Radio studies of the Galactic Centre - II. The arc, threads and related
features at $90 \mathrm{~cm}(330 \mathrm{MHz})$

## K. R. Anantharamaiah

## Raman Research Institute, Bangalore 560 080, India

## A. Pedlar

## R. D. Ekers

Australia Telescope, CSIRO, Epping, NSW, Australia

## W. M. Goss

Accepted 1990 October 17. Received 1990 October 3; in original form 1990 August 13

SUMMARY $\quad$ We present $90-\mathrm{cm}$ VLA ${ }^{\star}$ observations of a $\sim 2^{\circ} \times 2^{\circ}$ field around the Galactic


 its linear filaments, the arched filaments, the 'threads', the thermal 'spiral' Sgr A West, the non-thermal source Sgr A East and Sgr C. When compared to higher-frequency observations there are, however, significant differences which we mostly attribute to the increasing optical depth of the thermal components.

We show that most of the linear filaments of the Arc in the vicinity of G0.16-0.15,
 +0.3 , where flux density $S \propto \boldsymbol{v}^{\alpha}$ ), although at least one of the filaments shows a 90 /
 of the Arc is embedded in an extended region of ionized gas with an emission measure $>10^{5} \mathrm{pc} \mathrm{cm}{ }^{-6}$

The 'threads' show up as prominently as the Arc at 90 cm . Other isolated linear
features in this region, e.g. G359.54+0.18, G $359.80+0.17$ and Sgr C, appear similar to the threads. The $90 / 20-\mathrm{cm}$ spectral index of three of these features is relatively steep $(\alpha \sim-0.6)$ and the filament in Sgr C has $\alpha=-0.55 \pm 0.4$, whereas the 'thread'


 other class, which includes most of the isolated linear features, have relatively steep


 thick thermal gas.
Radio studies of the Galactic Centre - II 263
tion of the Sgr A complex, at $90 \mathrm{~cm}(327 \mathrm{MHz})$, was
obtained by Gopal-Krishna et al. $(1972)$ with a resolution of obtained by Gopal-Krishna et al. (1972) with a resolution of $\sim 55 \mathrm{arcsec}$ using a lunar occultation technique. A $1^{\circ}$ field
around Sgr A was mapped at $73 \mathrm{~cm}(408 \mathrm{MHz})$ by Little (1974) with a resolution of 2.9 arcmin. A smaller region
around Sgr A has been studied at 90 cm with higher resolution ( 56 arcsec) by Yusef-Zadeh et al. (1986a). Coarser resolution observations at wavelengths longer than 1 m have
been carried out by LaRosa \& Kassim (1985), Kassim et al. (1986) and Yusef-Zadeh et al. (1986a,b). The images presented in this paper cover $a \sim 2^{\circ}$ field with angular resolu-
tions in the range 1.5 arcmin to 10 arcsec and have a dynamic range greater than 500:1.
In Section 2 (and Appendix A) we describe the observa-
tions and imaging methods. In Section 3, we present the properties of individual features in the extended field, and compare them with previous work. The implications of these

## OBSERVATIONS AND DATAREDUCTION <br> 2.1 The production of images

The images presented in this paper were made from observa-
tions taken in the $A, B, C$ and $D$ configurations of the VLA (Thompson et al. 1980) and recorded in spectral line mode for the reasons outlined in Paper I. The C and D array although further self-calibration has considerably improved 1988 December and 1989 March, respectively. The details are presented in Appendix A. The four-configuration data were used in different combinations to obtain large-field
Radio synthesis imaging of large fields at low frequencies has a number of practical problems. These include smearing effects of finite bandwidth and integration times, and the distortions introduced by non-coplanar baselines (Cotton 1989; Thompson 1989. The first two problems can be tional overheads), by using single or multiple narrow bandwidths and short integration times (see Bridle 1989), while
problems caused by non-coplanar baselines require careful


 three images with different resolutions, cell sizes and field sizes, together with a number of sub-images with various
phase centres. The first image, shown in Fig. 1, included only

 combination of the $\mathrm{B}, \mathrm{C}$ and D configurations and has a
 shown in Fig. 3 (contours) and Plate 2 grey-scale) was
obtained from the A and B configuration data with a resolu-




## INTRODUCTION

 Radio studies of the Galactic Centre with high angular resoution have revealed a variety of unique thermal and nonhermal structures in this region (see Yusef-Zadeh \& Morris 987a,b,c). In a previous paper (Pedlar et al. 1989 , hereafterPaper I), we have presented $90-\mathrm{cm}$ VLA observations and discussed the properties of the central 10 -arcmin region which contains the Sagittarius A (Sgr A) complex. This mal 'spiral' Sgr A West and the diffuse 7 -arcmin halo surrounding them. At 90 cm , the half-power primary beam of he VLA antennas is $\sim 2.6$ and hence, in principle, it is posmost of the radio emission is believed to originate in the central regions of our Galaxy, the field includes a number of supernova remnants and $\mathrm{H}_{\text {II }}$ regions along the line-of-sight.
This paper will be mainly concerned with the central $\sim$ $1^{\circ} \times 1^{\circ}$ region which contains unique features believed to be associated with the Galactic Centre, such as the Arc and the
 stretching over 30 pc (Morris \& Yusef-Zadeh 1985). These features have been investigated mainly at 20 cm (Yusef-
Zadeh 1986; Liszt 1985 ) and a 30 -arcmin region around the gr A complex has been studied at 36 cm ( 843 MHz ) by Mills \& Drinkwater (1984). Apart from the Sgr A complex round the Galactic Centre has not been studied with high angular resolution at low frequencies. of individual smaller fields (e.g. $\sim 30$ arcmin at 20 cm ), has
obvious advantages when investigating the Galactic Centre obvious advantages when investigating the Galactic Centre
region which contains many large-scale features. Furthermore, as emphasized in Paper I, in addition to providing the spectral index of the non-thermal features, the $90-\mathrm{cm}$ heir increasing optical depth at low frequencies. (At 90 cm , hermal gas at $\sim 10^{4} \mathrm{~K}$ has a free-free optical depth of unity if its emission measure is $\left.\sim 3 \times 10^{5} \mathrm{pc}^{-6}.\right)$ Hence fore-
ground thermal gas appears as regions of absorption against ground thermal gas appears as regions of absorption against
the strong background non-thermal continuum. This method was used successfully in Paper I to obtain the relative locations of Sgr A East, Sgr A West and the 7 -arcmin halo along
the line-of-sight. The $90-\mathrm{cm}$ observations are particularly valuable in view of the flat spectrum which appears characteristic of many of the non-thermal features in this region
(Yusef-Zadeh et al. 1984; Reich et al. 1988). At high frequencies, these features have spectral indices similar to that of optically thin thermal free-free emission. At low frequencies, however, true thermal emission becomes increasingly
optically thick and its spectral index $\alpha$ (where flux density $S \propto \nu^{\alpha}$ ) becomes positive ( $\sim+2$ for $\tau \gg 1$ ). This behaviour distinguishes it from the flat spectrum non-thermal emission.
At 90 cm the free-free absorption does not completely At 90 cm the free-free absorption does not completely whereas at longer wavelengths (e.g. $246-\mathrm{cm}$ observations by Kassim, LaRosa \& Erickson 1986) the free-free optical
depth is so large that it hinders studies of the structure near the Galactic Centre.
The data presented in this paper represent a significant
advance in low-frequency observations of the region around

