
Radio Machine Learning Dataset Generation with GNU Radio

Tim O’Shea OSHEA@VT.EDU

Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA

Nathan West NATHAN.WEST@OKSTATE.EDU

School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK

Abstract
This paper surveys emerging applications of Ma-
chine Learning (ML) to the Radio Signal Pro-
cessing domain. Provides some brief background
on enabling methods and discusses some of the
potential advancements for the field. It dis-
cusses the critical importance of good datasets
for model learning, testing, and evaluation and
introduces several public open source synthetic
datasets for various radio machine learning tasks.
These are intended to provide a robust com-
mon baselines for those working in the field and
to provide a benchmark measure against which
many techniques can be rapidly evaluated and
compared.

1. Motivation & Background
Machine learning has advanced very rapidly in the past 10
years and there are several key reasons for this. Algorithms
have improved dramatically in many ways including mo-
mentum methods of gradient descent and improvements in
regularization and dropout, among other things. Computa-
tional power and concurrent programming models to fully
leverage it have also improved dramatically, due largely
to high level languages which compile efficiently to con-
current GPU implementations. Access to large and well
curated datasets is another key enabler which has allowed
people to rapidly compare ideas, evaluate new approaches,
and train models with large parameter spaces.

Researchers in computer vision, voice recognition, natu-
ral language processing, medical imagery and finance cur-
rently push many of the state of the art advances in machine
learning. Unfortunately radio signal processing has been
notably absent from much of this recent work, but the po-
tential for applications of recent advances in machine learn-
ing to the radio domain is enormous right now. Communi-

Proceedings of the 6 th GNU Radio Conference, Copyright 2016
by the author(s).

cations researchers are now increasingly considering these
methods, but lack common benchmarks and open datasets
for evaluating advances as seen in other application areas.

1.1. Early Methods

Deep Neural Networks have been rapidly maturing and be-
ing applied to many new and old machine learning appli-
cations and problem spaces. Many key ideas have been
around for many years. Hebbian Learning (Hebb, 1949),
the notion that the brain as a network of neurons, slowly
learns based on some form of corrective feedback which
adjusts neural firing parameters and synaptic weights. The
perceptron (Rosenblatt, 1958), a probabilistic model for a
Hebbian neuron using a simple activation function on in-
puts using a set of weights which could be used for classifi-
cation or regression of various functions (equation 1). And
finally, back-propagation (Werbos, 1974), or the iterative
fitting of neuron weights using a loss function and chaining
of loss gradients through a neural network (equation 2).

LMSE =
∑
∀i

(yi − ŷi)2 =
∑
∀i

(act(xiwi + bi)− ŷi)2

(1)

wi = wi − δ
∂LMSE

∂wi
(2)

The key concepts of a network loss function such as mean
squared error (MSE), and the use of the gradient back-
propagation to tune neural network weights in perceptrons
has been around for 40+ years, then why are things sud-
denly so different now?

1.2. Recent Advances

In more recent years we’ve seen the addition of convolu-
tional layers (Le Cun et al., 1989) for visual invariance, the
use of Dropout (Srivastava et al., 2014) as a powerful reg-
ularizer, the introduction of much faster gradient descent
methods using RMSprop (Tieleman & Hinton, 2012) and
Adam (Kingma & Ba, 2014), the use of Rectified Linear
Unit (ReLU) activation functions (Nair & Hinton, 2010).



Radio Machine Learning Dataset Generation with GNU Radio

Other major recent advances included the introduction of
the autoencoder architecture (Bengio, 2009) to provide un-
supervised model learning or pre-training, much deeper
stacked architectures of neurons and restricted boltzmann
machines (Hinton et al., 2006), recurrent neural archi-
tectures such as the Long Short Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997), the introduction of
powerful differentiable attention models (Mnih et al., 2014)
(Jaderberg et al., 2015), and countless additional methods
which arrive daily on arXiv and can’t possibly all be sum-
marized here.

