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Abstract. Accurate localization of people in indoor and domestic en-
vironments is one of the key requirements for ambient assisted living
(AAL) systems. This chapter describes how the received signal strength
(RSS) measurements collected by a network of static radio transceivers
can be used to localize people without requiring them to wear or carry
any radio device. We describe a technique named radio tomographic
imaging (RTI), which produces real-time images of the change in the
radio propagation field of the monitored area caused by the presence of
people. People’s locations are inferred from the estimated RTI images.
We show results from a long-term deployment in a typical single floor,
one bedroom apartment. In order to deal with the dynamic nature of the
domestic environment, we introduce methods to make the RTI system
self-calibrating. Experimental results show that the average localization
error of the system is 0.23 m. Moreover, the system is capable of adapt-
ing to the changes in the indoor environment, achieving high localization
accuracy over an extended period of time.

Keywords: Wireless Networks, Indoor Localization, Received Signal
Strength, Radio Tomographic Imaging.

1 Introduction

For ambient-assisted living (AAL) and elderly care applications, accurate lo-
calization of people in indoor and domestic environments is one of the most
important requirements. The location information can be used for multiple pur-
porses, e.g., to monitor the daily activities and observe the tendencies of people,
to alert caretakers and doctors in case of abnormal behavior of events, to au-
tomate lights, appliances and air conditioning systems in order to reduce the
electricity consumption, etc. Indoor localization has received considerable at-
tention in recent years from the research community, and different systems and
sensing technologies have been applied in the context of AAL. In this chapter,
we present our research on received signal strength (RSS) based device-free lo-
calization (DFL) and we show how it can be successfully applied in real-world
scenarios for AAL and elderly-care applications.

In an RSS-based DFL system, multiple low-power, wireless transceivers are
deployed in the area to be monitored as to form a mesh network. Each device
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broadcasts packets and stores the RSS of the packets received from all the other
devices forming the network. When people are located or move in the environ-
ment, they modify the way the radio signals transmitted by the nodes propagate
[1, 2], by shadowing [3], reflecting [4], diffracting [5], or scattering [6] a subset of
their multipath components [1–9]. The effect of people on the wireless links is
reflected in the RSS measurements collected by the nodes [10]. By knowing the
position of the nodes, an RSS-based DFL system is capable of estimating the
position of the people found in the monitored area by processing the changes
over time of the RSS measurements of all the links of the network [11–17]. Since
in this type of system the only source of information is the RSS provided by the
radio module of the wireless transceivers, we refer to the transceivers as sensors,
and to the network as a radio frequency (RF) sensor network [18].

In the context of AAL and elderly-care applications, DFL systems provide
considerable advantages over other technologies. Unlike other systems, they ac-
curately localize and track the people in the environment without having them
to carry or wear any radio device or sensor. This feature makes these systems
more suitable to monitor the activities of elder people without causing them
physical discomfort or requiring them to remember each day to activate or wear
these devices [19] (something particularly challenging for elder people affected
by dementia or other neuro-degenerative diseases). Compared to video-camera
systems [20], DFL systems do not raise the same privacy concerns, as they can
not identify the person or recognize in detail what she is doing. DFL systems
are also minimally invasive, since the small wireless sensors composing the net-
work can be embedded in the walls of the house or into furniture, appliances,
and other every day objects found in common domestic environments. Moreover,
they can localize people also through-wall and in furnished environments which
would be hard to cover with infrared motion detectors. Besides their limited
invasiveness and flexibility, DFL systems are also considerably cheaper than e.g.

ultra-wideband (UWB) radar devices.
Accurate indoor localization is even more challenging in the domestic environ-

ment. As people perform various activities during their every-day life, objects of
various size, shape, and material are constantly moved, changing the propaga-
tion patterns of the radio signals. Thus, RSS-based systems have to monitor and
dynamically adapt to these changes, providing high localization accuracy in the
long-term. For systems using fingerprinting methods or statistical models of the
relationship between distance and RSS [21–24], these sudden changes of the radio
environment make sub-meter accuracy difficult to achieve and ultimately lead
to the need of time-consuming recalibrations of the models. In addition, from a
system perspective, the communication protocol run by the sensors composing
the network has to be robust to sensors’ failures, interference from overlapping
wireless networks, and faulty links. Overall, the system must reliably provide
its service over the long-term, without requiring manual re-configurations, re-
calibrations or even re-starts.
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In this chapter, we describe how the temporal changes in the radio propaga-
tion field of a wireless mesh network caused by the presence of people, measured
by means of RSS, can be used to estimate their positions. Our discussion starts
from the observation of how a person crossing a wireless link between two com-
municating RF sensors affects the RSS measured by the two devices. We show
that the change in RSS depends on the frequency channel, and we provide a the-
oretical framework to combine the information collected on different frequency
channels into a unique measurement for the link. The RSS measurements of all
the links of the network are then processed in real-time to generate images of
the changes in the propagation field of the monitored area - a process named
radio tomographic imaging (RTI).

