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1 Introduction

The interpretation of chronometric data is fundamental to archaeology. While individual
dates are of some interest, archaeologists are most interested in temporal parameters of
cultural processes inferred from a body of chronometric data. The temporal duration, or
span, of activity represented by the date set is one such parameter. However, cultural
processes may develop over time scales which are small compared to the dating accuracy.
Moreover, as we will see, analysed date sets typically contain heterogeneous data types.
Some statistical analysis is needed. A suitable framework will handle multiple chronometric
data types and explicitly quantify the uncertainty in any inferred temporal parameters.

In this section a simplified observation model is used to illustrate certain problems not dealt
with elsewhere. In Section 2 we repeat the analysis without those simplifying assumptions,
show that the problems remain, and suggest a solution. In Section 3 we interpret our solu-
tion. In Section 4 we explain how our approach works for other models in the literature. In
Section 5 we mention some unrelated problems we encountered whilst analysing radiocarbon
age data.

Consider the data in Table 1. Seven specimens of charcoal are taken from six layers of earth,
older layers being deeper. A radiocarbon date measurement is made for each specimen. For
the moment we will suppose that the measured radiocarbon date for each specimen is a
realisation of an independent Gaussian random variable, with mean equal to the unknown
true date for that specimen and known standard deviation. (Note that this is not the
standard radiocarbon observation model described in Section 2.1 and assumed throughout
the remainder of this paper. We will clarify what we mean by a date in Section 2.1.) We
wish to estimate the unknown true date associated each specimen, taking into account the
age order constraint arising from stratigraphy. Another quantity of interest is the span of
time from the bottom of the first stratum to the top of the last.

Buck, Kenworthy, Litton and Smith have described a Bayesian method for estimating dates
from radiocarbon measurements (see Buck et al. 1991 and Buck et al. 1992). Stratigraphic
constraints may be incorporated in the analysis. The authors give a straightforward in-
ference scheme, based on MCMC simulation from the posterior. Christen 1994 gives an
outlier analysis, within the same Bayesian/MCMC framework. Statistical packages OxCal,
described in Ramsey 1995, and BCal, described in Buck et al. 1999, implement some of the
methods presented in Buck et al. 1992. See Buck et al. 1996 and Litton and Buck 1996 for
reviews of the field.

The reference priors described in Buck et al. 1996 (and below in Sections 2.3 and 4) assign
a constant density to all states and are intended to be reasonably non-informative. How-
ever, when dates cover an interval of time which is not large compared to the error in the
radiocarbon dating process, we find that such priors are undesirably informative, pushing
the earliest and latest reconstructed dates towards unrepresentatively early and late values
respectively. This feature is related to the Stein effect (see Stein 1956). The unconstrained
maximum likelihood estimator (MLE) for the seven unknown parameters is just the vector of
data values themselves. The span over observed dates will typically exceed the span present
in the unknown true dates. If this is an unfamiliar idea, consider generating synthetic data
from seven given dates spanning twenty five years, adding a Gaussian variate drawn from a
density with a standard deviation equal fifty years. This spreading tendency is strong when
the standard deviation in the observation model is of the order of the unknown true span
in the specimen ages. Data sets from New Zealand, with its relatively short prehistory, are
often sensitive to this effect. See Section 6 for further discussion of the Stein effect. In the
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absence of constraints, the MLE is the posterior mean for the constant-density prior and so
it is unsurprising that the spreading bias in the MLE is present in the posterior distribution
also. In this paper we explain how we were able to correct for this effect, by returning to
a physical model for the quantities parameterised in the prior. The correction would be
straightforward in the simplified model we are discussing at this point. It is not so when
order constraints apply to parameters, and the radiocarbon observation model of Section 2.1
is in use.

The unknown true specimen dates were realised through the action of complex processes of
deposition, aging, archaeological recovery and sample selection. In Section 3 we calculate
prior date distributions arising under a simple family of process models. If we select the
prior density by choosing the simplest, physically plausible, process model we can find, the
problems of prior bias disappear. Indeed, these process-models-of-choice have the property
that the marginal prior density of the span is uniform (up to a weak function of the span
variable). They turn out to be non-informative in this practically important sense. Physics-
based modeling of deposition processes plays a similar role in Christen et al. 1995, where
peat age and depth data are analysed.

