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RADIOCARBON AGE CALIBRATION OF MARINE SAMPLES BACK TO 9000 CAL YR Br
MINZE STUIVER*, G W PEARSON**, and TOM BRAZIUNAS*

INTRODUCTION

Calibration curves spanning several millennia are now available in this
special issue of RApIOCARBON. These curves, necarly all derived from the "*C
age determinations of wood samples, are to be used for the age conversion
of samples that were formed through use of atmospheric CO,. When sam-
ples are formed in reservoirs (eg, lakes and oceans) that differ in specific "G
content from the atmosphere, an age adjustment is needed because a con-
ventional *C age, although taking into account M (and "C) fractionation,
does not correct for the difference in specific "G activity (Stuiver & Polach,
1977). The C ages of samples grown in these environments are too old,
and a reservoir age correction has to be applied. This phenomenon has
been referred to as the reservoir effect (Stuiver & Polach, 1977).

The reservoir age, or apparent age, R(t) is here defined as the difter-
ence between conventional *C ages of samples grown contemporancously
in the atmosphere and the other carbon reservoir. R(t) is not constant (t =
cal age) because the difference in reservoir and atmosphere "G specific
activity is liable to change with changes in reservoir parameters (such as size
of the carbon pool, input and output fluxes and exchange with the atmo-
sphere) and atmospheric A™C values. However, duc to the lack of detailed
information, a variable reservoir age correction usually cannot be applied,
and the user of "*C ages then resorts to the assumption of a constant reser-
voir age correction R* (ie, the reservoir "*C specific activity is assumed to
parallel atmospheric *C specific activity at all times). The reservoir age cor-
rection R* is obtained from the conventional '*C age of reservoir samples
of either historically known age, or of inferred known age (such as the
uppermost portion of lake sediment). This approach is, of course, only a
first order approximation. However, even though the resulting reservoir
corrected '*C age is not the ultimate in accuracy, the corrected "“C age
should be closer to the **C age of a contemporaneous wood sample than the
uncorrected one,

The recent introduction of the dating of mg C samples through AMS
(accelerator mass spectrometry) allows for an improved determination of
variable reservoir ages R(t) in lakes because it is now possible to measure, at
different depths, the age differences between 1) those plant macrofossils
that were originally utilizing atmospheric '*CO,, 2) lake carbonate, and 3)
gyttja. The first study of this kind has been made for the sediments of a
small closed basin of the Lobsingsee, Switzerland (Andrée et al, 1986b).
Here the problem of reservoir age corrections can be avoided entirely if a
sufficient number of macrofossils formed directly from atmospheric CO,
can be found.
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For small carbon reservoirs where the exchange rate with the atmo-
sphere is dominant (eg, a shallow 10ha lake) the change in specific '*C con-
tent may well parallel the observed change in atmospheric *C content. For
other reservoirs, however, appreciable differences are possible. For
instance, the top 75m of the ocean (well mixed due to wave action, etc)
attenuates atmospheric decadal A"C changes strongly due to its inertia in
responding to atmospheric forcing, and the deep ocean lags appreciably in
its response to long-term atmospheric "*C change. The idea of a constant
reservoir age correction R* is not tenable in this case.

The reservoir age of marine shells has been determined in the past
from the conventional "*C age of shells of known historic age (year AD X),
after correcting for fossil fuel COy-induced "“C age change in the mixed
layer of the ocean (Mangerud & Gulliksen, 1975; Robinson & Thompson,
1981). This fossil fuel corrected C age is then compared with the age of
the sample, i¢, 1950 — X, and the differencc is the reservoir or apparent
age. This procedure assumes constant atmospheric '*C level, where calen-
dar years and '*C years are interchangeable. Thus, the reservoir age in this
instance is the fossil fuel corrected shell *C age minus the '*C age of a sam-
ple formed from atmospheric CO, in AD X.

Olsson (1980), in addition, discusses the '"C ages of samples formed
from atmospheric CO, of the 19th century, and compares these with the
conventional shell '*C ages. The difference again is the apparent or reser-
voir age. But, as noted by Olsson, “in this discussion, it has been tacitly
assumed that the aim is to arrive at a reservoir effect that is not affected by
short-term fluctuations of radiocarbon in the atmosphere.”

Two avenues of age calibration are possible for a sample formed in a
fluctuating "C environment. One is to derive the variable reservoir age R(t)
in conventional *C years, apply this correction to obtain a reservoir cor-
rected "*C age, and then use the calibration curves valid for samples formed
directly from atmospheric CO,. The other is to produce a separate calibra-
tion curve that includes the variability in reservoir ages. Such a curve gives
the conventional *C age minus a AR number (explained later on) vs the cal
BP (cal AD/BC) age. We here follow the latter approach for marine samples.

