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Abstract—Radio Tomographic Imaging (RTI) is an emerging
technology for imaging passive objects (objects that do not
carry a transmitting device) with wireless networks. This paper
presents a linear model for using received signal strength (RSS)
measurements to obtain images of moving objects. A Gaussian
noise model is assumed, the accuracy of which is examined
through a measurement campaign. A maximum a posteriori
(MAP) estimator is derived as an image reconstruction algorithm,
and an experimental implementation of RTI is presented with
resultant images.

I. INTRODUCTION

Radio tomographic imaging (RTI) is an emerging applica-
tion which offers a new way to image passive objects in build-
ings and outdoor environments using received signal strength
(RSS). The reduction in costs for radio frequency integrated
circuits (RFICs) and advances in peer-to-peer data networking,
have made realistic the use of hundreds or thousands of simple
radio devices in a single RTI deployment. We describe in this
paper an imaging system which has power that increases as
Metcalf’s Law with the number of nodes, and suggest using
low-complexity devices to enable large numbers of nodes.

Radio tomography takes the advantages of two well-known
and widely used types of imaging systems. First, radar systems
transmit RF probes and receive echoes caused by the objects
in an environment [1]. A delay between transmission and
reception indicates a distance to a scatterer. Phased array
radars also compute an angle of bearing. Such systems image
an object in space based on reflection and scattering. Secondly,
computed tomography (CT) methods in medical and geophys-
ical imaging systems send signals along many different paths
through a medium and measure the magnitude and phase of the
transmitted signal. The measurements on many paths is used
to compute an estimate of the spatial field of the transmission
parameters throughout the medium [2]. Radio tomography is
also a transmission-based imaging method which measures
received signals on many different paths through a medium,
however, it does so at radio frequencies similar to radar
systems.

Tomography at radio frequencies across large, cluttered
environments experiences two major additional complications
compared to typical CT systems.
• RTI systems measure only signal magnitude. Medical

tomographic systems have motorized sensors which are
used to measure phase differences at different positions.
The high expense and deployment complexity involved

Fig. 1. An illustration of an RTI network. Each node broadcasts to the others,
creating many projections that can be used to reconstruct an image of objects
inside the network area.

in providing such a capability makes it incompatible with
the low-cost application space we target with RTI.

• The use of RF as opposed to much higher frequency EM
waves (e.g., x-rays), introduces significant non-line-of-
sight (NLOS) propagation in the transmission measure-
ments. Signals in standard commercial wireless bands
do not travel in just the line-of-sight (LOS) path, and
instead propagate in many directions from a transmitter
to a receiver.

Despite the difficulties of using RF, there is a major advan-
tage: RF signals can travel through obstructions such as walls,
trees, and smoke, while optical or infrared imaging systems
cannot. RF imaging will also work in the dark, where video
cameras will fail. Even for applications where video cameras
could work, privacy concerns may prevent their deployment.
An RTI system provides current images of the location of
people and their movements, but cannot be used to identify a
person.

A. Applications

One main application of RTI is to reduce injury for cor-
rectional and law enforcement officers; many are injured
each year because they lack the ability to detect and track
offenders through building walls [3]. By showing the locations
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of people and walls within a building during hostage situations,
during building fires, or after an earthquake, RTI can help law
enforcement and emergency responders to know where they
should focus their attention and recovery efforts.

Another application is in automatic monitoring and control
in ‘smart’ homes and buildings. Some building control systems
detect motion in a room and use it to control lighting, heating,
air conditioning, and even noise cancellation [4]. RTI systems
can further determine how many people are in a room and
where they are located, providing more precise control.

Generally RTI has application in security and monitoring
systems for indoor and outdoor areas. For example, existing
security systems are trip-wire based or camera-based. Trip-
wire systems detect when a person crosses a boundary, but do
not track the person when they are within the area. Cameras
are ineffective in the dark. An RTI system could serve both
as a trip-wire, alerting when intruders enter into an area, and
tracking where are at all times while they are inside, regardless
of availability of lighting or obstructions.

