, analysis of the data showed

that when tol was set to a higher value convergence speed

in the training phase increased but the resulting error rate

increased. A value of zero was chosen here to demonstrate

the best performance of the algorithm.

TRAP-VQ makes use of hard decision boundaries to remove

the need for threshold setting (as per a GMM algorithm) and

hence reduce complexity in the training phase. It makes use of

the computationally efficient K-means algorithm in the training

phase. If more speed is required here, this can be achieved by

reducing the maximum number of centroids. Unlike the BCT,

TRAP-VQ can make use of multiple features at each split in

the decision tree. This means that the decision boundaries need

not be parallel to the features, as shown in Figure 3.

When analysing wireless networks a vast amount of data

will need to be analysed; therefore, this needs to be as

simple as possible. TRAP-VQ has a similar computational

complexity to a BCT or PTSVQ algorithm. It uses Euclidean

distance to a series of points arranged in a tree-like structure.

This is substantially faster than GMM or other probabilistic

techniques, where exponential functions need to be evaluated.

The BCT family of algorithms have similar advantages to

TRAP-VQ; however, they can only analyse a single feature at a

time. This yields decision boundaries that are potentially sub-

optimal, as they must be orthogonal/parallel to the features.

Fig. 3. Fictitious two class example showing decision boundaries for
different classification algorithms. Evident how TRAP-VQ can draw decision
boundaries at any orientation to the feature axes, unlike BCT.

Unlike the BCT algorithm, the TRAP-VQ algorithm can

draw complex decision boundaries that need not be paral-

lel/orthogonal to the features.

The PTSVQ algorithm also shares many advantages with

TRAP-VQ; however, PTSVQ can place decision boundaries

in sub-optimal locations by training on target and non-target

data separately. Unlike the PTSVQ algorithm, the TRAP-VQ

algorithm utilises target and non-target data to create more

optimum decision boundaries. There are of course a few

disadvantages with TRAP-VQ. Computationally, the TRAP-

VQ algorithm is more complex in the training phase than

BCT or PTSVQ based methods. However, the BCT uses

multiple trees and ensemble averaging of results to improve

performance. TRAP-VQ uses a single tree. The choice of ML

algorithm comes down to a trade-off between performance and

computational complexity in the training and testing phases.

It is believed that the TRAP-VQ algorithm yields the best

compromise for network traffic classification.

VII. RESULTS

This section has three subsections. In the first subsection,

performance metrics for traffic classification are chosen and

discussed. In the second subsection, the various features are

analysed for suitability to traffic classification using Sequential

Forward Selection (SFS). In the third subsection, numerous

ML algorithms are applied to the WLAN traffic data and their

classification performance charted.

A. Performance Metrics

There are a number of mechanisms for evaluating the per-

formance of a traffic classification system or, more generally,
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TRAP-VQ Algorithm - The following procedure is called on each class separately. The current class label is target.

1) Perform Vector Quantisation (VQ) on data whose class is labelled target. The FINDCELLS function starts by using

single cell VQ and then increments the number of cells until max cells is reached. If the total variance at the current

iteration is less than 5% of the total variance using only a single cell, the system stops. Otherwise, a single cell is

used. µtarget is the resultant VQ encoding function.

µtarget ← FINDCELLS(x(n) ∈ target,max cells)

2) As per step (1) but using non-target data.

µnon-target ← FINDCELLS(x(n)❩∈ target,max cells)

3) Combine the target and non-target centroids from steps 1 and 2 to create a new VQ encoding function Φ and ignore

the target/non-target labels.
Φ← (µtarget,µnon-target)

4) For each of the cells in Φ, calculate the error in two situations: the first assuming that the cell is labelled as target

(to get the number of false positives) and the second assuming a non-target label (to get number of false negatives).

Whichever error rate is lower dictates the cell ID, i.e. target or non-target. If the error is above tol then the data

is labelled as continue.