Computational advances include the widely used CUDA
(Nvidia, 2007) and CUDNN (Chetlur et al., 2014) GPU
accelerator language tools, Neural Network architectures
such Keras (Chollet, 2015), Theano (Bergstra et al., 2010),
TensorFlow (Abadi et al., 2015), Caffe (Jia et al., 2014),
and Torch (Collobert et al., 2002) which all provide collec-
tions of learning primitives, routines and automatic gradi-
ent computation for training with novel architectures and
datasets. These have each played a massive role in realiz-
ing the scale of learning which is now required to partake
in state of the art today.

1.3. Differences From Other ML Domains

Radio domain data presents several new challenges which
differentiate it from many applications in the existing ma-
chine learning literature. Radio communications signals
are quite well structured, and by their nature synthetically
created by a man-made transmitter. Upon transmission
however, they pass through many harsh channel effects
fully imbued with the full chaotic and random goodness
of nature. This creates a collection of variations present in
received copies of an radio communications signals which
create some unique difficulties.

Since communications systems are generally designed to
operate near capacity limits, information bits are packed
very densely, typically using a relatively simple set of ba-
sis functions or encoding, but not providing a lot of inher-
ent redundancy or context since optimization for capacity
is the norm. This is a stark contrast to the image domains
in which spatial correlation and known objects make up
much of the scene, as well as in speech recognition do-
mains where relatively long recognizable formants occur
only in known sequences to synthesize words and phrases,
all of which have relatively robust a-priori characterized
distributions and patterns which can assist significantly in
error recovery.

Channel effects in wireless systems are a lengthy topic with
a practically unending list of phenomena that occur and do
interesting things to our signals in various propagation en-
vironments. Some of the effects that are present in virtually
every real over the air system include:

• Random signal arrival times due to asynchronous traf-
fic and protocol schedules as well as unknown propa-
gation delays.

• Random symbol rate error due to free running sample
clocks in detached radio systems.

• Random carrier phase and frequency error due to free
running clocks, oscillators, and unknown phase-delay
of various analog front-ends, reflectors, and other
propagation medium.

• Non-Impulsive Delay Spread due to propagation
multi-path interference, reflectors, and other effects.

• Doppler offsets resulting from motion of emitters, re-
flectors, and/or receivers

• Gaussian thermal noise, impulsive noise, co-channel
and adjacent channel interference.

Some of these effects have equivalencies in other domains,
some do not, and other have equivalencies - but with major
differentiation. For instance, in voice recognition, random
time of arrival, pitch(frequency) offsets, and word length
dilation are all present, but they occur on much larger time
scales and encode much less densely packed natural voice
formants. On the other hand symbol meanings vary with
time shifts often on the micro- or nano-second level rather
than the milli-second level. Still, unknown time and di-
lation of a received signal can be considered a 1D Affine
transform, not too different from attention models which
can be used in imagery and voice recognition systems for
such timing recovery.

Complex base-band representation commonly used in com-
munications systems represents a fairly significant differ-
ence. We can treat this as with a multi-channel time-series
in audio or finance, however there are certain properties
such as random phase between channels where we lose
basic polar representation properties when we treat them
as independent channels. This makes tasks like phase re-
covery, frequency recovery, or Doppler/LO-tracking diffi-
cult on a basic representation level. We can introduce new
primitive operations such as complex convolution as layers
to help address this issue without needing to holistically
address auto-differentiation in complex-valued neural net-
works, however this is still an open problem for including
all complex operations.

Multi-path and equalization is another major issue; while
present in voice recognition datasets it presents a more
harsh problem in the communications domain due to the
dense packing of information and the time scales over
which multi-path components and symbols of information
occur.



Radio Machine Learning Dataset Generation with GNU Radio

Since each of these common time varying random channel
effects are present in most wireless systems, we do our best
in this work to address and include these effects in datasets
and when possible to make sure we are addressing a realis-
tic description of each problem.

2. Building a Dataset
GNU Radio (Blossom, 2004) has many of the tools one
needs to build a robust dataset in this field built in already.
It includes a suite of modulators, encoders, and demodu-
lators as well as a rich set of channel simulation modules
(O’Shea, 2013) designed to apply simulated channel propa-
gation models to these synthetically generated signals. At a
high level, we simply string these logical modules together
in GNU Radio to create our dataset.