A box-diffusion model as described by Oeschger et al (1975) was used
to simulate global carbon exchange. We attribute the observed atmo-
spheric AMC variability of the last 9000 yr to solar (heliomagnetic) and gco-
magnetic modulation of the cosmic ray flux (Stuiver & Quay, 1980; Stern-
berg & Damon, 1983), and consider model parameter change induced by
oceanic (climate) change to be negligible over this time interval (Andrée et
al, 1986a). The observed atmospheric A"C record is used to calculate the
" content of the mixed layer (top 75m) of the model ocean, and the model
mixed layer '*C ages are plotted vs cal AD/BC (cal BP) ages. The calibration
curves are different from those given elsewhere in this issue because the *C
ages are not directly measured but calculated from the atmospheric record
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through carbon reservoir modcling. The curves thercfore not only reflect
the original measuring uncertainty in the wood A™C values that constitute
the model input, but also uncertainties in model parameters.

THE GLOBAL CARBON MODEL

The atmospheric A™C data used as input for the model span the AD
19507746 BC interval. A composite data set (Fig 1) was derived by com-
bining the data of Stuiver and Pearson (1986) for the Ap 1950-500 BC
interval, of Pearson and Stuiver (1986) for 500-2490 BC, of Pearson et al
(1986) for 2500-5210 Bc, of Linick, Suess and Becker (1985) for 5219-
5346 BC and H818-5882 Bc, of Stuiver el al (1986) for 5685-5815 BC,
6475-6552 BC, and 6574-7198 BC, of Kromer ef al (1986) for 5908-6200
BC, 6279-6469 BC, and 7206-7746 BC, and of Linick et al (1986) for 5355
5675 BC and 62056275 BC. The Figure 1 data represent average AMC val-
ues of 20-yr samples back to 5220 Bc, and of a mixture of intervals (single yr
to up to 20 yr) prior to that.

Detailed atmospheric A™C on a decadal scale is given in Figure 2 for
the last 4500 yr (Stuiver & Becker, 1986).

For the carbon reservoir modeling, we constructed a curve with bi-
decadal coverage for the entire AD 1950-7740 BC interval. The initial equi-
librium conditions of the model were set at an atmospheric A'*C value of
+90%o (Stuiver ef al, 1986). An important parameter of the box-diffusion
model (sce also Stuiver & Quay, 1981) is the atmospheric CO, concentra-
tion which is fixed at 280ppm (Neftel et al,1985; Stuiver, Burk & Quay,
1984). Oceanic C concentration is set at 2.31moles/m3 (Takahashi,
Broecker & Bainbridge, 1981). The biosphere is set at a constant 1900
Gigatons C (Olson, Pfuderer & Chan, 1978). The biosphere is divided into
two reservoirs with residence times of 2.7 yr and 80 yr (Emanuel et al,
1984). The reservoir with fast turnover contains 10.6% of the total biomass,
the other 89.4% (Emanuel et al, 1984). Gas cxchange rate F is set at
19moles/m?yr in order to yield a nearly 50%0 A*C difference between the
atmosphere and mixed layer in the year 1830 (the last bi-decadal midpoint
without fossil fuel CO, influence). To generate a 40%y difference between
th2e atmospheric and mixed layer AMC, F has to be adjusted to 24moles/
moyr.

A vertical diffusion coefficient K, of 1.26cm®/sec yields a deep ocean
A™C value of —190% in 1850, in agreement with GEOSECS measure-
ments (Stuiver, Quay & Ostlund, 1983).

MODEL RESULTS

The model input is the post-7750 BC atmospheric A™C record, of
which the post-7200 BC portion is given in the top curve of Figure 3. The
A™C values of the 550 yr preceding 7200 BcC (Fig 1) were used for a proper
startup of the model.

Model-derived mixed layer A™C values (F = 19moles/m*yr, K —
1.26cm?/sec, to yield a mixed layer A™C = —49.7% (R = 409 yr) at AD
1830) are given in the middle curve. Relative to the atmosphere, there is a

substantial attenuation of the higher A"C frequencies in the mixed layer.
For the deep ocean (bottom curve) only a long-term trend remains.

To determine the sensitivity of the model results to the choice of F and
K,, we also generated mixed layer A'C values with model parameters sct
at F = 24moles/m%yr,K, = 1.26cm*/sec, to yield a mixed layer AC =
—40.4% (R = 331 yr) at AD 1830. The difference between the F = 19 and
F — 24moles/m? yr model outputs of mixed layer A'C values and *C ages
are given in Figure 4. Evidently the calibration curve is relatively insensitive
to F because the model-calculated mixed layer ages, after normalization on
the same bascline, differ by up to 16 '*C years.