[error, cell ID]← CALCULATE ERROR(Φ,x(n), class(n))

5) Each cell forms a branch in a tree-like structure. The branch label (cell ID) is either target, non-target, or continue.

If target or non-target has been assigned, this branch of the tree stops. If the branch/centroid is labelled as continue,

this portion of the data requires further clustering and is passed through the system again (i.e., data from this cell is

used as x(n) and steps 1 to 4 are repeated).

Fig. 2. TRAP-VQ pseudocode

a ML algorithm. Typically this involves evaluating metrics,

such as precision and recall. In order to explain these terms,

we will assume that the system is attempting to find email

traffic on a link that contains email, Internet browsing, video

streaming, VoIP etc. Given this example, the following terms

can be defined:

• Recall: The percentage of data that, for example, the

system labels as email when in actuality it is email

data. Effectively evaluates percentage of data kept by the

system when only email data is fed in.

• Precision: The percentage of data that, for example, is

email from all the data that the system has labelled as

email. Effectively evaluates how often data labelled by

the system as email is correct.

Therefore, the goal of a traffic classification system is to

obtain the highest possible precision and recall. When ML

algorithms are being compared across large data sets and in

multiple situations a single figure is desirable. We use here

the F-score:

Fβ = (1 + β2).
precision . recall

β2.precision + recall
(8)

F-score is defined as the harmonic mean of precision and

recall [46]. This gives a value between 0 and 1. By varying

the value of β, the relative importance of precision and recall

can be traded-off. Typically β is set to 1, 2 or 0.5. Throughout

this paper we use F1 to evaluate the algorithms tested. This

gives an even weighting to both precision and recall.

B. Sequential Forward Selection (SFS)

SFS was used to analyse all 63 features and ascertain which

subset of features could be used to increase the performance.

The SFS process works out the mean F1 for all classes using

only a single feature at a time. It then takes the feature that

yielded the highest F1 and attempts to find another feature

to pair it with, and so forth. The TRAP-VQ (bin) algorithm

was used for the SFS tests. The F1 with each step of the

SFS algorithm is shown in Table IV up to the fourth selected

feature. These results show that a high F1 can be achieved

with as little as two features. Day 1 and day 2 have been used

for analysis, so that the remaining days can be used for testing

with no prior knowledge.

The uplink maximum packet length feature is repeatedly

selected as the preferred choice for the first feature in the

SFS process. It should be noted that the Wi-Fi protocol

acknowledgement messages were filtered out of the Wireshark

traces, therefore, the uplink data represents acknowledgements

and other message types from layers higher up in the protocol

stack. Wireshark was also used in the wired unencrypted

portion of the network so that further analysis could be carried

out to understand why certain features gave rise to the smallest

error rates. The main observed protocols in the uplink direction

were:

• Video Streaming: RTCP, RTSP, TCP.

• FTP: TCP, TLSv1, FTP.

• Web Browsing: TCP, HTTP, TLSv1.

• Email: TCP, TLSv1.

• Skype voice only: UDP, TCP, TLSv1.
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TABLE IV
SFS F1 RESULTS

nth

Feature
Feature Name F1 Precision Recall

Training - day 1, Testing - day 1

1 Uplink max. IAT time 0.86 91.01 82.05

2 Uplink max. packet length 0.88 88.22 88.71

3 Downlink max. packet length 0.89 87.34 90.04

4 Ratio max. packet length 0.89 88.42 89.79

Training - day 2, Testing - day 2

1 Uplink max. IAT time 0.89 90.28 87.24

2 Uplink mode packet length 0.90 90.03 90.37

3 Ratio mode IAT time 0.90 90.00 90.28

4 Uplink min. packet length 0.90 90.97 89.40

Training - day 1, Testing - day 2

1 Uplink max packet length 0.71 70.03 71.19

2 Ratio max packet length 0.78 78.14 77.06

3 Ratio mode IAT time 0.78 78.68 76.98

4 Ratio std. IAT time 0.78 78.68 76.98

On analysis of the unencrypted Wireshark traces, it became

apparent why uplink features in the encrypted data had yielded

the best performance. The distributions of uplink packet size

vary significantly for different traffic types, this is due to the

aforementioned different protocols being used in the uplink.