We present the experimental results obtained during a long-term deployment
of a DFL system in an apartment. In this testbed, we apply methods to perform
an on-line recalibration of the reference RSS of the links of the network. This
allows separating the changes in the RSS introduced by the movements of people
from the ones due to changes in the domestic environment. Besides achieving
high localization accuracy over the entire length of the deployment, we show
how the position estimates provided by the system can be processed in order to
derive higher-level information about the daily activities and tendencies of the
monitored people.

1.1 Outline of the Chapter

In Section 2, we first show how the RSS measured by two communicating sensors
is affected by the presence of a person in the proximity of the link line, i.e., the
straight imaginary line connecting the two devices. We then describe how, for
the same transmitter and receiver pair, the change in RSS varies depending on
the frequency channel. The remainder of the section presents the RTI process, in
which the RSS measurements collected on all the links of the network on multiple
frequency channels are combined to form images of the change in the propagation
field due to the presence of people in the monitored area. We also introduce the
methods that make our DFL system self-calibrating in order to achieve accurate
localization over the long-term in highly dynamic indoor environments. The long-
term deployment carried out in an apartment is described in Section 4.1, and
the results are presented in Section 4.2. Section 5 concludes the chapter.

2 Radio Tomographic Imaging

2.1 Link Line Crossing and Fade Level

An RTI system uses the RSS measurements collected on the links of a wireless
mesh network to localize and track people found in monitored area. In AAL
applications, RTI has to be carried out in indoor environments where multiple
objects and obstructions are normally found. Thus, in this type of environments,
multipath propagation of the radio signals is predominant. The RSS measured
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at the receiving end of a link is the result of a phasor sum of the waves impinging
on its antenna. The result depends on the position of the receiver and the center
frequency of the radio signal. When the waves have the same phase, the phasor
sum is constructive; when the waves have opposite phase, the phasor sum is
destructive. For link l, the RSS measured on channel c at time instant k, rl,c(k),
can be modeled as:

rl,c(k) = Pc − Ll,c − Sl,c(k) + Fl,c(k)− ηl,c(k), c ∈ F (1)

where Pc is the transmit power of the nodes, Ll,c the large scale path loss, Sl,c

the shadowing loss, Fl,c the fading gain (or fade level [25]), ηl,c the measurement
noise, and F = {1, . . . , C} is the set of measured radio frequencies.

The RSS, which usually does not show consistent variations when the envi-
ronment is stationary [26], is otherwise affected by the presence and movement
of people in the proximity of the link line [10], i.e., the straight imaginary line
connecting two communicating devices. The link line here defined differs from
the definition of line-of-sight (LoS), which refers to an obstruction free direct
path between the transmitter and receiver of the link. Figure 1 shows the RSS
measurements collected on three different radio frequencies for the same link
when this is crossed two times by a person. The dynamics of the RSS varies sig-
nificantly depending on the considered frequency channel. Channel A (blue solid
line) shows two consistent (8 dBm) drops of the RSS when the person crosses
the link line and no significant variation when the person is located far away
from it. Channel B (red dashed-dotted line) shows a more consistent variation
even when the person is located slightly away from the link line. However, the
average RSS remains approximately the same even when the link line is crossed.
Channel C (black dashed line) shows a very large variation of the RSS even when
the person is very far from the link line. Moreover, when the person crosses the
link line, the RSS tends to increase.

The relation between human-induced RSS changes and steady-state narrow-
band fading has been modeled in [25] by using the concept of fade level. The
fade level of a link varies in between two extremes, namely an anti-fade state
and a deep fade state. The RSS of a link in anti-fade is the result of constructive
multipath interference. For such a link, Fl,c in (1) is positive. When the link line
is obstructed by a person, the RSS on average decreases. On the contrary, the
RSS of a link in deep fade is the result of destructive multipath interference.
For such a link, Fl,c in (1) is negative. When the link line is obstructed by a
person, the RSS on average increases. Since both the large scale path loss Ll,c

and the shadowing loss Sl,c change very slowly with the center frequency and
the frequency channels available with the ZigBee, 802.15.4-compliant nodes used
in this work span over 80 MHz in the 2.4 GHz band, we assume that both do
not depend on the measured frequency channel c. Thus, Fl,c can be calculated
as:

Fl,c(k) = rl,c(k)− Pc + ηl,c(k). (2)