Eddy diffusivity is faster in the upper portion of the ocean than in the
lower part (Stuiver, 1980). We compared the model-gencrated mixed layer
'C ages for K, values of 1.26cm’ /sec and 2.2cm®/sec, with Rsetat 409 yr in
AD 1830 in both cases. The faster diffusivity was accompanied by an
increased exchange cocfficient F of 20moles/m’yr. The resulting model
outputs of mixed layer *C ages differed by a fraction of a decade for the
long term (millennia), as well as the shorter term (century) type oscillations.
Thus, the fine structure of the model mixed layer curves is not sensitive to
assumed K, values.

Figure b gives the conventional "*C ages of the atmosphere, mixed
layer of the ocean, and the deep ocean. The differences in basic features of
the atmospheric and marine calibration curves are caused by the strong
attenuation in the oceans of the higher frequency A™C perturbation. This
leads to the variable R(t). With the traditional method of correcting marine
'C ages one would deduct a fixed reservoir age R* (derived for one year
only) from the Figure 5 results and use it for all ages. Two examples of this
approach are given in Figures 6 and 7 where fixed reservoir ages of 409 yr
and 1684 yr are deducted from, respectively, the mixed layer and deep
ocean "“C ages. The deducted reservoir ages are those calculated for the
year 1830. Whereas the fixed reservoir age concept indeed gives calibration
curves resembling the atmospheric one for the 4300-5000 BC interval (Fig
6), appreciable differences are found for the 200-900 BC interval (Fig 7).
This is due partially to the perturbation in atmospheric A*C between 400
and 750 BC which results in the horizontal portion of the Figure 7 atmo-
spheric calibration curve. This perturbation is much smaller in the mixed
layer, and absent in the deep ocean (Fig 7). Similarly, the lag in deep ocean
response to the long-term post 5000 BC atmospheric A'*C decline results in
the lower curve offset in Figure 7.

Atmospheric A"C changes in our model are caused by production rate
changes. The atmospheric A™C changes in turn influence the oceans. A
reverse scenario in which changes in ocean circulation lead to atmospheric
AMC changes is contradicted by the work of Andrée et al (1986a) on the "G
age differences of the mixed la‘?’cr and the decp ocean. These age differ-
ences were derived from the '*C ages of planktonic and benthic marine
organisms in two sediment cores of the South China Sca (Fig 8). As dis-
cussed by Andrée et al (1986a), a drastic post 6000 BP speed-up in occan
circulation is needed if the oceans would be the primary cause of the long-
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term change (Fig 1) in atmospheric A'*C values. For this scenario a much
lower rate of ocean mixing is needed in the early Holocene which would
generate “C age differences twice as large as currently found between
mixed layer and deep ocean (Andrée et al, 1986a). As this is not the case
(Fig 8), our first order assumption of constant reservoir parameters is jus-
tified. It should be noted, however, that even with a fixed mode of ocean
circulation, changes of up to 200 yr are possible in the mixed layer-deep sea
Holocene C age differences (Fig 8).

The variable reservoir ages R(t) of the mixed layer and deep ocean
deduced from Figure 5 are given in Figure 9A. The atmospheric A'*C low-
ering associated with fossil fuel combustion decreases the reservoir age of
the mixed layer and deep ocean by about, respectively, 100 yr and 170 yr
between AD 1850 and 1950 (Fig 9B).

RADIOCARBON AGE CALIBRATION AND AR DETERMINATION

The question arises how a user provided with a conventional “C age of
a sample from a certain part of the ocean should use the calibration curves
that are calculated for the world oceans. After proper correction for iso-
tope fractionation (Stuiver & Polach, 1977), the conventional '*C ages of
marine shells are generally too old. The age anomaly (reservoir age) is 200
to 400 yr for the mixed layer of the world oceans, but may be larger in areas
of upwelling (up to 1300 yr, Stuiver & Braziunas, 1985).

Our calibration curves depict the relationship between cal AD/BC (cal
BP) ages and conventional (Stuiver & Polach, 1977) '*C ages. Those "*C ages
arc corrected for isotope fractionation, but not for any reservoir defi-
ciency. The model mixed layer and decp occan reservoir ages average,
respectively, 373 yr and 1554 yr over the last 9000 yr. These averages result
from our choice of specific model parameters and do not reflect local varia-
tions in the ocean reservoir ages.

To accommodate local effects, the model ocean can be matched with
regional parts of the world ocean by assuming a parallel A™C response, ie,
we assume as a first approximation identical time-dependent response of
the regional and world ocean to atmospheric forcing. Further refincment
would be possible if each region could be modeled separately. However, we
have to work at present with the above approximation.

The reader of the previous sections will have noticed the time-depen-
dent character of the reservoir age R(t) of the mixed layer of the ocean. The
reservoir age, or the conventional e age difference between samples
formed contemporaneously in the mixed layer and the atmosphere, is time-
dependent because the oceanic A™C response to atmospheric A'*C forcing
differs from the atmospheric signal. However, an approximately parallel
response to atmospheric forcing of a regional part of the ocean and the
world ocean results in a constant difference (AR) in reservoir age of the
two. Thus, although reservoir ages are time-dependent, AR, as a first
approximation, is not.