In Section VII-C results are given using all 63 features as

well as a down selection of 2 features - to ensure that near

real-time traffic classification can be achieved, a low num-

ber of features yielding significantly reduced computational

complexity is important. For example, if used in a passive

monitoring scenario, a low complexity system is desirable

so that classification can be achieved on existing hardware

without the need to upgrade or impact user performance. The

two features chosen were uplink maximum packet length and

ratio (uplink/downlink) maximum packet length . Although

other feature combinations yielded a higher F1, these two

features produced the lowest F1 when training and testing on

different days - hence they should be more robust to day-to-

day drift/variability.

C. Classification Performance Comparison

In this subsection, the various different ML algorithms

reviewed in Section VII are utilised on the data set. Table

V lists the algorithms and parameters used. Note also that if

the training and testing data were taken from the same day, the

data was divided into two non-overlapping sections. The F1

results utilising the two main features found in the previous

section are shown in Figure 4. This figure gives the average

F1 for all traffic types (classes). In order to give an example of

how the different algorithms performed against different traffic

types, Table VI has been included. Note that the results for

algorithm number 3 are discussed in Section VII-D.

Firstly, looking at the results when training and testing

on the same day, there is a definite consistency of relative

performances amongst the F1 values. The KNN and WKNN

algorithms are the least computationally complex and are

TABLE V
INITIAL TESTING PARAMETERS

Parameter Value Parameter Value

Algorithm 1 PTSVQ (30,5) Algorithm 2 KNN (20)

Max. tree depth 30 ML algorithm KNN

Max. branches or

cells per node

5 Number of neigh-

bours

20

Algorithm 3 KNN (10) Algorithm 4 WKNN (10)

ML algorithm KNN ML algorithm WKNN

Number of neigh-

bours

10 Number of neigh-

bours

10

Algorithm 5 GMM (10) Algorithm 6 GMM (20)

ML algorithm GMM ML algorithm GMM

Number of com-

ponents

10 Number of com-

ponents

20

Algorithm 7 GMM-UBM (10) Algorithm 8 GMM-UBM (20)

ML algorithm GMM-UBM ML algorithm GMM-UBM

Number of com-

ponents

10 Number of com-

ponents

20

Algorithm 9 BCT Algorithm 10 TRAP-VQ (20)

ML algorithm Bootstrapped

BCT

ML algorithm TRAP-VQ

Branches per

node

2 Max. tree depth 20

Number of trees

in ensemble

10 Max. branches

per node

10

Algorithm 11 TRAP-VQ (bin) Algorithm 12 TRAP-VQ (bin)

with pre-classifier

ML algorithm TRAP-VQ ML algorithm TRAP-VQ, uses

pre-classifier, see

Section VII-D

Max. tree depth 30 Max. tree depth 30

Max. branches

per node

2 Max. branches

per node

2

TABLE VI
EXAMPLE OF MORE DETAILED PRECISION, RECALL AND F-SCORE

RESULTS BY CLASS IN TWO SITUATIONS: TRAINING AND TESTING ON THE

SAME DAY, TRAINING AND TESTING ON DIFFERENT DAYS.

Precision Recall F1

Class (%) (%) (0-1)

Training - day 1, testing - day 1

Web based email 85.21 75.27 0.80

FTP 90.23 93.20 0.92

VoIP / Skype 99.34 99.34 0.99

Streaming video 96.93 98.06 0.97

Web browsing 88.60 84.21 0.86

Client based email 66.67 66.67 0.67

Average 87.83 86.13 0.87

Training - day 1, testing - day 3

Web based email 61.56 76.36 0.68

FTP 97.43 96.84 0.97

VoIP / Skype 98.04 99.21 0.99

Streaming video 99.43 97.75 0.99

Web browsing 77.43 61.47 0.69

Client based email 48.89 41.51 0.45

Average 80.46 78.86 0.80

able to classify the network traffic types in a fraction of the

time taken by all the other algorithms. However, due to their

simplicity they give the lowest F1. The Binary Classification
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Fig. 4. F1 results using features selected using SFS (uplink maximum packet length and Ratio maximum packet length).

