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Abstract

We present a novel technique for radio transmitter iden-
tification based on frequency domain characteristics. Our
technique detects the unique features imbued in a signal
as it passes through a transmit chain. We are the first
to propose the use of discriminatory classifiers based on
steady state spectral features. In laboratory experiments,
we achieve 97% accuracy at 30dB SNR and 66% accuracy
at 0dB SNR based on eight identical Universal Software Ra-
dio Peripherals (USRP) transmitters. Our technique can be
implemented using today’s low cost high-volume receivers
and requires no manual performance tuning.

1. Introduction

In this paper we describe a new technique for identify-
ing a radio transmitter via RF fingerprinting. Our technique
exploits the aggregate effect of differences introduced dur-
ing transmitter manufacturer. Differences in component de-
sign (filters, power amplifiers, inductors, capacitors), same
component manufacturing tolerance spread, PCB materials
and PCB soldering etc. These differences are imbued in
the transmitted signal the and effect can be detected at the
receiver. Our method assumes the receiver’s frequency re-
sponse remains constant. The only differences in the digital
baseband samples produced by the receiver’s radio are due
to different transmitters and noise and interference.

Identification of a radio transmitter at the physical layer
would enjoy many applications. Gerdes et al.[2] give a di-
verse list of possibilities; intrusion detection, authentica-
tion, forensic data collection and defect detection monitor-
ing. Our work was motivated by a cellular wireless applica-
tion of femto basestations[5]. This application is a special

case of authentication. It involves reducing the core net-
work signalling load due to location management in GSM
and UMTS cellular networks. As cells reduce in size, it
often desirable to limit cell access to only a subset of an
operator’s subscriber base. For example, an end customer
may install a femto base station and expect exclusive access
to it. That is, other mobile phones on the same network
may sense the femto cell but when they attempt to camp
on it they are to be denied access. From a logical view
point denying access is straightforward. The tempory ID
provided by the handset is mapped to an absolute ID via sig-
nalling to the core network. Based on this absolute ID the
femto either permits or denies access. However the large in-
crease in cells and resulting large increase in location area
updates means the core network experiences a very large
increase in signalling. If we can identify a mobile phone
at first contact with the basestation using RF fingerprinting,
we can provide an elegant solution to the challenge of su-
pressing signalling traffic at higher layers.

The rest of the paper is organised as follows. We start
in Section 2 by reviewing the previous work described in
the literature. In Section 3 we describe our proposed ap-
proach and in Section 4 we describe our experimental setup
and how we capture the data for testing our approach. Fi-
nally, we present the results in Section 5 and conclude in
Section 6.

2. Background and Previous Work

Several researchers have reported the possibility of iden-
tifying a radio transmitter by analysing the received sig-
nals. This work stretches back to 1940s and radar trans-
mitter identification [6]. The majority of techniques focus
on transmissions at the physical layer.

Physical layer fingerprinting techniques may be split into



two groups: transient signal techniques and steady state
signal techniques. A transient signal is transmitted upon
transmitter stage power up and power down. It is the short
period (typically micro seconds) during which capacitive
loads charge or discharge, the power amplifier ramps its
power output and in some cases, where the frequency syn-
thesizer makes the transition between steady state frequency
generation and being powered off. The steady state period
of signal transmission is defined here as the period between
the start and end transients.

We are only aware of one example in the literature of
studying the steady state signal [2]. The main reason for this
is the apparent lack of a steady state signal common to all
devices. That is a steady state signal that is either unmodu-
lated or contains the exact same data modulation. This prop-
erty is important since the signal provides a benchmark for
discovering difference between transmitters. By contrast,
almost every radio radiates a transient signal upon switch-
on and switch-off. For this reason, transient analysis has
enjoyed the most attention in the literature [4, 8, 9, 10, 11].

Transient analysis discriminates using the minor ampli-
tude variations that occur upon transmitter switch on. Due
to the short duration of transient signals, very accurate and
consistent detection of the transient part of the signal is
important for good identification performance. However,
it also poses the most significant challenge. The receiver
architecture is unusual since it must be capable of digitis-
ing at extremely high sample rates. This is necessary to
provide the granularity of amplitude information required
for the transient feature extraction algorithms. For exam-
ple 5 GSamples/s is used by Serinken et al. [1, 9] and 500
MSample/s is used by Hall et al. [3]. The two key ap-
proaches are the threshold [8] and Bayesian step change de-
tector [10, 11]. Both rely on reception at high SNR and an
abrupt change at the start of the transient - both of which
may not exist in practice. A third approach based on fre-
quency domain analysis was recently proposed by Hall et
al. [4]. Rather than relying on amplitude characteristics for
start and end time estimation, the authors were able to pro-
duce reasonable estimates by analysing the variance of its
spectral components under high SNR conditions. However,
as noted by the authors, it is not yet known to what extent it
is possible to find distinguishing characteristics in the tran-
sients in larger device sets. Others have reported that the
level of difference between identical transmitters manufac-
tured by the same company may not be distinguishable us-
ing transient analysis [1]. Where it is possible to reliably
detect the transient start and end points, several researchers
have reported good classification performance. In excess of
90% for high SNR environments [3, 8, 9].