Due to the measurement noise, ηl,c(k), we can not directly measure the fade
level of a link. To estimate it, we use the average RSS, r̄l,c, measured in an
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Fig. 1. The RSS measurements collected on three different radio frequencies for the
same link when it is crossed two times by a person. The nodes are elevated 1 m from
the floor and are 1.5 m apart. Channel A is ZigBee channel 15 (2425 MHz). Channel
B is ZigBee channel 22 (2460 MHz). Channel C is ZigBee channel 26 (2480 MHz).

initial calibration of the system performed in stationary conditions, i.e. when
the monitored area is empty. For each link l, the lowest r̄ measured on the
channels in F is used as a reference to derive the fade level during calibration F̄

of channel c:

F̄l,c = r̄l,c −min
c

r̄l,c. (3)

A link is in a deeper fade on channel c1 than on channel c2 if r̄l,c1 < r̄l,c2 . Thus, in
figure 1, channel A is the most anti-fade of the three, while channel C is the most
deep fade. By definition, F̄l,c ≥ 0 and F̄l,c = 0 for one channel c on each link.

For the purpose of localization, the difference between anti-fade and deep fade
channels is substantial. As shown in Figure 1, for anti-fade channels, a person
crossing the link line causes attenuation of the RSS, i.e., a sudden drop of several
dBm, which can be easily detected. Moreover, the area in which this change is
measured is limited around the link line. Thus, anti-fade channels are the most
informative to achieve an accurate localization. For deep fade links, the variation
of the RSS is consistent even when the person is located at some position far
away from the link line [16]. Thus, deep fade links are less suitable for accurate
and timely detections of link line crossings, but can successfully be used to detect
motion in the monitored environment, especially in sparse deployments, i.e. large
areas covered by a small number of sensors. The difference between anti-fade and
deep fade channels is illustrated also in Figure 3.

The dynamics of the RSS measured on anti-fade and deep fade channels is
affected also by the distance of the two communicating devices, as shown in
Figure 2. As the distance becomes larger (5 m), the RSS drop measured on
the anti-fade channel A (blue solid line) when the person crosses the link line
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Fig. 2. The RSS measurements collected on three different radio frequencies for the
same link when it is crossed two times by a person. The nodes are elevated 1 m from
the floor and are 5 m apart. Channel A is ZigBee channel 15 (2425 MHz). Channel B
is ZigBee channel 22 (2460 MHz). Channel C is ZigBee channel 26 (2480 MHz).

is smaller (4 dBm) and less predictable. Moreover, even the anti-fade channel
measures a small variation of the RSS when the person is slightly far from the
link line. Again, the channels having a deeper fade level pick up the presence of
the person even when she is very far from the link line.

2.2 Image Estimation

An RTI system composed of S static RF sensors deployed at known positions
{zs}s=1,...,S uses the RSS measurements rl,c(k), collected at time instant k on
all the L links of the network on channel c ∈ F , to estimate a discretized image
of the change in the propagation field of the monitored environment, x. The
estimation problem can be modeled as:

y = Wx+ n, (4)

in which y and n are L×1 vectors representing the RSS measurements and noise
of the L links of the network, x is the N × 1 discretized image to be estimated,
where N is the number of voxels of the image, and W is the L×N weight matrix,
which tells how each voxel’s attenuation impacts each link. Each element xn of x
represents the change in the propagation field caused by the presence of a person
in voxel n. The linear model for the change in the propagation field is based on
the correlated shadowing models introduced in [11, 27] and the work in [12].

The change in RSS caused by the presence of people can be quantified using
different methods. In attenuation-based RTI [12], the change in RSS is estimated
as the difference between the RSS measured at time k, rl,c(k), and the average
RSS measured during the initial calibration of the system, r̄l,c:
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Fig. 3. Multipath contribute complex voltages to a phasor sum, the squared magnitude
of which is the received power. Here, a person in Position A causes a frequency channel
to have complex voltages as given in the left column. When the person moves to Position
B (right column), they change path b by 10 degrees. For the normal multipath channel
(top row) the multipath amplitude increases from 4.6 to 5.0, i.e., an increase of 0.7
dB. For the channel in a deep fade, the same change in path b causes the amplitude
to change from 1.0 to 1.5, i.e., an increase of 3.5 dB. Thus the same change is more
noticeable when the channel’s multipath are situated in a deep fade.