Is there a process model which would lead to a prior density which is a constant, ie uniform
over all states? If we had such a model, we could then give a “physical” interpretation of
the assumptions built into the reference priors of Buck et al. 1996 and the earlier literature.
We give the appropriate process model at the end of Section 3. With the benefit of this
interpretation from a physical model, it is easy to understand why the apparently non-
informative constant prior is informative in respect of span.

The constant prior density contains information which is not representative of the knowl-
edge which is typically available to the archaeologist. Although this information is often
overwhelmed by the data, it is easy to find datasets from New Zealand in which the effect is
strong enough to be troublesome. We present, in Section 2, a small case study. Two priors
are compared, a first prior model, assigning constant density to all states, and a second prior,
derived from a process model. The posterior distributions of selected summary statistics
differ markedly between the two models. We compute a Bayes factor for the two models.
This provides an objective criterion for favouring the second model on this particular data
set. Details of the estimator used to compute the Bayes factor are given in Appendix B.

When the number of radiocarbon dates is small, it is possible to carry out the sampling
needed for the inference in Section 2 using a rejection algorithm. This is not practical
when the number of dates is at all large. Indeed MCMC simulation of the posterior density
can be quite challenging under certain process model priors. Simple Gibbs and random-
walk Metropolis-Hastings samplers are certainly inadequate. Details of sampling algorithms
used in Section 2 are given in Appendix A. The key elements of a Metropolis-Hastings
sampler adequate for more substantial problems are outlined in Appendix C. The priors
and simulation procedures described in this paper have been taken up in some of the widely
used Bayesian calibration software online. At present these include the OxCal software
available at www.rlaha.ox.ac.uk and our own implementation, DateLab, which can be
down-loaded from www.car.auckland.ac.nz.
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2 Case study

2.1 Observation Model

Consider a single vertical series of M abutting layers of earth. It is helpful to think of the
earth and datable artifacts piling up vertically over time to form the layers. Suppose Nm
radiocarbon age determinations are made in layer m, making K =

∑
Nm dates in all. For

n ∈ {1, 2 . . .Nm} let ym,n denote the value of the n’th radiocarbon age measured in the
m’th layer, reported with associated standard error σ(Y )

m,n. For all scalar quantities Xm,n let
X denote the corresponding vector, so that y = (y1,1, . . . , yM,NM ), etc. Let Θm,n denote
the unknown true date at which object (m,n), which was once part of a living organism,
ceased exchanging carbon with its environment (this definition is crude, but adequate for
our purposes). In archaeological chronometry the units of age are sometimes taken as years
before 1950. We do not use that convention in this paper. The quantity Θm,n is quite
simply a calendar year AD or BC as appropriate. There is no year zero. A quantity
measured in calendar years is referred to as a calibrated date. The measurement ym,n is
called a conventional radiocarbon age (CRA).

Due to variations in the relative abundance of carbon isotopes in the earth’s atmosphere
over the years, a CRA is not simply an age in years (so again standard usage is misleading).
It is related to a corresponding calendar date by a calibration function, µ, a part of which
is shown in Figure 1. If a is a calendar date and b is the CRA for that date then b = µ(a)
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Figure 1: Calibration function µ(θ) (solid) with 2σ(µ)(θ) limits (dashed) for calibration of
terrestrial (as opposed to marine) specimen, from Stuiver et al. 1998. Horizontal lines
indicate a CRA (Conventional Radiocarbon Age determination, ym,n, dashed) with 2σ(Y )

m,n

limits (dotted). The likelihood `(ym,n|θm,n, σ) (solid) is drawn below the calibration curve.

in the absence of measurement noise. The calibration function µ and its standard error,
σ(µ), have been measured, and are available from http://depts.washington.edu/qil/ at
decadal intervals. We spline these decadal values to get functions µ and σ(µ) which are
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piecewise constant by year. When specimen (m,n) is of terrestrial origin, the terrestrial
calibration function is used, otherwise a different marine calibration function is used. No
marine materials are dated in our case study. A section of the terrestrial curve is shown in
Figure 1. Because this curve is not monotone, a terrestrial CRA with no observation noise
need not uniquely determine a calibrated date.