Tree (BCT) is more computationally intensive than the KNN

and WKNN algorithms; however, it offers a definite increase

in F1. The algorithms that yielded the highest F1 were TRAP-

VQ and BCT.

The GMM-UBM algorithm, to the best of the authors’

knowledge, has not been applied to the traffic classification

problem before and hence gives a novel result. The GMM-

UBM algorithm generally offers a higher F1 than its GMM

counterpart. There may be components of the feature vec-

tor that are common to all traffic types. These components

should not be relied upon for traffic classification. The GMM-

UBM (unlike the GMM algorithm) is able to recognise these

components and scale back the log-likelihood when these

components occur in the feature vectors. This means that

only those components that genuinely give rise to each traffic

type pass through the GMM-UBM algorithm with a high log-

likelihood ratio.

The TRAP-VQ (bin) algorithm gives a similar or fraction-

ally higher F1 than the BCT when training/testing on the same

day. It is also noteworthy that the TRAP-VQ (bin) algorithm,

which is computationally less intensive than the normal TRAP-

VQ, produces some of the best results. This could be due to the

TRAP-VQ algorithm over training, while the binary version

of this algorithm can only generate more simple decision

boundaries.

Occasionally, the PTSVQ algorithm did not converge. Al-

though both the PTSVQ and TRAP-VQ algorithms both

utilise a VQ component, the TRAP-VQ algorithm will always

converge and hence give a solution. An instance of the VQ

algorithm running within TRAP-VQ may not converge as the

number of cells is increased; however, it can always fall-back

to a binary split of the data. This is where the mean of the

target data is used as one centroid and the mean of the non-

target data is used for the other centroid.

Secondly, when training and testing on different days,

performance is lower and more varied. As highlighted in

Section III, the days that constitute the data set were not

collected on adjacent dates. For example, day 4 was recorded 5

months after day 3. In the gaps between these recordings the

network topology and load may have significantly changed.

This is because the WLAN test-bed was connected to the

Internet via a University Campus LAN. Conducting the data

set collections on different days, especially on the fourth day

(which was about a month after), may have contributed to this

since. For example, the network load may have significantly

changed in the University Campus LAN network. In addition,

there were other University WLAN networks and users within

the coverage area of the setup WLAN test-bed, and this may

have also contributed to varying the channel conditions due to

the different levels of interference experienced on the different

collection days. This also explains why the results when testing

on day 4 are so different, i.e., day 4 is chronologically the most

distant from the other parts of the data set and hence incurs

the most drift/variability.

When training and testing across multiple days (except day
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4), the TRAP-VQ algorithms and BCT outperform the other

algorithms tested. They also tend to give similar results. When

testing against day 4, all the algorithms drop significantly in

performance. As can be seen from Figure 5, Skype data is

frequently being confused with other classes. On inspection

of the features, it was clear that the Skype data had drifted

towards the other classes and was causing false alarms.

Fig. 5. Classification class confusion matrix using TRAP-VQ (bin), day 1
vs. day 3 (top), day 1 vs. day 4 (bottom).

In order to show the effectiveness of using just two features

to train all the aforementioned ML algorithms, all 63 features

were used to train these algorithms. This yielded an F1 < 0.5
over all days and algorithms tested. No one ML algorithm

performed better than any of the others.

D. Pre-Classification Improvements

When analysing the results of the previous subsection, it be-

came evident that training and testing on different days caused

a significant decrease in F1. In reality this is a likely scenario

as classifiers cannot always be updated online all the time. It

was also noted that some days are more closely matched than

others. Therefore, we propose here a pre-classifier stage to

work out which training set best matches the test conditions.