The difference AR in reservoir age of the regional part of the ocean
from which the users sample is derived, and the reservoir age of our model
ocean, is determined through the use of Figure 10A. The user necds infor-

mation on reservoir ages, i¢, a '*C age P should be available for a historic
(year AD X) sample collected from the same reservoir from which his/her
sample is derived. The user has to derive from Fig 10A the model mixed
layer (or deep ocean) '*C age Q for year AD X. The correction factor to be
used for the sample "“C age in the calibration Figures 11 and 12 is then
AR =P - Q.

In case the user lacks information on 'C ages of historic samples he/
she can assume the sample comes from an environment similar to the
model world ocean. The Figure 11 and 12 calibration curves (with AR = 0)
can then be used directly.

Our calculations neglect hemispheric reservoir differences that cause
"C ages of atmospheric samples of the Southern Hemisphere to be ca 30
years older than those of the Northern Hemisphere. Hemispheric differ-
ences will be taken into account in a model currently being developed by
one of us (T Braziunas).

Suggested AR values for various oceanic regions are E)lotted in Figure
10B. These weighted mean AR values were derived from “C ages listed in
Table 1, which also gives the sample groupings from which the average AR
values were derived. Except for a few instances, Table 1 contains only shell
sample dates.

The standard deviations Eivcn with AR in Table 1 were derived from
the errors reported with the ™C ages. The '*C age groupings also can be
viewed as a data set from which the standard deviation (*‘scatter’ sigma) in
the unweighted mean can be calculated. These “scatter” sigmas in the
unweighted mean are given in Table 1.

The largest of each set of sigmas was used for the = value plotted in
Figure 10B. In view of the much debated under-reporting of '*C age errors,
it was gratifying to sce that the scatter sigma was, on average, only 1.1 times
the "C age sigma. From this we conclude 1) the additional uncertainty in
AR introduced by non-uniform '*C content of the regional ocean reservoirs
is small, and 2) the age errors given for the Table 1 shell samples are realis-
tic estimates of the measurement precision.

The uncertainty in the age conversion process depends on the extent
to which a particular sample’s environment resembles the average model
world ocean, and on the degree to which the model simulates the reality. Tt
is not possible to give these uncertainties as standard deviations, and the
calibration curves therefore lack an uncertainty band.

When converting a conventional '*C age into cal AD/BC (or cal Bp) age,
the standard deviation in the sample age determination g, should be taken
into account. There will be an additional error in either the determined or
the assumed reservoir age difference AR. As noted, AR = P — Q where P is
the conventional '*C age of an historic sample, and Q) the model-calculated
conventional "*C age of a sample of the same historic age. The AR error (o)
depends on the errorin P, as well as Q. We do not have a standard error for
the model-calculated Q value. Only a lower limit can be given for oy by sub-
stituting the error in the '*C age determination P. This error is listed in
Table 1 as a “‘minimum estimate” for og.

The o should be combined with ¢, according to 6, = \Jo? + o%. The
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(**C age — AR) = 0, after conversion, determines a minimum range in
calibrated ages.

Marine and ‘“‘atmospheric” samples with identical *C ages and stan-
dard deviations will differ in calibrated age, as well as in the range in cali-
brated ages. The cal range will usually be larger for the marine sample due
to the incorporation of the standard deviation oy in the reservoir age differ-
ence AR. The issue of multiple intercepts, however, is much less important
for marine samples because the calibration curves (Figs 11, 12) are much
less wiggley than the corresponding atmospheric ones (eg, Stuiver & Pear-
son, 1986).
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Fig 1. Atmospheric A"*C us age. Compiled from data sources given in the text.
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Fig 3. Atmospheric AMC (bi-decadal values) as used for the model calculations and calculated mixed layer and deep ocean AMC values.
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Fig 5. "*C ages of the atmosphere (bi-decadal values) and calculated conventional '*C ages of the mixed layer and deep ocean.
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Fig 6. "C ages of “atmospheric” samples compared to reservoir corrected mixed layer and deep occan "*C ages for the 4300-5000 BC inter-
val. The fixed reservoir correction was 409 yr and 1684 yr for, respectively, the mixed layer and the deep ocean.
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Fig 8. The calculated deep ocean-mixed layer *C age differences compared to benthic-planktonic differences measured by Andrée et al (1986a) for the South China Sea. The deep
water in the China Sea is more "*C-deficient than our model occan, causing a shift between the " time scales of 1585 (latest pre-anthropogenic age difference in Andrée et al) minus
1275 11C years (model ap 1830} value), both indicated by the dotted linc.
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Fig 9. The changing pattern of modcl-calculated reservoir ages R(t) of the mixed layer (top curve) and the deep ocean (bottom curve).
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Fig 9B. Model calculated reservoir age for the mixed Jayer of the ocean (upper curve) and the deep ocean {lower curve).
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Fig 10A. Model-calculated conventional '*C ages of the mixed layer and deep ocean for the ap 16001950 interval.
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Radiocarbon Age Calibration of Marine Samples Back to 9000 cal yr BP
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Fig 10B. Coastal region AR values in 1Cyr as derived mostly from shell dates. The = values are minimum standard deviations based on the scatter of the data, or the measurement
precision, whichever is larger (see Table 1 for details).
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Radiocarbon Age Calibration of Marine Samples Back to 9000 cal yr p