264 K. R. Anantharamaiah et al.

comparison of the two images shows that most of the $90-\mathrm{cm}$ features above the $0.5-\mathrm{Jy}$ beam ${ }^{-1}$ level in Fig. 4 have coun-
terparts in the $6-\mathrm{cm}$ image. These include the H in regions Sgr $\mathrm{B} 1, \mathrm{Sgr} \mathrm{B} 2, \mathrm{G} 0.8+0.2, \mathrm{G} 0.5-0.6$, together with the nonthermal sources G1.05-0.1 and the shell-type supernova
remnants G359.1-0.5 and G359.1-0.9. In Table 1, we give the approximate sizes and flux densities of these sources. Most of the H in regions in the field show a positive spectral
index indicative of ionized gas with high free-free optical
 been described by Reich \& Fürst (1984) and the $90-\mathrm{cm}$ flux
density of 32.4 Jy is consistent with the higher-frequency density of 32.4 Jy is consistent with the higher-frequency
measurements, and implies a spectral index of -0.6 . The central region containing the Sgr A complex and the
Arc shows good structural agreement with the Bonn $6-\mathrm{cm}$ Arc shows good structural agreement with the Bonn $6-\mathrm{cm}$ observing frequency. There is, however, a marked depression in the positive latitude part of the Arc (near $l=0^{\circ} .14$, $b=0.05$ ) at 90 cm . As we shall discuss in Section 3.2 , this depression is almost certainly caused by free-free absorption that, whereas the extension of Sgr C to positive latitudes is

comparable to The only low-frequency image of this region, comparable to
Fig. 1 , is the $73-\mathrm{cm}(408 \mathrm{MHz})$ image obtained by Little 1974). All the features contained in the $73-\mathrm{cm}$ image are present in our $90-\mathrm{cm}$ image, but the $90-\mathrm{cm}$ CD image has at least an order of magnitude greater dynamic range, higher
angular resolution and covers a larger area than the $73-\mathrm{cm}$ angular resolution and covers a larger area than the $73-\mathrm{cm}$
mage. Hence, in order to assess the reality of faint features in the field, the only comparison which we can make is with higher-frequency surveys taken with single dishes.
The $6-\mathrm{cm}(4.8 \mathrm{GHz})$ survey by Altenhoff et al.

The $6-\mathrm{cm}(4.8 \mathrm{GHz})$ survey by Altenhoff et al. (1978) is
well suited for comparison with the current image. We have werefore convolved the $C D$ image to the $6-\mathrm{cm}$ resolution 2.6 arcmin) and the resulting image is shown in galactic coordinates in Fig. 4. The main difference between the two mages is the extended background evident on the $4.8-\mathrm{GHz}$



Figure 2. Contours of the $90-\mathrm{cm}$ ' BCD ' image obtained using the maximum-entropy deconvolution. The image has been restored with a
$33 \times 17 \operatorname{arcsec}^{2}$ beam $\left(\mathrm{PA}=2^{\circ}\right)$. Contour levels are in units of $0.04 \mathrm{Jy} \mathrm{beam}^{-1}$ to $0.6 \mathrm{Jy} \mathrm{beam}{ }^{-1}$, and $0.4 \mathrm{Jy} \mathrm{beam}^{-1}$ thereafter.
 source and a non-thermal tilament (Liszt 1985 );
(vi) the northern galactic lobe, which is an extended steep spectrum source situated 34 arcmin north of Sgr A and
detected at low frequencies (LaRosa \& Kassim 1985; Kassim et al. 1986); (vii) and the 'low-frequency jet', which is an elongated
feature to the south-east of $\operatorname{Sgr} \mathrm{A}$, detected at wavelengths longer than 190 cm (Yusef-Zadeh et al. 1986a; Kassim et al.
 $90-\mathrm{cm}$ images (Figs 1 and 2), although the northern galactic




3 RADIO FEATURES ASSOCIATED WITH THE
GALACTIC CENTRE
High-resolution VLA observations of the Galactic Centre region, mainly at wavelengths shorter than 20 cm (e.g.
Brown, Johnston \& Lo 1981; Ekers et al. 1983 ; YusefZadeh et al. 1984; Yusef-Zadeh 1986), have revealed many unique radio features. There is often confusion about
nomenclature and in Fig. 5 we give a finding chart for identifying different components in the $90-\mathrm{cm}$ images. A number of sources which do not have names are identified by their present in this region are:
(i) the Sgr A complex, which includes the thermal 'spiral' halo and the H ir regions to the east of Sgr A East (Ekers et
al. 1983; Yusef-Zadeh \& Morris 1987a; Paper I);
(ii) the linear Arc, located at $l=0.18$ and lying perpendi-
cular to the galactic plane (Yusef-Zadeh et al. 1984 ; Yusef-
Zadeh \& Morris 1987c) and G0.18-0.04, which crosses the
Arc at right angles (Yuset-Zadeh \& Morris 1987 b );
(iii) the thermal arched filaments, situated between the Arc
and the Sgr A complex (Yusef-Zadeh et al. 1984);
(iv) the 'threads' and other similar linear structures located
mainly at positive latitudes (Morris \& Yusef-Zadeh 1985;
Bally \& Yusef-Zadeh 1989a; Yusef-Zadeh 1989);
266 K. R. Anantharamaiah et al.