B. Related Work
RF-based imaging has been dominated in the commer-

cial realm by ultra-wideband (UWB) based through-the-wall
(TTW) imaging devices, including include Time Domain’s
Radar Vision [5], Cambridge Consultants’ Prism 200 [6] and
Camero Tech’s Xaver800 [7]. Each device is a phased array of
radars which transmit UWB pulses and then record the return
echoes and estimate a range and bearing. These devices are ac-
curate close to the device, but inherently suffer from accuracy
and noise issues at long range due to monostatic radar losses
and large bandwidths, and involve only one device. Some
initial attempts [8] allow 2-4 of these high-complexity devices
to collaborate to improve coverage. In comparison, in this
paper we discuss using dozens to hundreds of low-capability
collaborating nodes, which measure transmission rather than
scattering and reflection. Further, UWB uses extremely wide
RF bandwidth, which will limit its application to commercial,
non-emergency applications. Our paper investigates using ra-
dios with relatively small bandwidths.

To emphasize the small required bandwidth compared
to UWB, some relevant research is being called “ultra-
narrowband” (UNB) radar [9], [10], [11]. These systems
propose using narrowband transmitters and receivers deployed
around an area to image the environment within that area.
Measurements are phase-synchronous at the multiple sensors
around the area. Such techniques have been applied to de-
tect and locate objects buried under ground using what are
effectively a synthetic aperture array of ground-penetrating
radars [12]. Experiments have been reported which measure
a static environment while moving one transmitter or one
receiver [11], and measure a static object on a rotating table
in an anechoic chamber in order to simulate an array of
transmitters and receivers at many different angles [11], [12],
[9]. Because in this paper we use low complexity, non-coherent
sensors, we can deploy many sensors and image in real time,
enabling the study of tracking moving objects. We present
experimental results with many devices in real-world, cluttered
environments.

Recent research has also used measurements of path loss on
802.11 WiFi links to detect and locate a person’s location [13].
Experiments in [13] demonstrate the capability of a detector
based on the change in signal strength variance to detect and
to identify which of four links a person is obstructing. Our
approach is not based on point-wise detection. Instead, we
use tomographic methods to estimate an image of the change
in the attenuation as a function of space, and use the image
estimate for the purposes of tracking.

In our previous research, we have performed an experimen-
tal test of RTI in an empty indoor environment [14] as part
of a larger study of how to model link shadowing. This paper
presents a formal derivation and a real-time application of the
maximum a posteriori (MAP) tomographic image reconstruc-
tion estimator, which has not been presented in prior work.
Further, past work explored neither the noise model nor real-
time tracking, as is done in this paper.

C. Overview

This paper explores in detail the use of RF path losses on
links between many pairs of nodes in a wireless network in
order to image the changes in attenuation that occur within
the area of their deployment. We refer to this problem as
radio tomographic imaging (RTI). In general, when an object
moves into the area of deployment, we expect that links which
pass through that object will, on average, experience higher
shadowing losses. We explore the inverse perspective, that
is, the use of the measurement of additional path losses on
multiple, intersecting links to image the attenuation within the
area and infer the location of an attenuating object.

Section II presents a linear model relating RSS measure-
ments to the moving attenuation occuring in a network area,
and investigates statistics for noise in dynamic multipath
environments. Section III derives the MAP solution for ob-
taining an attenuation image using Gaussian prior assumptions.
Section IV describes the setup of an actual RTI experiment,
the parameters used, and the resultant images.

II. MODEL

A. Algebraic Formulation

When wireless nodes communicate, the radio signals pass
through the physical area of the network. Objects within the
area absorb, reflect, diffract, or scatter some of the transmitted
power. The goal of an RTI system is to determine a vector
x ∈ RN that describes the amount radio power attenuation
occurring due to physical objects within N voxels of a network
region. Since voxels locations are known, RTI allows one
to know where attenuation in a network is occurring, and
therefore, where passive objects are located.