TABLE 1
Marine radiocarbon ages and AR values of mostly shell samples of
known historic age

MARINE SHELLS®

REFP

11,9

11,9

10

11,9

10
10
10

10

10

10

10

REGIONC SAMPLE #
Diabasvika, Lagoya, U-121
Spitsbergen
80°34'N 18°35'E
NE side of Nordre, Russoya, U-122

Murchisonfjorden,Spitsbergen
80°0'N 18°9'E

Magdalenafj., Spitsbergen T-1541
79°34'N 10940'E

Tangen, Mushamna, U-133

Spitsbergen

79°30'N 14°E

Adventbukta, Spitsbergen T-1540
78°15'N 15°36‘E

Isfjorden, Spitsbergen T-1539
78°07'N 14°08'E

Bellsund, Spitsbergen T-1538
ca. 77°40'N 14-16°E

Near Bear Island T-1537

74°07'N 19°04'E

WEIGHTED MEAN OF ABOVE 8 SAMPLES
SCATTER o IN UNWEIGHTED MEAN IS 25 YR

Rice Strait, Smith Sound, T-1544
Ellesmere Island

78%45'N 74955'E

Goose Bay, Jones Sound, T-1543
Ellesmere Island

ca. 76%45'N 89°00'E

Havnefjorden, Jones Sound, T-1542
Ellesmere Island

76°30'N 84°30'E

WEIGHTED MEAN OF ABOVE' 3 SAMPLES
SCATTER o IN UNWEIGHTED MEAN IS 45 YR

S of L. Pendulumoen and SE Lu-650
of Claveringoen, NE Greenland
74935'N 18°23'W and

74°10'N 20°08'W

Mackenziebugt, NE Greenland Lu-609
73928'N 21°30'W

Mackenziebugt, NE Greenland Lu-610
73028'N 21°30'W

AGE
(cal AD)4
19588

19588

1878

19528

1878
1925
1926

1900

1898

1900

1899

1899

1900

1900

HISTORIGAL CONVENTIONAL
SAMPLE 14C AGE

(L4c Yrs BP)®

670480

430480

632470

530+70

622470
519450
549450

523450

744470

893470

774470

591438

650+47

620454

AR
(Y4c yrs Bpyf
180+801

-60+80D

141470

404600

131+70
45+50
75450

46450
70+20
266470
416+70

297470

325440

114438

173+47

143454
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TABLE 1 (continued) TABLE 1 (continued)