Figure 3. A contour map of the $90-\mathrm{cm}$ ' AB ' image obtained using the maximum-entropy deconvolution. The image has been restored with a
$14 \times 9 \mathrm{arcsec}^{2}$ beam $\left(\mathbf{P A}=2^{\circ}\right)$. Contour levels are in units of $0.02 \mathrm{Jy} \mathrm{beam}^{-1}$ up to $0.4 \mathrm{Jy} \mathrm{beam}^{-1}$, and 0.1 Jy beam ${ }^{-1}$ thereafter.
added here is that the chain of three $\mathrm{H}_{\text {ir }}$ regions immediately $\quad$ as the 'sickle' and the 'pistol' by Yusef-Zadeh \& Morris
to the east of Sgr A East (Ekers et al. 1983) seem to be in $\quad(1987 \mathrm{~b})$.
The $90-\mathrm{cm}$ images (Figs 2 and 3 ) of the region containing the arched filaments and the associated thermal components visual comparison can be seen in Fig. 6(a) and (b) where we show a portion of the BCD image (resolution $33 \times 17 \operatorname{arcsec}^{2}$ ) along with a $20-\mathrm{cm}$ image obtained from Yusef-Zadeh Sgr A complex the brightest parts of the $20-\mathrm{cm}$ image are the eastern and western arched filaments and G0.18-0.04. At 90 cm , however, the most prominent region is in the eastern
section of the Arc in the vicinity of G0.16-0.15, and the arched filaments are only marginally detected against the extended background. The difference is clearly due to the
thermal nature of these regions which must have become thermal nature of these regions which must have become
optically thick at 90 cm . The thermal nature of these regions is also evident in Fig. $6(\mathrm{c})$ where we show the $90 / 20-\mathrm{cm}$
spectral index obtained from Fig. $6(\mathrm{a})$ and (b). Although the spectral index obtained from Fig. $6(\mathrm{a})$ and (b). Although the
spectral index image (Fig. 6c) is constructed from data which do not have similar sensitivity to structures with different scales, it can be used to identify regions of optically thick
thermal emission and also compact regions with steep non-

 u! səinseau uoissiua sə!
 absorption against the 7 -arcmin halo (Figs 2 and 3). Although the angular resolution is not sufficient to measure the optical depth accurately, the absorption indicates that the H in regions are either in front of the halo or embedded in it. Almost all the other discrete sources in the vicinity of the Sgr
A complex, which are detected at higher frequencies (e.g. sources E to J in Yusef-Zadeh \& Morris 1987c), are absent

compled at $l=0^{\circ} 1$ and $b=0^{\circ} 08$ and extend along a curve from the Arc towards the Sgr A complex (see Fig. 5). They appear prominently in the 6- and 20cm images obtained by Yusef-Zadeh et al. (1984) and contain at least two distinct features, which have been desig-
nated as the 'eastern' and 'western' arched filaments by nated as the 'eastern' and 'western' arched filaments by
Morris \& Yusef-Zadeh (1989). A recombination line study Yusef-Zadeh, Morris \& van Gorkom 1987) has shown the arched filaments to be predominantly thermal. Other thermal components in this region are G0.18-0.04, which crosses the Arc at right angles, and G0.15-0.05, which is located hear the southern edge of the Arc (see Fig. 5). By virtue of
heir structures these two components have been referred to
Radio studies of the Galactic Centre - II 267

 12 Jy beam ${ }^{-1}$ and at $20,40,60,80$ and $100 \mathrm{Jy} \mathrm{beam}^{-1}$ thereafter.


268 K. R. Anantharamaiah et al.
3000 K . This suggests that the thermal emission associated The decrease in the intensity of the Arc in the region of the arched filaments is strongly dependent on wavelength and in Fig. 7(c) we show a selection of cuts along the Arc at different wavelengths which illustrate this effect. This
decrease in intensity towards positive latitudes can be decrease in intensity towards positive latitudes can be
explained (see also Yusef-Zadeh et al. 1986b) by free-free absorption by an extended component of ionized gas in this region. The $90-\mathrm{cm}$ intensity of the Arc is consistent with an
optical depth $\tau \sim 1$. If due to free-free absorption, this would optical depth $\tau \sim 1$. If due to free-free absorption, this would
result in $\tau \sim 8$ at $246 \mathrm{~cm}(123 \mathrm{MHz})$ which readily accounts


 10 arcmin in extent, which assuming spherical symmetry,
would give an rms electron density of $\sim 50 \mathrm{~cm}^{-3}$. Radio would give an rms electron density of $\sim 50 \mathrm{~cm}^{-3}$. Radio
recombination line measurements of this region have indi-


 cross-cuts at 20 and 90 cm (from Fig. 6a and b) along the southern edge of the Are, passing through both G0.15-0.05 and G0.18-0.04. While both these components appear
prominently at 20 cm , they are completely extinguished at 90 prominently at 20 cm , they are completely extinguished at 90 absorption can be seen at 90 cm at the position of G0.15-0.05, suggesting that it may also be in front of the
Arc. In Fig. 7(b), only marginal absorption is observed at the extrapolated position of the eastern branch of the eastern arched filaments and no convincing absorption against the
 Fig. $6(\mathrm{a})$ also Figs 2 and 3 ), the $90-\mathrm{cm}$ intensity of the linear
features in the Arc decreases rapidly to positive latitudes eatures in the Arc decreases rapidly to positive latitudes
where the arched filaments intersect the Arc. Therefore the lack of obvious absorption near this intersection cannot be lack of obvious absorption near this intersection cannot be
used unambiguously to determine the relative geometry of hese two features.
Radio studies of the Galactic Centre - II 269

 the majority of the Arc filaments. The slightly positive spectral indices observed in most of considered to be indicative of thermal emission which is becoming optically thick, but polarization measurements e.g. Inoue et al. 1984; Seiradakis et al. 1985 ; Inoue et al.
1989; Reich 1990) have demonstrated that the linear filaments have a non-thermal origin. The $90-\mathrm{cm}$ measurements