If K is the number of nodes in the RTI network, then the
total number of unique two-way links is M = K2−K

2 . Any pair
of nodes is counted as a link, whether or not communication
actually occurs between the two nodes. The averaged two-way
signal strength R of a particular link is dependent on:
• Pt: Transmitted power.
• Ss: Shadowing loss due to static objects that attenuate

the signal.
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• Sm: Shadowing loss due to moving objects that attenuate
the signal.

• F : Fading gain that occurs from constructive and de-
structive interference of narrow-band signals in multipath
environments.

• Ld: Large-scale path loss due to the distance between two
nodes.

• La: Static losses due to antenna patterns, device incon-
sistencies, etc.

• ν: Noise.
Mathematically, the received signal strength (in dB) is de-
scribed as

R = Pt − Ld − La − Ss − Sm + F − ν (1)

This paper is concerned with imaging motion in an RTI
network, not static objects. If all static terms are grouped into
one variable Rs = Pt − Ld − La − Ss and the fading effects
are grouped with the noise as n = F + ν, (1) can be written
as

y = Rs −R = Sm + n. (2)

Rs can be determined using RSS measurements when no mo-
tion is occurring within the network, or by taking an average
of previous measurements. A simple calibration procedure for
determining this value is described in Section IV. If images
of static attenuation are desired, the shadowing terms can be
grouped, but the difficulty of determining individual losses
arises.

The shadowing loss Sm can be approximated as a weighted
sum of the changed attenuation that occurs in each voxel.
Since the contribution of each voxel to the attenuation of
a link is different for each link, a weighting is applied.
Mathematically, this is described for link i as

Sm(i) =
N∑
j=1

wijxj . (3)

If a link does not “cross” a particular voxel, that voxel is
removed by using a weight of zero. For example, Fig. 2 is an
illustration of how a direct LOS link might be weighted in a
non-scattering environment. In Section IV, an ellipse is used
as a simple mechanism to determine LOS weighting.

If all links in the network are considered simultaneously,
the system of RSS equations can be described in matrix form
as

y = Wx + n (4)

where y is the vector of all difference RSS measurements, n is
a noise vector, W is the weighting matrix, and x is the atten-
uation image to be estimated, all measured in decibels (dB).
W is of dimension M ×N , with each column representing a
single voxel, and each row describing the weighting of each
voxel for that link.

B. Noise Statistics

To complete the model, the statistics of the noise vector
n in (4) must be examined. The noise is dependent on the
accuracy of the linear model, and may vary depending on how
the received signal strength is calculated.

Fig. 2. An illustration of a single link in an RTI network that travels in
a direct LOS path. The signal is absorbed by objects as it crosses the area
of the network in a particular path. The darkened voxels represent the image
areas that have a non-zero weighting for this particular link.

In multipath environments, fading plays a significant role in
the received signal strength of a wireless link. Small changes in
the phase of a few multipath components, even due to motion
outside of the network area or small changes in node position,
can dramatically impact the measured RSS. Fading effects are
therefore a significant part of the noise statistics.

In this paper, a Gaussian noise model is assumed. Although
this is certainly an approximation, the benefits of using Gaus-
sian noise are evident when deriving a estimation procedure
for the image. Gaussian noise leads to a tractable, closed-
form solution, and makes a theoretical analysis of estimation
variance much simpler. More accurate noise modeling for
RTI networks in multipath environments is a topic for future
research.

To measure the accuracy of the Gaussian noise assumption,
RSS measurements from multiple network links in indoor
environments were examined. These links were placed in
locations with object motion occurring in the surrounding
areas so that fading effects would be present. Objects were not
allowed to cross the LOS paths of the links to avoid confusing
the effects of shadowing (the parameters being estimated in the
RTI model) with the noise statistics.