Figure 1. High Level Dataset Generation

2.1. Source Alphabet

We begin by selecting two data sources for all of our sig-
nals. For analog modulations we need a continuous sig-
nal such as voice, and so we use a publicly available copy
of Serial Episode #1, which consists primarily of acoustic
voice speech with some interludes and off times. For digital
modulations, we use the entire Gutenberg works of Shake-
speare in ASCII, with whitening randomizers applied to
ensure equiprobable symbols and bits. All of our modems
then use these two data sources with the corresponding dig-
ital or analog data source.

2.2. Signal Modulation

Figure 2. Modulation Process

We pick a normalized samples per symbol value to form
a constant normalized symbol rate across all of our digital
modulations. This is simple for single carrier modulations,
but we must estimate a nominally similar value for band-
width occupancy in multi-carrier systems such as OFDM
and SC-FDMA. The goal is to make signals as similar as

possible both in observed symbol rate and occupied band-
width, these can then be varied in channel simulation and
larger environmental simulations.

For PSK, QAM, and PAM, we implement transmitters us-
ing the gr-mapper (O’Shea, 2014) OOT module with a va-
riety of constellations followed by an interpolating finite
impulse response (FIR) root-raise cosine (RRC) filter to
achieve the desired samples per symbol rate as shown in
figure 2.

For GFSK, CPFSK, FM, AM and AMSSB GNU Radio hier
blocks are used from mainline GNU Radio implementa-
tions. Before the final release of this dataset, in October,
this list of modulation types is expected to grow.

2.3. Channel Simulation

Figure 3. Channel Simulation Process

For channel simulation we use the GNU Radio Dynamic
Channel Model hierarchical block. This includes a number
of desired effects such as random processes for center fre-
quency offset, sample rate offset, additive white Gaussian
noise, multi-path, and fading.

These are each documented in more detail elsewhere in
brief they consist of:

• Sample Rate Offset (SRO) Model: A fractional inter-
polator which steps along at a rate of 1 + ε input sam-
ples per output sample, where epsilon is near zero, but
follows a clipped random walk procesess to simulate
sample clock offset/drift.

• Center Frequency Offset (CFO) Model: A digital os-
cillator and mixer which mixes the incoming signal off
by a frequecy of Hz, where this value is a clipped ran-
dom walk process to simulate carrier frequency off-
set/drift.

• Selective Fading Model: As implemented in GNU
Radio, implements the sum-of-sinusoids method
with random phase noise for simulating Rician and
Rayleigh fading processes on the incoming dataset
with random time varying channel response taps.

• Noise Model (AWGN): The basic GNU Radio ad-
ditive white Gaussian noise model which introduces
thermal noise simulation at the receiver at a specific



Radio Machine Learning Dataset Generation with GNU Radio

noise power level corresponding to the desired signal
to noise ratio.

2.4. Normalizing Data

Data normalization is an important step prior to machine
learning use of the dataset. We would like to destroy any
residual features which are simply an artifact of the sim-
ulation and would not reliably be present in a real world
experiment. In this case, we ensure that each stored signal
example is scaled to unit energy in each 128-sample data
vector.

2.5. Packaging Data

We package the data such that it can be easily used in ma-
chine learning environments outside of the software radio
software ecosystem. A simple method for doing this is sim-
ply to store the dataset as an N-dimensional vector using
numpy and cPickle which is a popular format in the ML
community for storing reasonably sized datasets.

We randomly sample time segments from the output stream
of each simulation, and store them in an output vector.
A commonly used tensor notation for Keras, Theano, and
TensorFlow which we use here is that of a 4D real float32
vector, taking the form Nexamples ×Nchannels ×Dim1 ×
Dim2. In this case we have Nexamples examples from the
datasteam, each consisting of 128 complex floating point
time samples. We treat this asNchannels = 1, a representa-
tion which commonly is used for RGBA values in imagery,
Dim1 = 2 holding our I and Q channels, andDim2 = 128
holding our time dimension.

Since radio domain operations are typically considered in
complex baseband representation, which is not currently
well suited for for many operations in ML toolboxes such
as Theano and Tensorflow. We leverage the 2-wide I/Q
Dim1 to hold these in-phase and quadrature components
in step with one another as a 2x128 vector. Since auto-
matic differentiation environments for complex valued neu-
ral networks are not yet sufficiently mature, and a ”complex
convolutional layer” can obtain much of the benefit within
this representation, we believe this representation is suffi-
cient for the time being.