 were free-free emission from thermal gas at $10^{4} \mathrm{~K}$, then it would be highly optically thick and have a spectral index
As discussed in the previous section, the region of the Arc to positive latitudes is attenuated by free-free absorption,
 There is some evidence that in this region the attenuation increases towards smaller longitudes (namely towards the
arched filaments), as filament VIII of Yusef-Zadeh \& Morris

 that filament VIII is on the nearside of the absorbing cloud.
Although positive spectral indices in the positive-latitude
 cloud discussed above, it appears unlikely that the positive
$90 / 20-\mathrm{cm}$ spectral index $(\alpha \sim+0.3)$ measured in the vicinity of G0.16-0.15 can be due to a similar effect. As can be seen in Fig. 7(c) there appears little attenuation of the $246-\mathrm{cm}$ emission in this region. Yusef-Zadeh et al. $(1986 \mathrm{~b})$ also find
evidence for a flat spectrum for G0.16-0.15 at 190 cm . evidence for a flat spectrum for G0.16-0.15 at 190 cm .
Thus, as the optical depth in this direction at 246 cm appears



 јо suоџвэ!ן
this result will be discussed in Section 4.2. To summarize, the linear filaments of the Arc discovered
by Yusef-Zadeh et al. (1984) are also detected at 90 cm . Most of the filaments show an intrinsically positive $90 / 20$ cm spectral index $(\alpha \sim+0.3)$, although at least part of the
southernmost filament shows a negative $90 / 20-\mathrm{cm}$ spectral southernmost filament shows a negative $90 / 20-\mathrm{cm}$ spectral
index $(\alpha \sim-0.4)$. The low intensity of the positive-latitude


### 3.4 Sagittarius C

 Anantharamaiah \& Yusef-Zadeh 1989). The present observations suggest that most of the western part of the Arc atpositive latitudes is behind or embedded in this region. Howver, at least two filaments can be followed at $\lambda 90 \mathrm{~cm}$ to
 nearside of the thermal componen
To summarize, the main reason for the difference in the
tructure of the arched filaments at 90 cm as compared to 20 cm is the high free-free optical depth of this region. The appearance of the sickle-shaped (G0.18-0.04) feature in side of the Arc. In addition to the thermal arched filaments, there appears to be an extended component of ionized gas which reduces the intensity of the positive latitude portion of
the Arc at lower frequencies. 3.3 The Arc is located at $l=0.18$ and runs perpendicular to the 20 and 6 cm have been described by Yusef-Zadeh (1986) and Yusef-Zadeh \& Morris (1987c), which demonstrate the Arc to be composed of a series of linear filaments, together
with a series of 'helical' filaments which appear to surround with a series of 'helical' filaments which appear to surround
the linear filaments. The linear structures are also present at 90 cm and are particularly well defined in Fig. 3. The north and south extensions to the Arc are present in the lowhis image is emphasized by the insensitivity to extended
 bserved. In Fig. 8(a) we show cross-cuts, taken at constant
 mom ruser-Zadeh (1986) after convolving both to a com-
mon relution of 15 arcsec. These cross-cuts clearly deineate the multiple filaments and indicate that most of the filaments have a flat or positive spectral index. Higher-reso-
ution observations by Yusef-Zadeh \& Morris $(1987 \mathrm{c})$ show






 not negative and many show a positive value, in agreement
with estimates made at higher frequencies (Reich et al. 1988). Using similar cross-cuts we have estimated the intensities of the most prominent filaments at different latitudes, and
derived spectral indices which are plotted in Fig. 8(b). Although the errors are large, there is good evidence for $\alpha \sim$ becomes even more positive $(\alpha>+0.5)$ towards positive
Most of the other filaments appear to show similar behaviour, although at least one filament, passing $\sim 1$-arcmin south
of G $0.15-0.05$ (the 'pistol'), is anomalous and has a negative spectral index of -0.4 (see Fig. 8 b ). The region of negative Spectral index is relatively small ( $\sim 0: 05$ ), since an apparent
270 K. R. Anantharamaiah et al
from Sgr C with a 3.5 -arcmin beam (Anantharamaiah \&
Yusef-Zadeh 1989 ) probably arises in this region. The Yuser-Zaden 1989) probably arises in this region. The relatively flat spectral index with a peak brightness of $\sim 100$ mJy beam ${ }^{-1}$ at 18 and 90 cm . We do not detect G359.47-0.17 ( $<30 \mathrm{mJy}$ beam $^{-1}$ ) despite the fact that it has an $18-\mathrm{cm}$ brightness of 70 mJy beam ${ }^{-1}$ which is consis-


 The total flux density of Sgr C, measured above the $0.5-\mathrm{Jy}$ contour of the low-resolution CD image, is 23 Jy , which is
considerably greater than 9.8 Jy at 73 cm reported by Little (1974). Thus it appears that the source does not have a flat spectrum below 1 GHz as tabulated by Downes et al. (1978). thermal component, whereas the remainder must originate from more extended structure. Presumably the spectrum is flat at high frequencies because most of the flux originates in the thermal component. The Sgr C filament has structure
which is similar to at least two other linear features detected just to the north of this region. These are discussed in the next section.

ive to extended structure than the $18-\mathrm{cm}$ image, the two mages show similar features. The most striking feature is a
inear structure $\sim 10$ arcmin in extent. By means of crossinear structure $\sim 10$ arcmin in extent. By means of cross-
cuts we have estimated the spectral index at a number of positions along the filament. The cross-cuts indicate a spec-
 the western end of the filament, and the mean value is found o be -0.55 . The flat or positive spectral index in the eastern
portion may be caused by the presence of thermal gas which portion may be caused by the presence of thermal gas which
becomes partially optically thick at 90 cm . As the spectral index in the western regions are as steep as -0.9 , it is clear hat the filament is non-thermal, particularly as parts of the
filament have brightnesses at 90 cm in excess of 200 mJy filament have brightnesses at 90 cm in excess of 200 mJy
beam ${ }^{-1}$ or brightness temperatures of $>7000 \mathrm{~K}$. This cannot be formed by thermal emission at $\sim 10^{4} \mathrm{~K}$, as such gas would be optically thick and show a positive spectral index.
In addition to the filament there are at least three addiIn addition to the filament there are at least three addi-
tional sources associated with Sgr C. At 18 cm the most prominent of these is G359.43-0.09 which has a shell-type prominent of these is G359.43-0.09 which has a shell-type
structure, 2 arcmin in diameter, and a peak brightness of 230 mJy beam $^{-1}$. However, at 90 cm the total flux density of this region is $\sim 1 \mathrm{Jy}$ and its peak brightness is $57 \mathrm{mJy} \mathrm{beam}^{-1}$.
Hence the source has a positive spectral index consistent with optically thick thermal emission (i.e. $E M \sim 10^{5} \mathrm{pc}$