For each network deployment, many RSS measurements
were taken. The mean was removed and the variance nor-
malized for each batch to reduce the deployment dependent
effects, then merged for comparison with a theoretical distri-
bution. Fig. 3 is a quantile-quantile plot comparing the RSS
measurements with a theoretical standard normal distribution.
The measured data does not deviate significantly from a
standard normal distribution until after the second standard
deviation, indicating that a gaussian noise model provides a
reasonable level of accuracy.

III. IMAGE RECONSTRUCTION

An image reconstruction algorithm estimates the image
vector x from path loss projections contained in the data vector
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Fig. 3. A q-q plot comparing a standard normal distribution with that of
RSS measurements taken in indoor environments with surrounding motion.

y. Many inverse problems, include the RTI formulation, are ill-
posed, and some form of regularization must be incorporated
to achieve reasonable results. Here, a Bayesian approach to
image reconstruction is presented, but other algorithms for
algebraic models exist [2].

If it is assumed that noise is i.i.d. Gaussian, the maximum
likelihood (ML) estimator results in the least squares solution

x̂ML = (WTW)−1WT y. (5)

In this case, the matrix (WTW) is almost always singular. The
ML solution, although optimal in the sense of least squared
error, amplifies the noise to such an extent that the solution
becomes meaningless. To regularize the problem, a priori
information about the image vector is incorporated, and the
maximum a posteriori (MAP) formulation is used instead of
ML.

x̂MAP = arg maxx P (x|y) = arg maxx P (y|x)P (x). (6)

To derive a MAP estimator, it can be assumed that x is a
zero-mean gaussian random field with covariance matrix Cx.
Then

P (x) =
1√

(2π)N |Cx|
e−

1
2 (xTC−1

x x) (7)

and

P (y|x) =
1

(2πσ2
N )M/2

e
− 1

2σ2
N

||y−Wx||2
(8)

Since the log function is monotonic, the log likelihood can be
used to simplify the MAP derivation as follows.

x̂MAP = arg maxx lnP (x|y) (9)

= arg maxx lnP (y|x) + lnP (x) (10)

The minimization used in the MAP estimator is over x, so any
terms that do not contain it may be dropped. Plugging (7) and
(8) into (10) and replacing the argmax function with argmin
by inverting the sign results in

x̂MAP = arg minx
1

2σ2
N

||y−Wx||2 +
1
2

xTC−1
x x. (11)

Finally, taking the gradient with respect to x and setting equal
to zero results in the MAP estimator

x̂MAP = (WTW + C−1
x σ2

N )−1WT y. (12)

By incorporating prior assumptions about the image, the
singularity of the inverse shown in (12) is removed by adding
the inverse of the prior covariance, weighted by the noise
variance. If noise is very high, the solution is weighted closer
towards the a priori information. When noise variance is low,
the effect of the prior information plays less of a roll.

The MAP solution is simply a linear projection of the
measurement data, which is possible because the model is
linear and all parameter and data models are assumed to be
normal [15]. It can be re-written as

x̂MAP = Πy
Π = (WTW + C−1

x σ2
N )−1WT . (13)

Since the projection matrix Π only needs to be calculated
once, MAP reconstruction is very suitable for realtime RTI
implementation.

IV. EXPERIMENTAL RESULTS

An experiment using twenty eight “Telosb” wireless nodes
by Crossbow (2.4 GHz) was deployed in a large indoor room.
Furniture, walls, moving people, and other building structures
provided a rich multipath environment for testing. The nodes
were set up in a square network with a length of 14 feet on
each side, totaling 196 square feet. Each side of the square
contained eight nodes separated by two feet, similar to the
network depicted in Fig. 1.

An ellipse with foci at each node location is used to
determine the weighting for each link in the network. If a
particular pixel falls inside the ellipse, it is weighted as non-
zero, while all pixels outside the ellipse are set to weight zero.
Additionally, the weight for each pixel is normalized by the
link length.

wij =
1√
d

{
1 if dij(1) + dij(2) < d+ λ
0 otherwise (14)

where d is the distance between the two nodes, dij(1) and
dij(2) are the distances from the center of voxel j to the node
locations for link i, and λ is a parameter describing the width
of the ellipse.