∆rl,c(k) = rl,c(k)− r̄l,c. (5)

This method allows localizing both stationary and moving people, but requires
an initial calibration of the system for the estimation of r̄l,c. In variance-based

RTI [9], the change in RSS is quantified as the short-term unbiased sample
variance of the RSS measurements:

ŝl,c =
1

Ns − 1

Ns−1
∑

p=0

(rl,c(k − p)− µl,c(k))
2
, (6)

where:

µl,c(k) =
1

Ns

Ns−1
∑

p=0

rl,c(k − p). (7)

is the mean of the last Ns RSS measurements of link l on channel c. This method
does not require an initial calibration of the system and can localize moving peo-
ple, but is not capable of localizing stationary people. In histogram distance-based

RTI [28], the change in RSS is quantified as the kernel distance [29] between the
histogram of the most recently collected RSS measurements (the short-term his-
togram) and the histogram of RSS measurements collected during the calibration
phase (the long-term histogram). Similarly to attenuation-based RTI, histogram
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distance-based RTI can localize both moving and stationary people, but also
requires an initial calibration of the system.

Both attenuation-based RTI and histogram distance-based RTI are more suit-
able to AAL applications than variance-based RTI, since people living in a house
can spend considerable amounts of time without moving, e.g., sleeping during
the night or sitting on the couch. In this chapter, we consider only attenuation-
based RTI and we introduce methods to make the system self-calibrating in
order to achieve long-term accurate localization also in highly dynamic domestic
environments.

For each link l, the RSS measurements collected on different frequency chan-
nels are combined into a unique RSS measurement yl. As discussed in Section
2.1, anti-fade channels are more informative for localizing the people in the envi-
ronment. In [16], the channels in F are ranked based on their fade level, from the
most anti-fade to the most deep fade. If Ai is the set of size m containing the in-
dices of the m top channels in the fade-level ranking, the link RSS measurement
yl at time k is calculated as:

yl(k) =
1

m

∑

c∈Ai

∆rl,c(k). (8)

The results in [16] show that the optimal value of m, i.e. the number of channels
considered in the computation of yl, is different for each deployment of the
RTI system. In the deployment described in this chapter, we include in the
computation of yl the measurements collected on all the channels in F , and we
use the fade level F̄l,c calculated as in (3) to weight them:

yl(k) =
1

∑

c∈F F̄l,c

∑

c∈F

F̄l,c · |∆rl,c(k)|. (9)

The vector y is formed as follows:

y = [y1, ..., yL]
T
. (10)

In RTI, the change in RSS measured on a link is assumed to be a spatial integral
of the radio propagation field in the monitored area [11, 27]. Due to this, some
voxels of the discretized image affect the RSS of a specific link, while some others
do not. Each link’s change in RSS is assumed to be a linear combination of the
change in voxels’ attenuation:

yl =

N
∑

n=1

wl,nxn + ηl, (11)

where xn is the change in attenuation of voxel n, wl,n the weight of voxel n for
link l, and ηl the measurement noise of link l.

The weighting matrix W in (4) represents a spatial impact model between the
L links of the network and the N voxels of the image. Each element wl,n of the
matrix indicates how the change in RSS of voxel n affects the RSS measurements
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Fig. 4. The spatial impact model used in RTI is an ellipse having the foci located at
the transmitter and receiver. The voxels located outside of the ellipse have their weight
set to zero, while the voxels that are located within the ellipse have their weight set to
a constant inversely proportional to the area of the ellipse. Thus, the shorter links (N3-
N4), which are more informative for localization, are weighted more than the longer
ones (N1-N2).

of link l. The spatial model used in RTI [9, 11, 12, 16, 30, 31] is an ellipse having
the foci located at the transmitter and receiver. According to this model, the
voxels that are located outside of the ellipse have their weight set to zero, while
the voxels that are located within the ellipse have their weight set to a constant
which is inversely proportional to the area Γl of the ellipse:

wln =

{

1
Γl

if dtxl,n + drxl,n < dl + λ

0 otherwise
, (12)

where d is the distance between the transmitter and receiver, dtxln and drxln are
the distances from the center of voxel n to the transmitter and receiver of link
l, respectively, and λ is the excess path length of the ellipse, i.e., the parameter
defining the width of the ellipse. In Section 2.1, we discussed how the shorter
links are more informative for localization. In (12), by using a constant inversely
proportional to the area of the ellipse, the shorter links are weighted more than
the longer ones. The spatial impact model used in RTI is shown in Figure 4.

Since the number of links is considerably smaller than the number of voxels,
estimating the image vector x is an ill-posed inverse problem, which requires
regularization [32]. In this work, we use a regularized least-squares approach
[11, 16, 30, 31]. The estimated image of the change in the propagation field is
calculated as:

x̂ = Πy, (13)
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where the inversion matrix is:

Π = (WTW +C−1
x σ2

N )
−1

WT , (14)

in which σ2
N is the regularization parameter. The a priori covariance matrix Cx

is calculated by using an exponential spatial decay:

[Cx]j,i = σ2
xe

−dj,i/δc , (15)

where σ2
x is the variance of voxel measurements, dj,i is the distance from the

center of voxel j to the center of voxel i, and δc is the voxels’ correlation distance.
The linear transformation Π is computed only once before real-time operation.
The calculation of x̂ in (13) requires L×N operations and can be performed in
real-time.