The lack of a steady state signal common to all trans-
mitters is no longer the case in modern transmitters. To-
day’s digital transmitters intentionally introduce repetitive

sequences such as preambles to simplify receiver design.
This makes steady state signal analysis feasible today. Re-
cently Gerdes et al. [2] proposed that analysing the steady
state signal may provide the ability to distinguish between
same model cards manufactured by the same company.
They argue that the transient signal is so short that it cannot
contain enough information to discriminate between similar
devices. Their focus is on wireline transmitters where sim-
ilar principles apply. A portion of the IEEE Ethernet 802.3
frame preamble common to all devices was identified and
used to construct a device fingerprint. They use a matched
filter implementation and simple thresholding to perform
classification. Training involves characterising the matched
filter’s output to determine the output magnitude that corre-
sponds to a match for a particular transmitter. The discrim-
inatory capabilities of this approach are unclear. No over-
all level of acuracy is provided. It appears that the thresh-
olding decision for device identification can result in more
than one device being identified. The result is many false-
positive identifications. Their system also requires many ad
hoc steps to tune the performance. For example, the dis-
criminatory performance was manually refined through a
combination of bandpass filtering, creating an ensemble of
matched filters and time domain trimming.

In summary, physical layer fingerprinting offers promise
for passive discrimination between a large set of wireless
transmitters. We note that:

1. Transient analysis offers good classification perfor-
mance only where the begining and end of the transient
can be reliably identified.

2. It has been reported in [1, 2], that transient analysis is
not always able to distinguish between same manufac-
turer/same model variants.

3. The very high sample rates demanded by transient
analysis requires sophisticated and expensive receiver
architectures.

Steady state signals offer a relatively unexplored alterna-
tive to transient analysis. We note that if discrimination is
possible in the frequency domain, the use of standard low
cost ADC sample rates and receiver architectures will be
made possible.

3. Method

Our approach to RF fingerprinting uses frequency do-
main analysis combined with traditional discriminatory
classifiers to perform device identification. When com-
pared to the only known previously published steady state
technique[2], our technique offers a significant performance
improvement through more flexible feature selection and



the use of a k-NN discriminatory classifier. Our work is
distinguished from the large body of previous work on tran-
sient based analysis by its focus on the steady state portion
of the signal. The main advantage over transient analysis is
that it can be implemented using todays low-cost radio re-
ceiver front ends e.g. ethernet access points or femto cells.
These radio receivers capture the signal at sufficiently high
sample rates for our proposed approach. By contrast, tran-
sient based approaches require very high sample rates to
capture the amplitude fluctuations of the transient part of
the signal.

Figure 1 illustrates the processing steps involved in de-
vice identification. The input to the preprocessing stage is
the received RF signal from the transmitter. For conve-
nience we constrain the higher layers of the communica-
tions system to transmit exactly the same signal every time.
Handing more than one signal is just a matter of implemen-
tation. For example, for the RACH preamble in UMTS, the
signature and uplink scrambling code pair are constrained
to a single combination, rather than the usual 16-48 differ-
ent combinations. A standard radio receiver architecture is
employed, downconverting the transmit band to baseband,
before being bandpass sampled by the ADC at the Nyquist
rate.

The next step in Figure 1 is carrier frequency offset cor-
rection. Captured preambles are separated in time by a pe-
riod of no transmission. The preamble sequences were ex-
tracted from the signal prior to downsampling using a sum
of the absolute values window function. The window has
length equal to the number of samples in a preamble. It
is shifted across the file in 10 sample increments, with the
total energy recorded for each window. For every set of
samples between two periods of no transmission, the win-
dow with the maximum energy is extracted as the preamble.
No attempt is made to distinguish between transient and
steady state portions of the signal. We estimate the com-
plete preamble is extracted with better than 99.99% accu-
racy relative to its total energy content.