The a priori covariance matrix Cx was created using an
exponential spatial decay

[Cx]kl = σ2
xe
−dkl/δc (15)

where dkl is the distance from pixel k to pixel l, δc is a
“space constant” correlation parameter that determines the
amount of “smoothness” of the resultant image, and σ2

x is the
variance at each pixel. High values for δc results in smoother
images, but also reduces detail. While an exponential spatial
covariance is easily calculated and tunable, other models for
prior covariance could possibly be used.

To image motion, the static measurment vector {Rs} as
described in Section II must be determined. This the instanta-
neous measurements is subtracted from this vector to remove
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Parameter Value Description
N 28 Number of nodes
∆p .6 Normalized pixel width (m)
Nc 2000 Number of calibration frames

TABLE I
SYSTEM SETUP USED TO OBTAIN RESULTS SHOWN IN FIG. 4 AND FIG. 5.

Parameter Value Description
λ .02 Width of weighting ellipse in (14) (m)
δc 4 Pixel correlation constant in (15) (m)
σ2

x .4 Pixel variance in (15) (dB)2

σ2
n 10 Noise variance in (12) (dB)2

TABLE II
RECONSTRUCTION PARAMETERS USED TO OBTAIN RESULTS SHOWN IN

FIG. 4 AND FIG. 5.

effects of static objects and deployment dependent losses.
To calibrate the system and obtain the static measurements,
the network is assumed to be stationary and vacant from
moving objects. The signal strength from each link taken Nc
times and is averaged over the entire calibration period. This
measurement vector is stored for difference comparison when
the system is in use.

The images in Fig. 4 and Fig. 5 show the results of
the implemented RTI system using MAP reconstruction (12).
Table II lists the model parameters used to obtain the results
in these figures.

An outdoor deployment of an RTI network was also tested.
Experiments demonstrate that it is possible to obtain the same
“quality” of image over a larger area with the same number
of nodes in outdoor environments. This is most likely due
to the reduction in multipath effects, and future research will
continue to investigate these observations.

V. CONCLUSION

Radio Tomographic Imaging (RTI) is a method of imag-
ing passive objects within a wireless network. This paper
presented a linear model relating signal strength (RSS) mea-
surements to attenuation occuring within spatial voxels of a
network area. A measurement campaign was performed to
validate a Gaussian assumption for the noise vector statistics.
These measurements were taken indoors when people were
moving near the links, capturing the effects of fading. Re-
sultant quantile-quantile plots indicate that a Gaussian noise
assumption is reasonable, but future work will entail the use
of more complicated noise models.

RTI is an ill-posed inverse problem, and regularization must
be incorporated to obtain usable results. In this study, the
image is assumed to be Gaussian, and a MAP estimator is
used for image reconstruction. The MAP estimator provides
a simple and closed-form solution which is mathematically
simple and suitable for real-time implementation. Other forms
of inverse problem regularization, prior assumptions, and
image reconstruction algorithms topics for future research.

An implementation of an RTI system using 28 nodes
operating at 2.4 GHz. Results show that the system is effective
in creating attenuation images of humans standing in areas on
the order of hundreds of square feet.

Finally, images created via RTI provide a natural framework
to track targets that move within a wireless network.
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(a) (b)

Fig. 4. (a) Photo of an 28-node RTI system with one person inside the network boundaries. (b) RTI results using MAP reconstruction for the setup shown
in (a). The bright spot reveal the human’s location within the network region. Only one measurement for each link was used to construct the image.

(a) (b)

Fig. 5. (a) Photo of an 28-node RTI system with two people inside the network boundaries. (b) RTI results using MAP reconstruction for the setup shown
in (a). The bright spots reveal the humans’ location within the network region. Only one measurement for each link was used to construct the image.