When only one person is in the monitored environment, her position p̂ is
estimated as:

p̂ = argmax
n∈N

x̂, (16)

i.e., the person’s position estimate is at the voxel n of the discretized image x̂

having the highest value. In [9, 15, 31], the estimated trajectory followed by the
person is smoothed by recursively applying a Kalman filter [33] on the position
estimates. In this chapter, we present results related only to the localization of
one person. For multiple people localization and tracking with RTI, the reader
is invited to refer to the works in [17, 25, 34, 35].

2.3 On-line Calibration for AAL Applications

One of the main challenges in using an RTI system in real-world indoor and do-
mestic environments is represented by the fact that they are highly dynamic, i.e.,
people working or living in these environments constantly change the position
of objects of various size, shape and material while carrying out their activities.
This changes dramatically over time the reference RSS of the links on the mea-
sured frequency channels, i.e. the RSS measured in stationary conditions. Figure
5 provides an example of the effect of environmental changes on the reference
RSS: a person moves towards the link line carrying a metallic chair with her,
then places the chair in the middle point of the link and moves away from the
link line. The new position of the chair in the environment changes dramatically
the RSS measured on the three different channels: for channel A (blue solid line),
the reference RSS drops by 6 dBm; for channel B (red dashed-dotted line), the
reference RSS drops by 5 dBm; for channel C (black dashed line), the reference
RSS drops by 10 dBm.

By affecting the reference RSS, environmental changes modify also the fade
level of the frequency channels. Before the chair is placed in the middle point
of the link, channel C is the one in the deepest fade; after, channel B is the one
in the deepest fade. Consequently, the fade level-based ranking of the channels
derived during the initial calibration of the system which is used in [16] can be
drastically modified even by environmental changes. In this work, the fade level
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Fig. 5. The effect of environmental changes on the RSS measured on different radio
frequencies for the same link. The nodes are elevated 1 m from the floor and are 4 m
apart. At sample 200, a person carrying a chair starts moving towards the link line
and places the chair in the middle point of the link. At sample 300, the person moves
away from the link line leaving the chair behind. The presence of the chair on the link
line changes considerably the RSS measured on the three channels.

is used in (9) to weight the RSS measurements of all the channels in F . Thus,
environmental changes modify also the weight assigned to the RSS measurements
of the different channels.

These observations require methods to make the RTI system able to adapt
to the changes in the propagation patterns of the radio signals and recalibrate
on-line both the reference RSS and fade level of the frequency channels. Without
recalibration, the RTI system would not be able to achieve accurate localization
over an extended period of time and would need to be stopped, recalibrated and
restarted frequently. In [9, 30, 36, 37], different methods to adapt to the dynamic
environment are presented. In [30], the reference RSS r̄l,c(k) of link l on channel
c at time k is calculated using a moving average:

r̄l,c(k) = (1− α)r̄l,c(k − 1) + αrl,c(k), (17)

where α ∈ [0, 1] is a parameter defining the rate of adaptation of the reference
RSS, i.e., slow for low values, e.g., α = 0.01, fast for higher values, e.g., α = 0.2.
In this work, we extend the on-line recalibration of the system to the fade level of
the channels. The fade level F̄l,c(k) of link l on channel c at time k is calculated
using the reference RSS calculated in (17):

F̄l,c(k) = r̄l,c(k)−min
c

r̄l,c(k). (18)

Consequently, at time k, the link measurement yl becomes:

yl(k) =
1

∑

c∈F F̄l,c(k)

∑

c∈F

F̄l,c(k) · |∆rl,c(k)|, (19)
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Fig. 6. A typical RTI image produced by the RTI system. The red blob indicates the
area occupied by the person. The white dashed circle, centered at the current position
estimate, represents the gating area outside of which the links are recalibrated on-line.

where:

∆rl,c(k) = rl,c(k)− r̄l,c(k). (20)

Figure 6 shows a typical RTI image produced by the system. The red blob in it
indicates the area in which the person is located. When the person is stationary,
the RSS measurements of the links intersecting the area occupied by the person
are approximately constant. Due to the on-line recalibration of the reference
RSS, if the person will not move for an extended period of time, e.g., while
sleeping or sitting on the sofa, the RSS attenuation on those links, ∆rl,c(k), will
be very small, since the on-line reference RSS, r̄l,c(k), will have a value very
close to the current RSS measurements. Thus, the link measurement yl will also
have a very small value and the red blob indicating the position of the person
will vanish in the background, making the position estimate p̂ calculated in (16)
noisy and unreliable.