Spectral analysis is then performed on the entire trans-
mitted premable signal. The Fast Fourier transform (FFT) is
used to compute spectral components from the time domain
steady state portion of the signal and a set of log-spectral-
energy features is input to the classifier. Prior to the spectral
analysis and to remove amplitude variations that may occur
each time the signal is transmitted, the time domain samples
are amplitude normalised.

The output of the spectral analysis stage feeds into the
final device identification stage in Figure 1. The data col-
lected from each board is divided into two sets. The first set
is used in the classification training step and the second test
set is omitted from training and used to test performance of
the system. The k-Nearest Neighbour (NN) classification
technique is employed in the experiments. In the k-NN al-
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Figure 1. Processing Chain

gorithm the training preambles is mapped into multidimen-
sional feature space which is partitioned into regions based
on the class labels. The preamble is said to belong to a par-
ticular class if it is the most frequent class label among the
k nearest training preambles, where distance is determined
using the Euclidean distance metric. In these experiments
k = 5 is used. In this RF Fingerprinting system each class
represents one of the 8 possible Universal Software Radio
Peripheral (USRP) transmitter boards. The system is pre-
sented with a previously unseen preamble and attempts to
discriminate between each of the 8 candidate classes to de-
termine from which board this preamble is obtained from.
Classification accuracy is given as the percentage of cor-
rectly identified boards.

4. Experimental Apparatus

The test equipment used for the experimental work com-
prises an Anritsu MG3700A vector signal generator, an An-
ritsu Signature MS2781A spectrum analyser, and eight US-
RPs. The USRP is an inexpensive, flexible, and powerful
radio front-end for software defined radio operations and
experimentation. The USRP consists of a motherboard that
houses a FPGA, two DAC/ADC chipsets, four daughter-
boards, and a USB bus to transfer data and control informa-
tion. To minimise the potential for interference, each trans-
mission source is connected via a coaxial cable to the spec-
trum analyser. The Anritsu MS2781A captures received
samples of 200 ms in duration from each of the transmis-
sion sources.

As observed above, the important property of the pream-
ble is that it is always identical and is repeated often. The
details of the preamble are not particularly important, but
we based our preamble on the UMTS random access chan-
nel (RACH) preamble. To match the nominal bandwidth
of the USRP, our preamble occupies a bandwidth of 1MHz
and consists of 4096 chips at a rate of 0.768Mcps. The 4096



chip pseudorandom quadrature phase shift keying (QPSK)
signal is generated using Matlab. This baseband signal is
then passed through a root raised cosine filter of order 40
and excess bandwidthBT = 0.22. The transmissions are
centered in 2.4 GHz - 2.5 GHz band and each RACH pream-
ble burst is separated by a 0.5 ms null guard interval.

This QPSK-level description of the preamble is trans-
mitted by each of the USRPs. The Centre of Telecom-
munications Valuechain Research (CTVR) reconfigurable
software radio platform, Implementing Radio in Software
(IRIS)[7], is used to drive the USRPs. Each USRP is driven
identically, so the only difference in the complete transmit
chain is simply the transmitter (the circuitry from the DAC
through to the antenna).

The receiver used is an Anritsu MS2781A Signature
spectrum analyser. It is connected to one RF transission
source at a time using a coaxial cable. The analysers output
is the baseband digital I/Q samples. The analyser sampled
at 50 MS/s which is then decimated to 2 MS/s in software.

We capture a total of 2400 preambles - 300 for each of
the eight USRP boards. 150 preambles are used for training
purposes and the remaining 150 preambles are used to test
the system.

5. Results

We conducted two experiments to measure and help un-
derstand the performance of our approach. We collected
measurements for eight different USRP transmitters. These
transmitter boards have identical specifications, although
boards two and six are slightly revised designs (marked Rev
3.0) with a couple of minor component supplier changes.
The signals were collected with good SNR via cabelled
connections. The MATLAB additive white Gaussian noise
(AWGN) function was used to add white Gaussian noise
to the signals. The classification performance is graphed
in Figure 2. The plot is the achieved classification perfor-
mance expressed as a percentage against SNR. Based on
passing a single RACH preamble into the classifier, 97%
classification accuracy above 25 dB SNR was achieved.
The performance drops off as expected for lower SNR val-
ues, however it still managed to produce results with 66%
accuracy for 0 dB SNR.