3. Signal Classification
Modulation classification is a classical machine learn-
ing/AI task in radio communications. In a dynamic spec-
trum access system, a spectrum access regulatory enforce-
ment system, or any number of other diagnostic and mon-
itoring scenarios, it forms an important task of labeling
which emitters are present, available, and consuming spec-
trum in a given radio environment. Since this has relatively
long been considered in literature using expert methods, it

is an interesting jumping off point to compare non-expert
methods driven by machine learning, and a task which we
can relatively easily benchmark and make comparisons to
prior work and approaches for these new methods.

3.1. Example Classifier and Performance

We provide an example classifier in Keras for the
new dataset on github at https://github.com/
radioML/examples. This represents the VT-CNN2 ar-
chitecture optimized for the RML2016.04 dataset. It has
not yet been tuned at all on 2016.10a. Performance is sum-
marized below:

Figure 4. CNN2 High SNR Confusion on RML2016.10a Dataset

Figure 5. CNN2 High SNR Confusion on RML2016.10a Dataset

The functions in this example can be easily dropped into
GNU Radio python blocks to form a streaming, online ver-
sion of the tool. We expect this may take the form of an out
of tree module in the future.

https://github.com/radioML/examples
https://github.com/radioML/examples


Radio Machine Learning Dataset Generation with GNU Radio

4. Other Radio ML Tasks
Modulation recognition is only one potential machine
learning task in radio. Virtually any estimation, classifica-
tion, regression, or transformation task can be treated as a
machine learning problem and compared with prior meth-
ods for advantages and disadvantages. A number of the
other applications we have considered thus far, but do not
address in depth here are that of:

• Radio signal compression through learning sparse rep-
resentations of the radio signal on a dataset. One hope
is that by representing a signal sparsely enough, if it
can be compressed to a representation on the order of
the number of data bits in the signal, a signal decoder
can be learned naively.

• Radio attention models, for automatically learning to
synchronize and canonicalize a signal. To help re-
move channel state information reconstruction needs
from compression tasks, as well as to allow discrimi-
native classification or decoding tasks to learn to op-
erate on a simpler canonical signal.

• Black box signal processing component regression
training to replace existing modulation, mapping, ran-
domization, coding or other discrete and well defined
functions into a machine learning driven approxima-
tion of varying complexity.

• End-to-end communications system learning of new
wireless channel encodings through channel autoen-
coders and data bit reconstruction cost across channel
perturbations.

• Reinforcement learning for control of radio search,
collaboration or tuning functions through active ex-
perimentation and manipulation of full waveforms.

These by no means represent a complete list of potential ap-
plications, but provides a few exciting starting points which
have demonstrated some potential and viability for impact
thus far outside of modulation recognition.

5. Parting Thoughts
The future of Machine Learning in the radio spectrum is
really exciting. There are countless applications which can
increase our ability to understand and act on the spectrum
around us every day and improve how we represent, handle
and automate our radio data tasks. GNU Radio and pow-
erful Python based ML tools like Keras, Theano and Ten-
sorFlow provide a powerful combination of Software Ra-
dio, Signal Processing and Machine Learning tools which
can be readily combined to accomplish many tasks at new
state of the art levels of performance. We have shown here

how GNU Radio can be used to produce high quality refer-
ence benchmark datasets for machine learning with known
ground truth and harsh realistic channel assumptions.

As we continue to research the best methods for enabling
many of these tasks, iteratively better, more complex, and
more challenging datasets will be required to help com-
pare, measure, and evaluate these tasks. Going forward
we have already published a 2016.04 dataset, we will be
publishing a 2016.10 dataset to coincide with GNU Radio
Conference, and hoping to update and release new standard
and easily named radio benchmark datasets periodically at
least once or twice a year as needs and capabilities mature
in GNU Radio and in the Machine Learning algorithm and
application space. This will be done in an open way and
all researchers in the field are strongly encouraged to con-
tribute, critique, and discuss dataset needs and shortcom-
ings to help shape this process.