272 K. R. Anantharamaiah et al.


© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

므


An examination of the cross－cuts at 20 and 90 cm show
that，for the northernmost filament（G0．08＋0．15），the
 widths（FWHM）at 90 cm ，after correcting for the beam size，
are in the range 20－25 arcsec，whereas at 20 cm the widths are in the range 20－25 arcsec，whereas at 20 cm the widths bute to this broadening，this behaviour could indicate either scatter broadening or greater transverse extent of low－energy

 $-0.35 \pm 0.07$ ，whereas the i
spectral index of $-0.6 \pm 0.1$ ． spectral index of $-0.6 \pm 0.1$
We have searched the -2

We have searched the $\sim 2^{\circ} \times 2^{\circ}$ field for evidence of more
elongated features but have found no new detections．All
 asymmetric distribution to the north of the plane does not

 to Sgr C and the Arc．

## 3．6 The north galactic lobe

LaRosa \＆Kassim（1985）and Kassim et al．（1986）have reported the detection，at wavelengths of 3．7， 2.7 and 2.4 m





Radio studies of the Galactic Centre - II 275 tad \& Wilson 1984), in view of the high optical depth of the thermal gas at $\lambda \sim 3 \mathrm{~m}$ in this area, it is clearly difficult to
interpret the low-frequency images in terms of distinct com-





 cies which Pedlar et al. $(1983,1984)$ interpret as
quency turnovers indicative of free-free absorption. It may indeed be more logical to view these emissions
areas as 'windows' in the otherwise optically thick thermal areas as 'windows' in the otherwise optically thick thermal
gas. In fact, the NGL lies between the ionized gas of Sgr B1 and a region of ionized gas immediately to the south of this source (Anantharamaiah \& Yusef-Zadeh 1989) as illustrated
in Fig. 11. A non-uniform screen of thermal material in this s!ч! u! ןセиə
 for symmetrical polarization structures observed near the
Arc (Seiradakis et al. 1985). In this case, Faraday depolarization by the thermal gas causes apparent structure in the tion by the thermal gas causes apparent structure in the
polarized emission from an otherwise uniform synchrotron วェe sұuәuә. available at the position of the NGL itself, the possibility that
the NGL is a distinct foreground steep-spectrum object


### 3.7 The low-frequency jet

Yusef-Zadeh et al. (1986a) have reported the detection of a steep-spectrum ridge of radio emission at $190 \mathrm{~cm}(160$ nucleus. They consider this as a low-energy jet emanating from the galactic nucleus. Further evidence for this feature has come from longer-wavelength observations by Kassim et
al. (1986). We show in Fig. 11 selected contours of this 'jet' al. (1986). We show in Fig. 11 selected contours of this 'jet'
taken from Yusef-Zadeh et al. (1986a) and superimposed on our CD image. Clearly, we detect emission at all positions along the jet. From a morphological point of view, however, surroundings. For this reason, we do not find it compelling to consider this feature as a radio jet. The strength of this region son with the $190-\mathrm{cm}$ emission (Yusef-Zadeh et al. 1986a), a spectral index of $\sim-0.9$ is obtained. The 'low-frequency jet' is observed only at wavelengths longer than $190 \mathrm{~cm}(160$ MHz ). In higher-resolution images of the Sgr A complex near
20 cm (Yusef-Zadeh \& Morris 1987a) and 90 cm (see Fig. 3 ), there is a narrow ridge of emission extending about 2 arcmin from the shell of Sgr A East, at approximately the
same position angle as the low-frequency jet. However, this

 frequency jet. This feature resembles one of the 'north-west
streamers' discussed by Yusef-Zadeh \& Morris (1987a).



 lengths.
 wedge' of low-brightness emission with opening angle $\sim 30^{\circ}$. Although this feature is structurally similar to the north-
western radio lobe in the Seyfert galaxy NGC 1068 (Ulves-
276 K. R. Anantharamaiah et al.

RIGHT ASCENSION
Figure 11. A $90-\mathrm{cm}$ CD image convolved to the $3.3 \times 5.8-\mathrm{arcmin}^{2}$ resolution of Kassim et al. (1986). The contour levels are $-1,1$ to 6 in steps
 indicated.

If indeed the NGL and the low-frequency jet represent cloud. The minimum-energy approximation (Miley 1980) can be used to estimate the magnetic field in the threads. As
the structure of the threads indicate that they are magnetically dominated, these values almost certainly represent lower limits. In Table 2 we give estimates of the fields in a number of components using this method. We have assumed widths, and that the energies in relativistic protons and electrons are equal. Typically we obtain values in excess of
$50-100 \mu \mathrm{G}$. Yusef-Zadeh \& Morris $(1987 \mathrm{~b}, \mathrm{c}$ have argued that the field strength must exceed 1 mG in the Arc, and
 West (Werner et al. 1988; Aitken 1989 . Recent
measurements of the Zeeman effect in the $21-\mathrm{cm}$ neutral hydrogen line have indicated that a $0.5-\mathrm{mG}$ field is present in $18-\mathrm{cm}$ OH lines (Kileen et al. 1990) and in $3.6-\mathrm{cm}$ recombination lines (Goss et al. 1990) have yielded upper limits to field strength near Sgr A West of 4 and 15 mG , respectively. The origin of this poloidal field is unclear, although it
could imply the existence of a dynamo near the Galactic Centre. Lesch et al. (1989) have proposed a mechanism to
 windows in the otherwise optically thick thermal gas, then their relatively steep spectra $(\alpha \leqslant-1.0)$ suggest that the spectral index of the background radiation in the direction of galactic plane, where it has a value between -0.5 and -0.7 galactic plane, where it has a value between
(Reich \& Reich 1988; Dwarakanath 1989).