MARINE SHELLS2 HISTORICAL CONVENTIONAL MARINE SHELLS2 HISTORICAL CONVENTIONAL

AGE SAMPLE 14C AGE AR AGE SAMPLE G AGE AR
REFP REGION® SAMPLE # (cal aD)d  (l4¢ vrs Br)e (l4c yrs BR)f REFD REGIONC SAMPLE # (cal aD)d  (l4c yrs Bp)e (l4c yrs Bp)f
8 Fame Oer, Scoresby Sund, Lu-643 1899 641+39 164+39 9 Ideosen, Herdla, Hordaland, T-954A, 1923 457460 -16+60
NE Greenland Norway T-954B
70°50'K 22°33'w 60°34'N 5900'E
17 S cove, Nyhavn, NE Greenland Y-606 1957 550+70 6Oi70h 9 Sollesnes, Jondal, Hardanger, T-955 1908 532475 61+75
(ca. 729N 23°) Norway
60°18'N 6°17'E
WEIGHTED MEAN OF ABOVE 5 SAMPLES 140420 9 Mosterhavn, Hordaland, T-956 1918 402490 -70+90
SCATTER ¢ IN UNWEIGHTED MEAN IS 20 YR Norway
59942'N 5924'E
10 Tanafjord, Finnmark, N Norway T-1535 1876 584+70 91+70
70°30'-71° N ca. 28930'E WEIGHTED MEAN OF ABOVE 8 SAMPLES 5+25
9 Komagfjord, Finnmark, T-958 1922 548475 75475 SCATTER o IN UNWEIGHTED MEAN IS 15 YR
N Norway
70°16'N 23°24'E 9 Brevikfjord, Telemark, Norway T-959 1898 602480 124+80
10 Vadso, Finnmark, N Norway T-1536 1857 543+50 41+50 59°03'N 9942'E
70004'N 29945°E 9 Gronholmsund, Risor, Aust- T-960 1905 385+75 -88475
10 Tromso, Troms, N Norway T-1534 1857 553+50 51+50 Agder, Norway
69°39'N 18958‘E 58044'N 9918'E
7 Near Kristingeberg, island Lu-237 1896+88 420450 -59+50
WEIGHTED MEAN OF ABOVE 4 SAMPLES 60+30 of Skaftolandet, Bohuslan,
SCATTER o IN UNWEIGHTED MEAN IS 10 YR Sweden
58°15'N 11°26'E
3 Faxa Bay, Kollafjord, Iceland L-576C 1946 543+51 56+51 12 Bohuslan, Sweden U-607 ca.1935 510+80 31480
640N 220W (ca. 58°N 12°E)
3 Faxa Bay, Kollafjord, Iceland L-576H 1900 631+51 154451 6 Haron, Bohuslan, Sweden Lu-236 1935+15 430+46 -49+46
640N 22°W 58°01'N 11°31'E
3 Faxa Bay, Kollafjord, Iceland L-576I 1840 715451 203451 6 Roro, N archipelago of Lu-235 1930+10 410+46 -65+46
640N 22°W Goteborg, Sweden
57%7'N 11°37'E
WEIGHTED MEAN OF ABOVE 3 SAMPLES 140+30 6 Roro, N archipelago of Lu-234 1930+10 370457 -105+57
SCATTER ¢ IN UNWEIGHTED MEAN IS 45 YR Goteborg, Sweden
57C47'N 11°37'E
9 Fjaerlandsfjorden, Sogn, T-953 1909 541+80 70480 10 Skagerak, Norway T-1532 1906 459+50 -14+50
Norway 57°44'N 9953'E
Btwn 61°13'N 6°34'E
and 61°22'N 5°00'E WEIGHTED MEAN OF ABOVE 8 SAMPLES -40+20
9 Leikanger, Sognefjord, T-951 1912 438475 -33+475 SCATTER o IN UNWEIGHTED MEAN IS 25 YR
Norway
61011L'N 6°48'E 14 Pavlov Harbor, Alaska, USA USGS-234 1937 700+50 219450
9 Vangsnes, Sognefjord, Norway T-952 1920 500+75 27475 55.59N (162°W)
61°10'N 6°39'E
9 North Sea, approx. half way T-957 1506 494475 21+75 VALUE USED ON MAP FOR ABOVE SAMPLE 220450
btwn Bergen and Shetland
60°38'N 2°35'E 14 Orcas Is., Washington, USA UsSGs-177 1915+15 805+50 334450
10 Vikingbank, North Sea T-1533 1906 469450 -4450 48.6°N (123°W)
60°38'N 2935'E 14 Orcas Is., Washington, USA USGS-190 1915+15 950+30 479430

48 .6ON (123°W)



Radiocarbon Age Calibration of Marine Samples Back to 9000 cal yr BP

TABLE 1 (continued)

MARINE SHELLSZ

REFP

14

14

14
14

14

14

14

14

14

14

REGION® SAMPLE #
Sooke, British Columbia, USGS-170
Canada
48 ,4ON (124°W)
Esquimalt, British Columbia USGS-133
Canada
48.39N (123°W)
Yaquina Bay, Oregon, USA USGS-169
44 . 69N (124°W)
Yaquina Bay, Oregon, USA USGS-189
44 69N (124°W)
Sunset Bay, Oregon, USA USGS-233

43.3°N (124°W)

WEIGHTED MEAN OF ABOVE 7 SAMPLES
SCATTER ¢ IN UNWEIGHTED MEAN IS 25 YR
Bay of Arcachon, France L-599A

44935'N 1°25'W
VALUE USED ON MAP FOR ABOVE SAMPLE

Port Jefferson area, Long L-317A

Island Sound, New York, USA
40057'N 73°05'W

VALUE USED ON MAP FOR ABOVE SAMPLE

Bolinas Bay, California, USGS-248
UsA

37.99N (123°W)

Half Moon Bay, California, USGS-280
UsSA

37.5°N (122°W)

Monterey, California, USA USGS-178
36.60N (122°W)

Monterey, California, USA UCLA-149
(379N 122°W)

Morro Bay, California, USA USGS-281
35.4°N (121°W)

Seal Beach, California, UCLA-

Usa 1033
(349N 119°W)

San Diego, California, USA
32.7°N (117°W)

USGS-430

WEIGHTED MEAN OF ABOVE 7 SAMPLES
SCATTER o IN UNWEIGHTED MEAN IS 35 YR

HISTORICAL CONVENTIONAL

AGE
(cal aD)d
1916

1930

1916
1916

1936

1952

1954

191545

1915+5

1915+5
1878
1947

1921

1915+5

SAMPLE 14¢ AGE
(L4c YRS BP)®
850450

750+50

840435
835+50

895+50

846+42

407+75

680425
745+35

740435
566+55
750+35

553448

735435

AR
(l4c vrs Bp)f

378450
275450

368435
363450

415450
390415
-4+42h
-5+40
-83+75h
-85+75
209+25
274435

269+35
75455
262435

80+48
264435

225415

TABLE 1 (continued)

MARINE SHELLS?