Following Buck et al. 1991, a standard observation model relating CRA’s to calibrated dates
is

ym,n = µ(Θm,n) + ε(Y )
m,n + ε(µ)

m,n|Θm,n (1)

where ε(Y )
m,n and ε(µ)|Θm,n are normal random variables drawn independently for each m =

1, 2 . . .M and each n = 1, 2 . . .Nm according to

ε(Y )
m,n ∼ N(0, σ(Y )

m,n

2
),

and
ε(µ)
m,n|Θm,n ∼ N(0, σ(µ)(Θm,n)2).

Let θm,n be a trial value for Θm,n and let `(ym,n|θm,n) give the likelihood for an individual
calibrated date. Let σ(Θm,n)2 denote the net variance of a CRA,

σ(Θm,n)2 = σ(µ)(Θm,n)2 + σ(Y )
m,n

2
. (2)

The likelihood

`(ym,n|θm,n) =
exp(−(ym,n − µ(θm,n))2/2σ(θm,n)2)√

2πσ(θm,n)2
(3)

is not a Gaussian in θm,n. Note that we are conditioning on knowledge of the standard errors
on the right in Equation (2) although these are subject to measurement error. Observations
are assumed independent, so the joint likelihood, L(y|θ) say, is

L(y|θ) =
M∏
m=1

Nm∏
n=1

`(ym,n|θm,n).

In Section 5 we return to the observation model in order to point out errors in the present
treatment of reservoir offsets.

2.2 Data

Consider the data shown in Table 1, a set of seven CRA’s from a single series of six layers.
Likelihood curves for each date are displayed in Figure 2. These data are a subset of a large
set of dates gathered at the mouth of Shag river, in southern New Zealand (Anderson et al.
1996). We have taken all the charcoal dates (ie the dated material was charcoal, as opposed
to say eggshell, or shellfish) from that larger set. Quantities of interest to archaeologists
include the length of time for which the site was occupied, and the actual dates at which
occupation began and ended.

Outliers are a significant problem in the interpretation of radiocarbon dates. Visual inspec-
tion of graphs like Figure 2 can be helpful when stratigraphic constraints are relevant. See
Christen 1994 for a discussion of this issue in a similar setting. Since the charcoal of short
lived species yields relatively reliable CRA’s, and Figure 2 shows no obvious problems, we
will assume that our observation model is good for all our data.
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Date (m,n) ym,n σ
(Y )
m,n

NZ 7758 (1, 1) 580 47
NZ 7761 (2, 1) 600 50
NZ 7757 (3, 1) 537 44
NZ 7756 (4, 1) 670 47
NZ 7755 (5, 1) 646 47
WK 2589 (5, 2) 630 35
NZ 7771 (6, 1) 660 46

Table 1: The table shows all charcoal dates from the SM/C:Dune series obtained from Shag
river mouth, New Zealand and reported in Anderson et al. 1996. The column ym,n lists
CRA’s, with no corrections. The column (m,n) lists m, the layer index and n, the specimen
index within a layer.
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Figure 2: The graph represents the likelihoods for the data in Table 1, calculated using
the observation model of Equation (1) and the calibration curves µ(θm,n) and σ(µ)(θm,n) of
Figure 1. The rectangles represent the 68 % HPD and the lines represent the 95 % HPD
for the likelihood `(ym,n|θm,n) at each calibrated date.
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2.3 Two prior models

Vertical mixing of earth is assumed to occur within layers, but not between layers. Thus
objects found in lower layers are older than the objects found in superposed layers, whilst
dates within a layer have no prior order constraint. See Section 4 for a more general setting.
In our case study, M = 6 is the number of layers in the excavated series. Form ∈ {0, 1 . . .M}
let ψm denote the calendar date associated with the boundary between layers m and m+1.
Layer m = 1 is the topmost and most recent layer, whilst layer m = M is the deepest layer
containing the oldest material. We have a total K+M +1 unknown parameters: the M +1
layer boundary dates ψ0 . . . ψM , and the K unknown object dates, θ1,1 . . . θM,NM . Let P
and A, P ≤ A set lower and upper bounds on the otherwise unknown parameters. Possible
parameter sets (ψ, θ) take some value in a parameter space ΩΨ,Θ. This space is simply the
set of all states (ψ, θ) satisfying the stratigraphic constraints:

ΩΨ,Θ = {(ψ, θ);P ≤ ψM ≤ θM,· ≤ ψM−1 ≤ . . . ψ1 ≤ θ1,· ≤ ψ0 ≤ A}.