To avoid the disappearing of the blob when the person is stationary for an
extended period of time, we center a circular gating area of radius ω at the
current position estimate p̂(k). The gating area is used as a spatial filter for
the on-line recalibration of the reference RSS and fade level of the channels, as
follows:

r̄l,c(k) =

{

(1− α)r̄l,c(k − 1) + αrl,c(k) if l �∈ Pl

r̄l,c(k − 1) otherwise
, (21)

and similarly for the fade level of the channels:

F̄l,c(k) =

{

r̄l,c(k)−minc r̄l,c(k) if l �∈ Pl

F̄l,c(k − 1) otherwise
, (22)
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Table 1. Image reconstruction parameters

Description Parameter Value

Pixel width [m] p 0.20
Ellipse excess path length[m] λ 0.02
Voxels standard deviation [dB] σx 0.2236
Noise standard deviation [dB] σN 1
Correlation coefficient δc 3
Moving average coefficient α 0.05
Gating area radius [m] ω 1

where Pl is the set of links of the network intersecting the circle of radius ω

centered at the current position estimate p̂(k). Thus, the links of the network not
intersecting the gating area are recalibrated on-line, while the ones intersecting
the gating area are not recalibrated. Thanks to this spatial filter, the red blob
does not disappear from the image and the position estimate p̂ remains on the
spot occupied by the person even when she is stationary for an extended period
of time. The values of the parameters used in methods described in this Section
are listed in Table 1.

3 Hardware and Communication Protocol

In this section, we describe the RF sensors composing the RTI system and the
communication protocol used to collect the RSS measurements of all the links
of the nework on multiple frequency channels.

3.1 Hardware

The experiments described in this chapter are carried out with Texas Instruments
CC2531 USB dongle nodes [38], shown in Figure 7. The nodes are equipped with
a low-power, 802.15.4 [39] compliant radio operating in the 2.4 GHz ISM band.
In the experiments, we set the transmit power of the nodes to the maximum
nominal value, i.e., 4.5 dBm.

The 802.15.4 standard defines 16 frequency channels, 5 MHz apart and having
2 MHz of bandwidth. The carrier frequency (in MHz) of channel c is:

fc = 2405 + 5(c− 11), c ∈ [11, 26]. (23)

Due in part to the differences in antenna impedance matching across an 80 MHz
frequency band [40], the CC2531 nodes measure lower RSS values on the lower
frequency channels than on the higher ones. Thus, to avoid bias in estimating the
fade level of the channels, normalization is required. We experimentally derived
the linear relationship Pc = 0.145c+ 1.733, witch closely matches the measured
transmit power.
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Fig. 7. Two figures of the CC2531 USB dongle node used in the experiments. On the
left, a node plugged into an electricity socket through an USB power adapter. On the
right, a node powered by two AA batteries.

In [30], we had noticed that the propagation pattern of the antenna of the
nodes was heavily affected by the proximity to metallic surfaces and walls. This
made the RSS measurements more noisy and decreased the localization accuracy.
The new battery pack, visible in Figure 7, is now designed such that the antenna
is pointing away from the surface or wall to which it is attached through velcro.
This compact and lightweight design allows us reducing the time required to
deploy the nodes and increase the quality of the RSS measurements.

3.2 Communication Protocol: multi-Spin

The RF sensors composing the RTI system run multi-Spin, a multi-channel
TDMA protocol which defines the order of transmission of the nodes and syn-
chronizes their switching on different frequency channels. In multi-Spin, time
is divided into slots, cycles and rounds : a round includes |F| TDMA cycles; a
TDMA cycle includes S slots. In each slot, only one of the nodes transmits a
packet, while all the other nodes are in receiving mode. The order of transmis-
sion of the nodes in a TDMA cycle is based on their built-in ID number. The set
of measured frequency channels F is pre-defined by the user before deployment
and stored as a list in the memory of the nodes.