The second experiment explored the effect of the binning
on classification accuracy. The binning functions purpose is
to reduce the number of spectral features fed into the classi-
fier. If the number of bins is set to one, a single feature - the
mean energy of the complete spectrogram, forms the classi-
fier input. As we increase the number of bins, the frequency
granularity is increased. Figure 3 shows the results of this
experiment, plotting percentage classified correctly versus
the number of bins. The plot is split into two pieces so that
we can present the first 200 bins in more detail. We recorded

0 5 10 15 20 25 30
65

70

75

80

85

90

95

100

SNR (dB)

P
er

ce
nt

ag
e 

cl
as

si
fie

d 
co

rr
ec

tly

Figure 2. Best recorded classification perfor-
mance against SNR.

performance every 5 bins under 200 and then every 50 bins
between 200 and 2000. As can be seen from the graph, the
first 10 bins showed the steepest increase in performance,
before the plots levels off. We notice that the lower SNR
conditions demand more bins to achieve the maximum clas-
sification performance.

We believe that at high SNR, even the smallest spectral
energy differences can contribute to discrimination. As the
SNR increases the small spectral energy differences start
to be destroyed. By increasing the number of bins, we in-
crease the number of spectral energy features. In doing so,
we reduce the chance that all features have had their com-
plete discriminatory value destroyed by noise. We note that
noise will reduce the discriminatory value offered by the
smaller bins, hence even after dividing the energy across
many bins, lower overall classification performance is still
to be expected at low SNR.

The 15dB-30dB SNR plots have all reached their max-
imum classification performance by about 200 bins. The
0dB-10dB plots are very close to reaching their maximum
classification performance by 2000 bins.

6. Conclusions

We have presented a novel, low-cost approach to trans-
mitter identification using RF Fingerprinting. Our approach
performs very well - being able to distinguish between eight
identical transmitters with 97% accuracy at 30dB SNR. Per-
formance is still good at 0dB SNR, reporting an accuracy of
66% dB. Our use of the k-NN discriminatory classifier auto-
mates creation of the classification engine and the use of the
DFT introduces great flexibility into spectral feature selec-
tion. Our system is capable of working with common low-
cost receiver architectures with no hardware modifications.
It therefore offers a lower cost solution to previously pro-
posed transient based approaches which require very high
speed ADCs.
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Figure 3. Percentage classified correctly against number of bins for several SNR environments.

In future work we plan to investigate other radio trans-
mitters, techniques to improve performance in high SNR
environments and other non-ideal environments. We have
reason to be confident that our system will perform well
in indoor multipath radio environments due to the typically
small delay spread relative to chip rates.

References

[1] K. Ellis and N. Serinken. Characteristics of radio transmit-
ter fingerprints.Journal of Radio Science, pages 585–597,
2001.

[2] R. Gerdes, T. Daniels, M. Mina, and S. Russell. Device
Identification via Analog Signal Fingerprinting: A Matched
Filter Approach.ISOC Network and Distributed System Se-
curity Symposium, 2006.

[3] J. Hall, J. Barbeau, and E. Kranakis. Detection of Transient
in Radio Frequency Fingerprinting using Signal Phase.Pro-
ceedings Wireless and Optical Communications, 2003.

[4] J. Hall, M. Barbeau, and E. Kranakis. Detecting rogue de-
vices in Bluetooth networks using Radio Frequency Finger-
printing. Proceedings of the International Conference on
Communications and Computer Networks, 2006.

[5] L. Ho and H. Claussen. Effects of User-Deployed, Co-
Channel Femtocells on the Call Drop Probability in a Res-
idential Scenario.IEEE International Symposium on Per-
sonal, Indoor and Mobile Communications, 2007.

[6] R. Jones.Most Secret War. Hamilton, 1978.
[7] P. Mackenzie, L. Doyle, K. Nolan, and D. Flood. IRIS A

system for Developing Reconfigurable Radios.IEE Collo-
quim on DSP-enabled Radio, September 2003.

[8] D. Shaw and W. Kinsner. Multifractal Modelling of Radio
Transmitter Transients for Classification.Proceedings Con-
ference on Communications, Power and Computing, pages
306–312, 1997.

[9] O. Tekbas, N. Serinken, and O. Ureten. An experimental
performance evaluation of a novel radio-transmitter iden-
tification system under diverse environmental conditions.
Canadian Journal Computer Engineering, 2004.

[10] O. Ureten and N. Serinken. Bayesian detection of transmit-
ter turn-on transients.Proceedings NSIP99, pages 830–834,
1999.

[11] O. Ureten and N. Serinken. Detections of radio transmit-
ter turn-on transients.Electronic Letters, pages 1996–1997,
1999.