The posterior density h(ψ, θ|y, f) is defined in terms of an unnormalised prior density
fΨ,Θ(ψ, θ) say, and likelihood L(y|θ),

h(ψ, θ|y, f) = L(y|θ)× fΨ,Θ(ψ, θ). (4)

It is natural to model the object dates θ conditional on the layer boundary dates ψ, so we
break our prior up in two pieces,

fΨ,Θ(ψ, θ) = fΘ|Ψ(θ|ψ)fΨ(ψ).

In the absence of radiocarbon data, the parameters θm,n might take any value between ψm
and ψm−1 with equal probability, a state of knowledge represented by the choice

fΘ|Ψ(θ|ψ) =
M∏
m=1

(ψm−1 − ψm)−Nm . (5)

What density should we take for ψ ? A set of ψ values is in agreement with the stratigraphic
data (so the ψ values are “legal”) if P ≤ ψM ≤ ψM−1 . . . ≤ ψ0 ≤ A. It may seem natural
to assert “any legal set of dates ψ is a priori equally likely”, ie

f
(1)
Ψ (ψ) = 1

for all legal parameters sets ψ, and we will call this choice the constant prior density. In
fact, the constant density for ψ weights the prior in favour of more widely spread sets of
dates, and this can bias the whole analysis. The date span,

s(ψ) = ψ0 − ψM , (6)

which measures the number of years spanned by dated strata, exhibits the bias. Let R =
P −A denote the length of the interval between termini. Under the constant prior density,
the marginal density of s is (R−s)sM−1, so that a span of 2s is favoured over a span of s by
a factor of about thirty (ie, 2M−1 when s � R) in our case study. This kind of weighting
will not in general represent substantial prior knowledge. At the site in our case study, an
alternative prior density,

f
(2)
Ψ (ψ) = s(ψ)1−M/(R− s(ψ)),

under which spans of 2s and s are equally probable a priori, better represents prior knowl-
edge. As an independent property, prior density f (2)

Ψ may be derived from a model of the
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deposition and recovery processes as explained in Section 3. For i = 1, 2 let f (i)
Ψ,Θ(ψ, θ) =

fΘ|Ψ(θ|ψ)f (i)
Ψ (ψ) denote priors derived under the two alternative ψ-models.

In setting up these models we have ignored the problem of inbuilt age in sample specimen.
See Section 5 (final paragraph) for further discussion of this issue.

2.4 Comparison

The posterior densities determined by priors f (1) and f (2) and Equation (4) were sum-
marised using samples generated using the rejection algorithms of Appendix A. All the
software used to compute the graphs and Bayes factors presented here has been bundled
together in a package, available at car.ant.auckland.ac.nz, and described in Jones and
Nicholls 1999a. The rejection algorithm has the advantage, over an MCMC algorithm, that
generated samples are IID. However, our rejection algorithm is suitable for small data sets
only. Simulation from density h(ψ, θ|y, f (2)) with a large number of dates (say twenty) is a
hard sampling problem even for MCMC, especially when states of small span are allowed
by the likelihood. Simple MCMC algorithms (such as Gibbs samplers, simple random walk
Metropolis Hastings and Metropolised rejection) suffer from convergence problems associ-
ated with the fact that the prior is unbounded. Details of a relatively complex Metropolis
Hastings sampler adequate for all the large data sets we have encountered are given in
Appendix C.

In Figure 3 the marginal posterior distributions of the span are presented. Notice that the
posterior distribution of the span under prior f (1) is weighted towards larger values than is
the case when prior f (2) is used. In Figure 4 the individual marginal posterior distributions
of the calibrated dates are shown. Referring to the leftmost white rectangle, which is the
posterior density of the date parameter θ1,1 of specimen (1,1), NZ 7758, computed using
density f (1), we see that that parameter is concentrated at the upper end of its range. The
posterior density of the date parameter θ6,1 of specimen (6,1), NZ 7771, computed using
density f (1), is concentrated at the lower end of its range. Those parameters have bimodal
posterior densities under f (2).