In each cycle, the nodes communicate on one of the frequency channels of
the list. At the end of the cycle, they switch synchronously on the next channel
of the list. The first channel in the list acts as a backbone channel: if a node
does not receive any packet for S consecutive slots, it will assume to have lost
synchronization with the network and will immediately switch back to the back-
bone channel, waiting for packets. In this way, when the other nodes will switch
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Fig. 8. In multi-Spin, time is divided into slots, cycles and rounds: a round includes
|F| TDMA cycles; a TDMA cycle includes S slots. In each slot, only one of the nodes
of the network is transmitting (solid block), while the others are in receiving mode.
The order of transmission is based on the built-in ID number of the nodes. At the end
of a TDMA cycle, the nodes switch synchronously on the next frequency channel in
the list pre-defined by the user.

again to the first channel of the list, the node previously fallen out-of-sync will
be able to rejoin the network. This mechanism ensures that even when one or
more nodes stop receiving packets from the others, e.g., because they have run
out of power or have accidentally been unplugged from the electric socket, they
will be able to rejoin the network without requiring a manual restart by the user.

multi-Spin starts when at least two nodes are turned on (if battery-powered)
or plugged into electric sockets. Each node repeatedly calculates a random back-
off time and transmits a packet on the backbone frequency channel until it
receives a packet from another node. The reception of the first packet allows the
nodes to synchronize themselves and communicate on the frequency channels of
the list.

The payload of each packet includes the ID number of the transmitting node
and the most recent RSS measurements of the packets received from the other
nodes. A node connected to a laptop switches channels synchronously with the
network of RF sensors and overhears all the traffic, collecting and processing in
real-time the RSS measurements of all the links. By knowing the total number
of sensors S composing the network and the ID number of the transmitting node
IDTX , at the reception of a packet each node is able to calculate the number of
slots until the next switching of frequency channel, ∆c, and the number of slots
until the next transmission, ∆TX , as follows:

∆c = S − IDTX , (24)

∆TX =

{

IDRX − IDTX − 1 if IDTX < IDRX

S − IDTX + IDRX otherwise
, (25)



Radio Tomographic Imaging for AAL 123

where IDRX is the ID number of the receiving node. This mechanism makes the
network tolerant to packet drops, due e.g. to the interference of other coexisting
wireless networks [41, 42], as the nodes can keep on communicating and on being
synchronized even when dropping packets.

The features described above makemulti-Spin an autonomously starting, syn-
chronizing and healing communication protocol tolerant to interference from co-
existing wireless networks. With the CC2531 nodes, the average time length of
a slot is approximately 3 ms. For a network composed of 33 RF sensors commu-
nicating on five frequency channels, such as the one described in Section 4.1, the
total length of a TDMA cycle is approximately 100 ms, making the total length
of a round approximately equal to 500 ms. Thus, an RTI system composed of
33 nodes collects two RSS measurements per link per second.

4 Experimental Results

4.1 Deployment

To evaluate the performance of the methods described in Section 2, we use the
data collected during a three months deployment of an RTI system composed of
33 nodes in a typical 58 m2 single floor, one bedroom apartment inhabited by
a single person. The nodes are set to communicate on five frequency channels,
i.e., F = {11, 15, 18, 21, 26}. The blueprint and an image of the apartment are
shown in Figure 9.

4.2 Localization Accuracy

In the beginning of the deployment, we evaluate the accuracy of the RTI system
in localizing the person in different areas of the apartment. We define 14 spots
of evaluation, in which the person stands without moving for a pre-determined
amount of time before walking to the next position. Figure 10 shows the aver-
age position estimates provided by the RTI system in each of the 14 points of
evaluation. The average localization error is 0.23 m. It has to be noted that the
localization error remains below 0.40 m in 13 of the 14 points of evaluation. The
largest error, 0.92 m, is measured when the person stands in the kitchen, where
a large marble counter (visible also in Figure 9) has a remarkable impact on the
propagation of the radio signals.

The effect of the on-line recalibration of the reference RSS and fade level of
the measured frequency channels is shown in Figure 11. The RTI images (a) and
(b) are formed using the on-line recalibration methods described in Section 2.3,
while the images (c) and (d) are formed using the reference RSS and fade levels
estimated during the initial calibration of the system. Images (a) and (c) are
formed six hours after the system is started (∆T = 6 h), while images (b) and
(d) are formed 18 hours after the system is started (∆T = 18 h). Without on-line
recalibration, the images formed by the RTI system rapidly become more noisy:
while in image (a) the image shows only one clear blob in the position occupied
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Fig. 9. On the left, the blueprint of the single floor, one bedroom apartment in which
the RTI system has been deployed for over three months. The black dots represent the
position of the 33 RF sensors. On the right, an image of the apartment.