## 4 DISCUSSION

Whereas the mechanism for producing the unique filamentary structures in the Galactic Centre region is not understood (see Yusef-Zadeh 1989), there is broad agree-
ment that such structures must be the consequence of a subment hal such structures must be the consequence a a suta$\sim 100 \mathrm{pc}$ of our Galaxy (Morris \& Yusef-Zadeh 1989; Morris 1990, and references therein). The present observacons reinforce this hypothesis, and the suggestion of a poloidal field is particularly compelling in Fig. 2, where the
threads could be envisaged to be part of a dipole field. The Arc itself has the wrong curvature to be consistent with such simple field. However, this may represent a local distortion caused, for example, by the interaction of a giant molecular
Radio studies of the Galactic Centre
strong differential galactic rotation in this region (see also
Yusef-Zadeh et al. 1984).
4.3 Speculations on particle acceleration

Flat non-thermal spectra are usually found in objects such as the Crab nebula, where there is continuous generation of this analogy, it appears that the flat and positive spectrum non-thermal features are directly associated with a source of relativistic particles. It is tempting to associate the source of
these particles with the compact source $\mathrm{Sgr} \mathrm{A}^{*}$, which itself these particles with the compact source Sgr $A^{*}$, which itself
has a positive spectral index $(\alpha \sim+0.3$, Lo 1987). Then the linear filaments could represent 'traps' for such particles, although this would require that the charged particles travel
$\sim 50 \mathrm{pc}$ against the poloidal field, and it is surprising that no trail is left behind. Furthermore, there is evidence (see Paper I) that the diffuse non-thermal component in the Sgr A comtron ageing has occurred even within 10 pc of the nucleus. In view of these difficulties we prefer models in which
the electrons are accelerated locally (i.e. in the Arc and in G359.96 + 0.09) and propagate along the poloidal fields. Benford (1988) has proposed that molecular clouds
moving through the poloidal field will induce strong electric fields, which can then drive currents and accelerate particles in the interstellar medium. A cloud moving at a velocity of 50 $\mathrm{km} \mathrm{s}^{-1}$ in a magnetic field of 1 mG , induces a $\mathbf{v} \times \mathbf{B}$ electric
field of $5 \times 10^{-3} \mathrm{~V} \mathrm{~m}$ over distances of $\sim 10^{13} \mathrm{~m}$, then electrons with energies of a few GeV , which are necessary for the radio emission, could
be produced. The association of molecular cloud complexes be produced. The association of molecular cloud complexes
with the filaments in the Arc, Sgr C and G358.54+0.18 provides some circumstantial evidence in favour of this
 molecular cloud (see fig. 1 in Bally \& Yusef-Zadeh 1989b). The detailed implications of this type of mechanism are yet marized by Yusef-Zadeh (1989).
There may be an association of 'flat' spectrum linear features with violent thermal activity. This occurs in the Arc, which is associated with thermal emission in G0.18-0.04
and G0.15-0.05, which Yusef-Zadeh, Morris \& van Gorkom (1987, 1989) have shown to emit recombination line emission with widths as large as $90 \mathrm{~km} \mathrm{~s}^{-1}$. It is interest-
ing to note that one of the filaments which does not have a ing to note that one of the filaments which does not have a
flat spectrum is not physically associated with G0.18-0.04. The structure of the helical thermal structures also indicates a close connection between thermal and non-thermal emis-
sion in the Arc. The thread G359.96+0.09 may be assocision in the Arc. The thread G359.96 +0.09 may be associ-
ated with thermal emission in the 7 -arcmin halo of Sgr A.

 the acceleration mechanism responsible for the relativistic
electrons. A direct connection between the two types of emission has in fact been suggested by Yusef-Zadeh \& Morris (1987b), where the thermal gas is a result of ioniza-
tion by lower-energy relativistic electrons. If the initial energy spectrum of the electrons is the usual power law $\left(E^{-2}\right)$, then,
 to produce a ring current and a magnetic field. A similar nechanism, albeit on a smaller scale, could be operating in circumstantial.
4.2 On the spectral indices of the linear filaments and
threads As discussed in Section 3.3, many non-thermal features in spectral index. A mixture of thermal and non-thermal gas can produce a positive spectral index. Such a model was used in Paper I to explain the spectrum of the 7 -arcmin halo near
the Sgr A complex. There is evidence that some thermal emission is intimately associated with the Arc, as the linear filaments appear to be directly interacting with the thermal
sources such as G0.18-0.04 and G0.15-0.05 (YusefZadeh \& Morris 1987b, 1988). In this model, the spectral index must change sign at some higher frequency as in the have observed a positive spectral index even above 10 GHz , it seems more likely that the positive spectral index is intrin-
ic the non-thermal emission. If the non-thermal emission is due to the synchrotron mechanism, then a spectral index of +0.3 would imply that the power-law distribution of relatiistic electrons follows an $E$ power law (where $E$ is the which show $E^{-2}$ power laws. As the radio spectrum shows no steepening below 43 GHz (Reich et al. 1988), then, given fields of 1 mG , electrons with energies up to $\sim 1.5 \mathrm{GeV}$ are Hence, to maintain the observed spectrum, the electrons pointed out by Reich et al. (1988), the positive spectral indices can also be explained if the electrons have a monoenergetic spectrum or have a low-energy cutoff. As was discussed in Section 3.3, however, at least one of
he linear filaments in the Arc shows a relatively steep 90 / $20-\mathrm{cm}$ spectral index $(\alpha \sim-0.4)$. It also shows $a \sim 10^{\circ}$ mis-
alignment from most of the other filaments in this part of the Arc. The anomalous properties of this filament may, in some part, be due to its position at the innermost edge of the Arc, filament has been disconnected from the source of relativistic electrons and is evolving as a typical synchrotron source. $20-\mathrm{cm}$ emission) have synchrotron lifetimes of $\sim 3 \times 10^{4} \mathrm{yr}$, we could postulate that no large input of relativistic electrons