REFP

2,3

REGION® SAMPLE #
Kouali Point, Tipasa,
Algeria

36940'N 2°30°E

L-241A

VALUE USED ON MAP FOR ABOVE SAMPLE

Kino Bay, Sonora, Mexico UCLA-914
(29°N 112°W)
Carmen Is., Gulf of UCLA-917

California, Mexico
(26°N 111°W)

WEIGHTED MEAN OF ABOVE 2 SAMPLES
SCATTER ¢ IN UNWEIGHTED MEAN IS 10 YR

Cedro Is., Baja California, UCLA-963
Mexico

(289N 115°W)

Magdaleno Bay, Baja UCLA-939
California, Mexico

(259N 112°W)

Cape San Lucas, Baja UCLA-916
California, Mexico

(23°N 110°W)

Mazatlan, Sinaloa, Mexico UCLA-913
(239N 106°W)

Isabel Island, Nayarit, UCLA-936
Mexico

(22°N 106°W)

Banderas Bay, Jalisco, UCLA-940
Mexico

(21°N 105°W)

Manzanillo, Colima, Mexico UCLA-915
(19°K 104°W)

Guatulco Bay, Oaxaca, UCLA-938

Mexico
(16°N 96°W)

WEIGHTED MEAN OF ABOVE 8 SAMPLES
SCATTER o IN UNWEIGHTED MEAN IS 20 YR

Bahama Islands L-576B
26°N 78°W
Bahama Islands L-576G
260N 78°W

AGE
(cal AD)d

1954

1935

1911

1939
1938
1932

1939

1938

1938

1930

1938

1950

1885+5

HISTORICAL CONVENTIONAL
SAMPLE 14

C AGE
(14c yrs Bp)®

357483

993453

1001454

614451
660+53
784445

662448

688+50
606+50

675450

621450

428442

525+59

1019

AR
(14¢ yrs BRYf

-133183h

135485
514453
531454
520440
132451
179453
307445

180+48

207450
125+50
200450
140450
185415

-62+42

39459
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TABLE | (continued) TABLE 1 (continued)
MARINE SHELLS® HISTORICAL CONVENTIONAL MARINE SHELLS2 HISTORICAL CONVENTIONAL
AGE SAMPLE 14¢C AGE AR AGE SAMPLE l4C AGE AR
REFP REGIONC SAMPLE # (cal aD)d  (l4c yrs Br)e (l4c vrs Bp)f REFP REGIONC SAMPLE # (cal ap)d  (l4c vrs BP)e (l4c vrs Bp)f
4 The Rocks, offshore of (annual "1850" 518+16 13+16 16 Northern Peru UCLA-1282 193545 700+49 221449
Florida Keys, USA coral (1800-1900) (ca. 10°s 80°W) -
24957'N 80°33'W rings) 16 Peru UCLA-1279 193545 1127+44 648+44
3 Jamaica, B.W.I. L-576A 1929-1930 423442 -52+42 (ca. 14°8 78°W)
189N 78°W 16 Antofagasta, Chile UCLA-1277 1925 626+34 152+34
3 Jamaica, B.W.I. L-576F 1884 425+41 -62+41 (2495 70°W)
18°N 78°W 16 Valparaiso, Chile UCLA-1278 193545 770+76 291476
(33°3 72°V)
WEIGHTED MEAN OF ABOVE 5 SAMPLES -5+15
SCATTER o IN UNWEIGHTED MEAN IS 20 YR WEIGHTED MEAN OF ABOVE 3 SAMPLES (WITH UCLA-1279 EXCLUDED) 190425
SCATTER o IN UNWEIGHTED MEAN IS 40 YR
3 Oahu, Hawaii, USA L-576J 1840-1841 629451 117+51
22°N 158°W 5 Torres Strait, Australian SUA-354/1 1875+3 480467 -13+67
coast
VALUE USED ON MAP FOR ABOVE SAMPLE 115+50 ca. 10°S 143°F
S Torres Strait, Australian SUA-354/2 1875+3 463484 -30+84
3 Off Bogan Island, Eniwetok L-584A 1946 629443 142443 coast
Atoll (coral) ca. 10°S 143°E
11°30'N 162°10'E 5 Torres Strait, Australian SUA-357 1909 404484 -67484
coast
VALUE USED ON MAP FOR ABOVE SAMPLE 140+45 ca. 10°S 143°f
5 Garden Island, W. Australia SUA-355 1930 454484 -21+484
16 Port Parker, Costa Rica UCLA-1254 1935 695+37 216+37 32°15'S 115940'E
(ca. 109N 85°W) 5 Adelaide, S, Australia SUA-393 193742 583485 102485
16 Secas Island, Panama UCLA-1256A 1934 403+51 -76+451 ca. 35°S 139°F
(89N 82°W) 5 Narooma, N.S.W. Australia SUA-356 1950 480+84 -10+84