Fig. 10. The true and estimated position of the person in 14 different points of the
apartment. The average localization error is 0.23 m.

by the person, image (c) shows other three small blobs due to changes in the
environment. After 18 hours, the effect of the on-line recalibration is even more
evident: in image (b), the system can still correctly localize the person, forming
an image that shows only one clear blob in the correct position. Without on-
line recalibration (image(d)), the system forms a very noisy image with multiple
blobs and provides a position estimate very far from the true location of the
person. We invite the reader to view a video showing the movements of the
person living in the apartment over a ten minutes time interval at [43].
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(a) ∆T = 6 h (b) ∆T = 18 h

(c) ∆T = 6 h (d) ∆T = 18 h

Fig. 11. The effect of the on-line recalibration of the reference RSS and fade level of the
measured frequency channels on the long-term localization accuracy. Without on-line
recalibration (images (c) and (d)), the RTI images formed by the system rapidly become
more noisy and ultimately lead to position estimates far from the true location of the
person. On the other hand, a system using the on-line recalibration methods described
in Section 2.3 can maintain high localization accuracy over an extended period of time
despite the several environmental changes due to the daily activities carried out by the
monitored person.

The location information can be used in AAL applications to infer about
the daily routine and the health of the monitored person. The apartment can
be divided into areas-of-interest (AoI), e.g., the kitchen, bathroom, bedroom,
living room, etc. The highly accurate localization provided by an RTI system
allows further dividing each AoI into smaller sub-areas which can be associated
to specific activities, e.g., cooking on the stove, washing laundry, taking a shower,
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Fig. 12. The blueprint of the home in which the tests of the second EvAAL competition
were carried out. The yellow circles represent the RF sensors. The black dots represent
the true position of the person during the test at 1 s intervals. The red dots represent
the true position of the person at spots in which she was stationary for five seconds.
The blue dots represent the position estimates returned by the RTI system.

riding a stationary bike, etc. For example, an RTI system can be used by doctors
and caretakers as a non-invasive way to monitor the eating habits and the level
of mobility of an obese person while at home. The movements of a person in
different AoIs can be reliably detected by using a finite-state machine [30], in
which each state is associated to a different AoI. The temporal sequence of state
transitions the and time spent in each AOI measured by the RTI system can be
used to extract spatiotemporal activity patterns [44].

4.3 EvAAL Competition Deployment

The RTI system described in this chapter participated to the second EvAAL

(Evaluating AAL Systems through Competitive Benchmarking) competition [45]
in the track on indoor localization and tracking. Figure 12 shows the blueprint of
the home in which the experimental evaluation was carried out. In it, the yellow
circles represent the RF sensors, the black dots the true position of the person
during the test at 1 s intervals, the red dots the true position of the person at
spots in which she was stationary for five seconds, and the blue dots the position
estimates returned by the RTI system. The 42 RF sensors were installed by one
person in approximately 43 minutes. The position of the nodes was decided be-
fore their deployment in order to be able to pre-calculate the inversion matrix Π

in (14). However, in order to speed up the deployment, the installer positioned
the nodes by using the furniture found in the home as reference, i.e., without
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precisely measuring the distances among the nodes. This inevitably introduced
an error for some nodes between their real coordinates and the ones used in
the computation of Π . Despite this small errors, the RTI system was able to
accurately track the person moving around the home, as shown in Figure 12.

5 Conclusion

This chapter explores the use of radio tomographic imaging (RTI) in the con-
text of ambient assisted living (AAL) applications. In RTI, the received signal
strength (RSS) measured on the links of a mesh network composed of static
wireless transceivers are used to accurately localize and track people without
requiring them to wear or carry any sensor or radio device. The presence of a
person on the link line, i.e., the straight imaginary line connecting the transmit-
ter and receiver, changes the measured RSS. We show that this change in RSS
depends on the fade level of the measured frequency channel and the distance
between the two communicating devices. Based on these findings, the spatial
impact area of a link is modeled as an ellipse having the foci at the transmitter
and receiver. This ellipse is more narrow for shorter links, and wider for longer
links. The concept of fade level is used to weight the RSS measurements col-
lected on different frequency channels: the anti-fade channels are weighted more
than the deep fade ones, since their RSS measurements are more informative
for localization. By applying a regularized least-square approach, we are able to
estimate in real-time a discretized image of the change in the propagation field
of the monitored area due to the presence a person. The voxel of the RTI image
having the highest intensity represents the estimated position of the person.

RSS-based indoor localization becomes even more challenging in highly dy-
namic domestic environments, since the propagation patterns of the radio sig-
nals can be drastically changed even by small environmental modifications. In
this chapter, we introduce methods to make the RTI system able to recalibrate
on-line and adapt to the environmental changes introduced by the monitored
person during her daily activities. We deploy a system for over three months in
a typical single floor, single bedroom apartment inhabited by a single person.
Experimental results demonstrate that the average localization error is 0.23 m.
In addition, the system provides a high localization accuracy over an extended
period of time despite several environmental changes introduced by the person
during her daily activities, as shown in the video in [43]. The ability of the RTI
system to accurately localize the person without requiring her to participate in
the localization effort makes this technology a very attractive solution for AAL
and elder-care applications.
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