6. Software and Dataset Availability
Datasets along with descriptions and a bit of boiler plate
code for loading, unloading and performing some basic op-
erations is available on the RadioML website. Datasets
may be downloaded as pickle files from https://
radioml.com/datasets/ and code to generate vari-
ations on them may be downloaded from https://
github.com/radioML/dataset.

For ease of comparison we urge researchers to use the pre-
generated pickle file to ensure consistent and comparable
results. The generative GNU Radio model is provided so
that special scenarios may be built, the generative process
may be vetted and improved by third parties, and so that im-
provements and contributions from others may be included
in future dataset releases.

References
Abadi, Martın, Agarwal, Ashish, Barham, Paul, Brevdo,

Eugene, Chen, Zhifeng, Citro, Craig, Corrado, Greg S,
Davis, Andy, Dean, Jeffrey, Devin, Matthieu, et al. Ten-
sorflow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow. org,
1, 2015.

Bengio, Yoshua. Learning deep architectures for ai. Foun-
dations and trends R© in Machine Learning, 2(1):1–127,
2009.

Bergstra, James, Breuleux, Olivier, Bastien, Frédéric,
Lamblin, Pascal, Pascanu, Razvan, Desjardins, Guil-
laume, Turian, Joseph, Warde-Farley, David, and Ben-
gio, Yoshua. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific

https://radioml.com/datasets/
https://radioml.com/datasets/
https://github.com/radioML/dataset
https://github.com/radioML/dataset


Radio Machine Learning Dataset Generation with GNU Radio

Computing Conference (SciPy), June 2010. Oral Pre-
sentation.

Blossom, Eric. Gnu radio: tools for exploring the radio
frequency spectrum. Linux journal, 2004(122):4, 2004.

Chetlur, Sharan, Woolley, Cliff, Vandermersch, Philippe,
Cohen, Jonathan, Tran, John, Catanzaro, Bryan, and
Shelhamer, Evan. cudnn: Efficient primitives for deep
learning. arXiv preprint arXiv:1410.0759, 2014.

Chollet, Franois. keras. https://github.com/
fchollet/keras, 2015.

Collobert, Ronan, Bengio, Samy, and Mariéthoz, Johnny.
Torch: a modular machine learning software library.
Technical report, Idiap, 2002.

Hebb, Donald Olding. The Organization of Behavior:
A Neuropsychological Approach. John Wiley & Sons,
1949.

Hinton, Geoffrey E, Osindero, Simon, and Teh, Yee-Whye.
A fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

Jaderberg, Max, Simonyan, Karen, Zisserman, Andrew,
et al. Spatial transformer networks. In Advances in
Neural Information Processing Systems, pp. 2017–2025,
2015.

Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev,
Sergey, Long, Jonathan, Girshick, Ross, Guadarrama,
Sergio, and Darrell, Trevor. Caffe: Convolutional ar-
chitecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Le Cun, Yann, Jackel, LD, Boser, B, Denker, JS, Graf, HP,
Guyon, I, Henderson, D, Howard, RE, and Hubbard, W.
Handwritten digit recognition: Applications of neural
network chips and automatic learning. IEEE Commu-
nications Magazine, 27(11):41–46, 1989.

Mnih, Volodymyr, Heess, Nicolas, Graves, Alex, et al. Re-
current models of visual attention. In Advances in Neural
Information Processing Systems, pp. 2204–2212, 2014.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units
improve restricted boltzmann machines. In Proceedings
of the 27th International Conference on Machine Learn-
ing (ICML-10), pp. 807–814, 2010.

Nvidia, CUDA. Compute unified device architecture pro-
gramming guide. 2007.

O’Shea, Tim. Gnu radio channel simulation. In GNU Radio
Conference 2013, 2013.

O’Shea, Tim. gr-mapper. https://github.com/
gr-vt/gr-mapper, 2014.

Rosenblatt, Frank. The perceptron: a probabilistic model
for information storage and organization in the brain.
Psychological review, 65(6):386, 1958.

Srivastava, Nitish, Hinton, Geoffrey E, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
a simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 4(2), 2012.

Werbos, Paul. Beyond regression: New tools for prediction
and analysis in the behavioral sciences. 1974.

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/gr-vt/gr-mapper
https://github.com/gr-vt/gr-mapper