16 Secas Island, Panama UCLA-1256B 1935 507+49 28+49 36°13'S 150°07'E
(89N 82°W)
16 Santiago Is., Galapagos Is. UCLA-1255A 1934 538453 60+53 WEIGHTED MEAN OF ABOVE 6 SAMPLES -5+35
(0°N 91°W) SCATTER ¢ IN UNWEIGHTED MEAN IS 25 YR
16 Santiago Is., Galapagos Is. UCLA-1255B 1934 745482 267+82
(0°N 91°W) 3 Tahiti L-576E 1957 515+42 25i42h
16 Espanola Is., Galapagos Is.  UCLA-1255C 1934 468+43 -10+43 1898 149°%
(0°N 90°W) 3 Moorea L-576K 1883+3 553+42 65+42
16 Santa Cruz Is., Galapagos UCLA-1255D 1932 443440 -34+40 189S 149°%W
Islands
(0°N 90°W) WEIGHTED MEAN OF ABOVE 2 SAMPLES 45430
16 Guayaquil, Ecuador UCLA-1249A 1927 235437 -240+437 SCATTER o IN UNWEIGHTED MEAN IS 20 yr
(ca. 39S 80°W)
16 Guayaquil, Ecuador UCLA-1249B 1927 536+45 61+45 5 New Zealand ---- 1923 416442 -57+42
(ca. 3°s 80°w) T T
5 New Zealand 1925 371450 -103+50
WEIGHTED MEAN OF ABOVE 9 SAMPLES 0 T
SCATTER o IN UNWEIGHTED MEAN IS 50 YR 5 New Zealand .- 1949 210+41 -280+41
13 Otago, New Zealand INS no. 1955 446442 -44142}"

(ca. 45°3 170°E) R.42
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TABLE 1 (continued)

MARINE SHELLS2 HISTORICAL CONVENTIONAL
AGE SAMPLE 14C AGE
REFD REGION® SAMPLE # (cal ap)d  (14G YRS BP)®

15

15

WEIGHTED MEAN OF ABOVE 3 SAMPLES (WITH -280+41 EXCLUDED)
SCATTER ¢ IN UNWEIGHTED MEAN IS 20 YR

Inexpressible Island, QL-171 1912 1390440
Antarctica (seal)

(ca. 74°54'S 163°39'E)

Inexpressible Island QL-173 1912 1300+50
Antarctica (penguin)

(ca. 74954'S 163°39'E)

WEIGHTED MEAN OF ABOVE 2 SAMPLES
SCATTER o OF UNWEIGHTED MEAN IS 45 YR

AR
(l4¢ yrs p)f

-65+25
919+40

829+50

885+30

NOTES

4  Exceptions are marked.

b References are: (1) Berger et al., 1966; (2) Broecker and Olsonm, 1959; (3) Broecker
and Olson, 1961; (4) Druffel and Linick, 1978; (5) Gillespie and Polach, 1979; (6)
Hakansson, 1969; (7) Hakannson, 1970; (8) Hakansson, 1973; (9) Mangerud, 1972; (10)
Mangerud and Gulliksen, 1975; (11) Olsson, 1960; (12) Olsson et al., 1969; (13)
Rafter et al., 1972; (14) Robinson and Thompson, 1981; (15) Stuiver et al., 1981;
(16) Taylor and Berger, 1967; and (17) Washburn and Stuiver, 1962.

c Our own estimates of missing coordinates are in parentheses.

d Age refers to calendar year of death. Only pre-1959 samples are listed.

e Conventional radiocarbon age is: taken directly from original listing (references
14, 15, and 17); assumed equivalent to reported "apparent age" (references 6 and 7);
calculated from reported § 4o or al4c (references 1, 13, and 16); calculated from
reported Al4c after removal of age correction (references 4, 5, 8, 9, and 12);
calculated from reported Al4C after removal of age correction to 1958 (references 2
and 3); or calculated from reported A 4G after removal of age correction and fossil
fuel correction (reference 10 and Rafter values listed in reference 5).

£ Sigma in AR (oR) is minimum error based on reported error in conventional sample Lag
age.

&  Exact year of death is not known.

h

Computation is based on the model mixed layer radiocarbon age calculated for AD 1950
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