The steep spectrum of three of the 'threads' (Section 3.5) may also indice that no source of relativistic particles is currently present, and the threads represent relics of activity
which took place $>3 \times 10^{4} \mathrm{yr}$ ago. We could speculate that G359.96 +0.09 (the flat-spectrum thread) represents the young phase of these objects. As these threads are typically
30 pc from the plane, we could also speculate that these filaments propagate along magnetic field lines away from the plane. Given the above lifetimes, this would imply a mildly
relativistic propagation velocity of $\sim 10^{5} \mathrm{~km} \mathrm{~s}^{-1}$. It may be significant that the threads, the linear filaments of the Arc, and the filament in Sgr C have orientations roughly parailel

278 K. R. Anantharamaiah et al.
these are in front of the Arc. The geometry of this region is
further confused by the presence of an extended ionized further confused by the presence of an extended ionized
region which also becomes optically thick at 90 cm . (viii) The brightness temperature of the linear filaments in
the Arc is $>5000 \mathrm{~K}$, which, given that their spectrum is not the Arc is $>5000 \mathrm{~K}$, which, given that their spectrum is not
consistent with optically thick thermal emission, confirms
their non-thermal nature.
(ix) When seen on a single large-field image (Fig. 2), the
'threads' (Morris \& Yusef-Zadeh 1985), Sgr C (Liszt 1985) and other linear features in this region (e.g. Bally \& YusefZadeh 1989a) appear to have similar structures. These can be thought of as tracing a dipolar magnetic field in this
region. Using the minimum-energy approximation (Miley 1980 ), we obtain lower limits of $50-100 \mu \mathrm{G}$ for the magnetic
field in these features.
 ated only at positive latitudes. We find no new threads at (G0.08+0.15) appears to have a systematically larger width at 90 cm all along its length.
(xi) Most of the linear filaments in the Arc and the 'thread'
G359.96+0.09 have a flat or positive spectral index, $\mathrm{G} 359.96+0.09$ have a flat or positive spectral index,
whereas the other 'threads' and the filament of Sgr C show negative spectral indices. The positive or flat spectral index
 [e.! index linear filaments with violent thermal activity.
(xii) The radio features detected at very long wavelengths, namely the northern galactic lobe (LaRosa \& Kassim 1985)
 emission at the position of these features. We suggest that the appearance of these regions as distinct features at long wavelengths is due to the patchiness of optically thick thermal gas
which is widespread in this area.

## ACKNOWLEDGMENTS

 Gorkom to this project. We are grateful to Farhad Yusef-
Zadeh both for providing a $20-\mathrm{cm}$ image and for many dis-


 ing part of this work.

## REFERENCES

Aitken, D. K., 1989. In: The Center of the Galaxy, IAU Symp. 136, p.
457, ed. Morris, M., Kluwer, Dordrecht.
Altenhoff, W. J., Downes, D., Pauls, T. \& Schraml, J., 1978. Astr.
Astrophys. Suppl., 35, 23.
Anantharamaiah, K. R. \& Yusef-Zadeh, F., 1989. In: The Center of
the Galaxy, IAU Symp. 136, p. 159, ed. Morris, M., Kluwer,
Dordrecht.
Bally, J. \& Yusef-Zadeh, F., 1989a. Astrophys. J., 336, 173.
Bally, J. \& Yusef-Zadeh, F., 1989b. In: The Center of the Galaxy,
IAU Symp. 136, p. 189, ed. Morris, M., Kluwer, Dordrecht.
Benford, G., 1988. Astrophys. J., 333, 735.
Radio studies of the Galactic Centre - II 279
Reich, W. \& First, E., 1984. Astr. Astrophys. Suppl, 57, 165.
Reich, W., Sofue, Y., Wiclebinski, R. \& Seiradakis, J. H., 1988. Astr.
Schwarr, U. J. \& Lasenby, J., 1990. In: Galactic and Intergalactic
 H.R. A. Wielebinsk, R., Kluwer, Dordrecht.
Seiradakis, J. H., Lasenby, A. N., Yusef-Zadeh, F., Wielebinski, R. \&
Klein, U., 1985. Nature, 317, 679 Sofue, Y. \& Handa, T., 1984. Nature, 310, 568.
Steer, D. G., Dewdney, P. E. \& Ito, M. R., 1984. Astr. Astrophys,, Thompson, A. R., 1989. In: Synthesis Imaging in Radio Astronomy,
p. 11, eds Perley, R. A., Schwab, F. R. \& Bridle, A. H., Astro-
nomical Society of the Pacific, San Francisco. Thompson, A. R., Clark, B. G., Wade, C. M. \& Napier, P. J., 1980. Ulvestad, J. S. \& Wilson, A. S., 1984. Astrophys. J., 285, 439. Not. R. astr. Soc., 219,387 . Morris, M., Novak, G., Platt, S. R. \& Yusef-Zadeh, F., 1986. PhD thesis, University of Columbia.
 Yusef-Zadeh, F. \& Morris, M., 1987a. Astrophys J., 320, 545.
 Yusef-Zadeh, F., Morris, M. \& Chance, D., 1984. Nature, 310, 557. Yusef-Zadeh, F., Morris, M. \& van Gorkom, J. H., 1987. In: The American Institute of Physics, New York.
usef-Zadeh, F., Morris, M. \& van Gorkom, J. H., 1989. In: The Center of the Galaxy, IAU Symp. 136, p. 275, ed. Morris, M.,
Kluwer, Dordrecht. Yusef-Zadeh, F., Morris, M., Slee, O. B. \& Nelson, G. J., 1986a.
Astrophys. J., 300, LA7. Yusef-Zadeh, F., Morris, M., Slee, O. B. \& Nelson, G. J., 1986 b. APPENDIX A: DATA REDUCTION tortions due to finite bandwidth, integration times and noncoplanar baselines. These distortions increase with distance
from the field centre. Although the distortions due to finite bandwidth and time averaging can be overcome by using short integration times and multiple narrow bands, the effect
of non-coplanar baselines present a more intractable problem. Thompson (1989) gives the approximate criterion for the non-coplanar distortions to be small as $\theta_{\mathrm{F}}<\frac{1}{3} \theta_{\mathrm{s}}^{1 / 2}$, radians) and $\theta_{\mathrm{F}}$ is the distance from the field centre. When
 that we expect problems beyond 0.4 from the field centre for the lower resolution images ( C array) decreasing to $0: 15$ for
the highest resolution images (A array). This problem can be overcome, to some extent, by re-imaging the sources outside the central region by using sub-fields with the phase centres
shifted to the location of the source Although this techiqu