The binary version of the TRAP-VQ algorithm was used to

see if appropriate training data could be selected. The classes

of the input data were overwritten with the day number and

used as training sets.

Two situations were analysed: firstly training on days 1 and

2 to test on day 3 and secondly using days 1 to 3 to test on

day 4. An overview of the system can be seen in Figure 6. The

binary version of the TRAP-VQ algorithm was also used as

the main traffic classification algorithm.Note for comparison

purposes, the pre-classifier results were included in Figure

4, as algorithm number 12. Results are only plotted where

multiple choices of training data sets are available (e.g., when

testing against days 3 and 4).

Fig. 6. WLAN traffic classification system overview, incorporating pre-
classifier

The pre-classifier analyses each feature vector and decides

which training set should be used. In reality, all models are

generated prior to deployment and the pre-classifier simply

switches the output to the appropriate model. As can be seen

from the results in Table VII, the pre-classifier improves the

F1 when testing against days 3 and 4. Figure 4 also shows

how the pre-classifier improves performance over many of

the other classification algorithms tested. Putting features from

multiple days together into a single data set for training was

also investigated; however, this caused the resulting F1 to

decrease.

When this traffic classification system is in use, it is

envisaged that as further training sets became available they

can be loaded into the system and the pre-classifier can make

a decision as to which set best matches the current testing

conditions. In this manner, the system optimises itself as data

becomes available. This means that system training can be

carried out off-line, and once trained a new pre-classifier entry
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and associated tree for traffic classification becomes available

to the system.

TABLE VII
RESULTS USING A PRE-CLASSIFIER

Training Testing Without pre-classifier With pre-classifier

F1 Precision Recall F1 Precision Recall

Day 1 Day 3 0.80 80.46 78.86
0.82 82.34 82.09

Day 2 Day 3 0.80 77.91 81.27

Day 1 Day 4 0.65 60.02 70.06

0.66 61.53 71.76Day 2 Day 4 0.62 56.11 68.98

Day 3 Day 4 0.60 52.92 68.35

VIII. CONCLUSION

The ability to classify network traffic is important for many

routine network management applications. In a related area,

businesses are making use of passive WLAN monitoring

devices to improve both network performance and security.

This paper has brought together the areas of network traf-

fic classification and passive WLAN monitoring. A cheap

(< $15) WLAN dongle was utilised to monitor a network

and perform traffic classification. It is desirable to cheaply

upgrade a firm’s existing assets, for example, by attaching a

WLAN dongle to desktop machines to be used when local

user related processing is minimal. This reduces the burden on

existing network hardware that can be costly to upgrade. It is

undesirable, from a security perspective, to pass network keys

to all passive monitoring nodes. Hence, traffic classification

on wireless traffic can be more challenging than wired traffic,

as much of the information from higher layers of the stack

(which would potentially be available even on an encrypted

wired network) has been encrypted by the wireless bearer.

A WLAN data set was created that spans multiple days

and includes both multiple traffic types and applications.

Analysis was performed on 63 features based on statistics

of packet length and IAT. It was shown that features in the

uplink and downlink directions were substantially different;

hence, directionality (uplink/downlink) was incorporated into

the feature vectors. Six ML algorithms were tested, one of

which (the GMM-UBM) has not been used to classify wired

or wireless traffic before. The GMM-UBM generally had

increased performance over the standard GMM.

Additionally, an ML algorithm referred to as TRAP-VQ was

proposed by the authors to be more suited to WLAN traffic

classification, in terms of its computational complexity and

prior knowledge requirements. When training and testing on

the same day the TRAP-VQ algorithm gave the highest F1.

It was noted that when training and testing using data from

different days the F1 decreased. In order to compensate for

this, a TRAP-VQ pre-classifier stage was added to find training

data that most adequately matched the testing conditions and

improved performance.
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