Bride, A. H., 1989. In: Synthesis Imaging in Radio Astronomy, p.
433, eds Perley, R. A., Schwab, F. R. \& Bride, A. H., Astro-
Brown, R. L., Johnston, K. J. \& Lo, K. Y., 1981. Astrophys. J., 250,
 nomical Society of the Pacific, San Francisco.
Downes, .D., Goss, W. M., Schwarz, U. J. \& Wouterloot, J. G. A., Dwarakanath, K. S., 1989. PhD thesis, Indian Institute of Science, Ekers, R. D., van Gorkom, J. H., Schwarz, U. J. \& Goss, W. M., Gopal-Krishna, Swarup G., Sarma, N. V. G. \& Joshi, M. N., 1972.
Nature, 2., van Gorkom, J. H., Roberts, D. A. \& Leahy, J. P., 1990. In: Radio Recombination Lines - 25 Years of Investigations, IAU
Coll. I25, p. 249 , eds Gordon, M. A. \& Sorochenko, R. L., Inoue, M., Takahashi, T., Tabara, H., Kato, T. \& Tsuboi, M., 1984.
Inoue, M., Fomalont, E., Tsuboi, M., Yusef-Zadeh, F., Morris, M., Symp. 136, p. 269, ed. Morris, M., Kluwer, Dordrecht.
Kassim, N. E., LaRosa, T. N. \& Erickson, W. C. 1986. Nature, 322,

1чрәрі.оの Kesteven, M. J. \& Pedlar, A., 1977. Mon. Not. R. astr. Soc., 180, Kileen, N. E. B., Lo, K. Y., Sault, R. J. \& Crutcher, R. M., 1990. In: 382 , eds Beck, R., Kronberg, P. P. \& Wielebinski, R., Kluwer, LaRosa, T. N. \& Kassim, N. E., 1985. Astrophys. J., 299, L13.
Lesch, H., Crusius-Watzel, A., Schlickeiser, R. \& Wielebinski, R., 1989. Astr. Astrophys., 217, 99.
Lituse, A. .., 1974. In: Galactic Radio Astronomy, p. 491, eds Kerr, Lo, K. Y., 1987. In: The Galactic Center, Townes Symposium, p. 30, Miley, G., 1980. Ann. Rev. Astr. Astrophys., 18, 165.
Mills, B. Y. \& Drinkwater, M. J., 1984. J. Astrophys. astr, 5, 43. Morris, M., 1990. In: Galactic and Intergalactic Magnetic Fields, Morris, M. \& Yusef-Zadeh, F., 1985. Astr. J., 90, 2511. Morris, M. \& Yusef-Zadeh, F., 1989. Astrophys. J., 343, 703. Pauls, T., Downes, D., Mezger, P. G. \& Churchwell, E., 1976. Astr. Pedlar, A., Booler, R. V. \& Unger, S. W., 1984. Mon. Not. R. astr. Pedlar, A., Booler, R. V., Spencer, R. E. \& Stewart, O. J., 1983. Mon. Pedlar, A., Anantharamaiah, K. R., Ekers, R. D., Goss, W. M., van
 Reich, P. \& Reich, W., 9888. Astr. Astrophys. Suppl., 74, 7. ch, W., 1990. In: Galactic and Intergalactic Magnetic Fieldss, IAU
Symp. 140, p. 369, eds Beck, R., Kronberg, P. P. \& Wielebinski,
Reich, P. \& Reich, W., 1988. Astr. Astrophys. Suppl., 74, 7.
eds Perley, R. A., Schwab, F. R. \& Bridle, A. H., Astronomical
Society of the Pacific, San Fran
before being combined with the self-calibrated C - and
D -configuration data. The combined data were used to D-configuration data. The combined data were used to
obtain a $2^{\circ} \times 2^{\circ}$ image using the SDI CLEAN algorithm. This







 tions in structures out to 0.6 from the field centre. The rms


The large field $\left(2^{\circ} \times 2^{\circ}\right)$ covered by the BCD image is expected to contain several background extragalactic
sources. From the radio source counts at 408 MHz (Keller-






 and have integrated flux densities of 790 and 310 mJy ,
respectively. All these are presumably extragalactic back-






## A3 The high-resolution image

The A and B array observations were made in 1988 Decem-

 became clear that the $323.1-\mathrm{MHz}$ observations were of
lower quality than those at 333.1 MHz , and hence only the

 10 s were used in both the configurations. The data were
taken in this mode to allow imaging over the entire primary

 12 $09 \varepsilon$ - LZ8I pue $01 Z-0 \varepsilon 8 \mathrm{I}$ sәэmos әч јо suопрелазяо Attempts to self-c

Attempts to self-calibrate the spectral line databases were not successful due to the poor signal-to-noise ratio on indi-
vidual channels. Hence the A and B data sets were self-cali-


281
I8z II - significantly affected by strong confusing sources outside this region. This considerably simplified the data reduction. Both
MEM and SDI CLEAN algorithms were used to deconvolve the image independently. Although both the deconvolved images were consistent in the outer regions, the SDI CLEAN image showed some evidence of clean instabilities in the central region. In order to reduce non-coplanar distortions
over the Arc and $\operatorname{Sgr} \mathrm{A}$, the phase centre was placed between these two components, and a $20-\mathrm{k} \lambda$ taper was applied to the UV data. In Fig. 3 (contours) and Plate 2 (grey-scale), we
show the resulting image, deconvolved using MEM, which has been restored with a $14 \times 9-\operatorname{arcsec}^{2}$ beam. The rms noise in this image is 3 mJy beam ${ }^{-1}$, which is close to the
cally expected noise; the dynamic range is $\sim 200: 1$.
 MHz , they were useful in obtaining a good 'first model' of the
central region since it dominates the continuum emission. central region since it dominates method would not, of course, be possible in the presence of strong sources far away from the field centre. In addi-
 channel-zero data were applied to all the spectral line channels, before combining the two databases. All the spectral line channels of the combined data were simultaneously
gridded and Fourier transformed to obtain a 'dirty' beam and a dirty image. Fortunately, most of the flux density in the Galactic Centre region is concentrated in the central $0^{\circ} .5$,
and, at the dynamic ranges achieved, we did not appear to be