Which interpretation is favoured ? Bayesian model comparison of this kind is methodologi-
cally straightforward. See Carlin and Louis 1996 for background. We have two models,M1,
corresponding to the prior choice f (1), and M2, for the f (2) prior. For model Mi, i = 1, 2,
let P (Mi|y) give the posterior probability, and let P (Mi) give the prior preference. The
likelihood, P (y|Mi), for modelMi is

P (y|Mi) ≡
∫
Ωi
L(y|θ)f (i)

Ψ,Θ(ψ, θ)dψdθ∫
Ωi
f

(i)
Ψ,Θ(ψ, θ)dψdθ

(7)

with Ωi = ΩΨ,Θ for i = 1, 2 in the comparison we are making. The Bayes factor B(2 v.1)
for model M2 against model M1 is given by the ratio of the posterior probabilities for the
two models,

B(2 v.1) ≡ P (M2|y)/P (M1|y).
It follows, using Bayes rule, that under the non-informative choice P (M1) = P (M2) of
prior weighting, the ratio of the posterior probabilities for the two models equals the ratio
of their likelihoods, B(2 v.1) = P (y|M2)/P (y|M1).

Computing the model likelihoods, using the estimators given in Meng and Wong 1996, (see
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Figure 3: These histograms summarise the posterior distribution of the span, s(ψ) = ψ0 −
ψM , under prior models f (1) (graph M1, constant prior density for ψ) and f (2) (graph M2,
uniform-span prior density for ψ). The posterior distribution of the span is sensitive to the
choice of prior model.
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Figure 4: Marginal posterior distributions of θm,n, the calibrated dates, are shown. The
rectangles represent the 68 % HPD and the lines represent the 95 % HPD for the posterior
count frequency. For each date the posterior under prior f (1) (white rectangles) and f (2)

(black rectangles) are shown.
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Appendix B for details) we find

P (y|M1) = 3.6(2)× 10−19 P (y|M2) = 9.4(2)× 10−18

(standard errors in the place of the last quoted digit are given in parenthesis). The Bayes
factor is B(2 v.1) = 26(2), so modelM2 is about twenty six times more probable a posteriori
than model M1. This confirms what we expect: the constant prior density of model M1

favours large span values, thereby pushing the calibrated dates θ towards values which are
unrepresentative of the data. This leads to a small average likelihood for the constant prior
density.

Prior f (2) gives a better summary than does f (1) of the prior knowledge available in this
analysis. Also, because the span is a point of argument for this site, it is not appropriate
to conduct an analysis with a prior weighted strongly toward large span values. Finally,
the data supports prior density f (2) over f (1). We conclude that Figure 3-M1 is likely to
overestimate the span of the events which generated the dates in our data set. Dates which
have been calibrated using the constant prior density will be distorted in the same way.

3 A model of the deposition process

The distribution of the parameters of a prior should, where possible, be determined from a
model of the physical processes which gave rise to the unknown true parameter values. In
Christen et al. 1995, a deposition model for the specific case of peat accumulation with ex-
plicit depth data, plays the same role in the inference. Prior density f (2)

Ψ,Θ(ψ, θ) for specimen
dates θ and layer boundary dates ψ may be derived from a model of the deposition and re-
covery processes which generate those specimen dates. The following should be regarded as
an example of what can be done. Case-specific priors may be developed along the following
lines for specific sites.

We model as follows. Parameters ψ0 and ψM mark the start (ψM ) and end (ψ0) of human
activity in the dated layers. Datable artifacts are generated according to a Poisson point
process Pλ of piecewise constant rate λ(t) for times t in the interval [ψM , ψ0]. (A Poisson
process is the neutral choice. It is equivalent to assuming that the process generates an event
in any small interval of time with a probability which is proportional to the length of the
interval and independent of the history of the process, to first order in the interval length.)
Parameters ψ1 . . . ψM−1 mark change-points in λ(t): these change points are themselves a
realisation of a Poisson point process PΛ of constant intensity in the interval [ψM , ψ0]. Dat-
able artifacts (generated by Pλ in our model) are randomly thinned by the natural processes
of decay and by the specimen selection process of the archaeologist. These later processes
are modelled as an independent geometric thinning of the datable artifacts generated by the
deposition process. A Poisson process thinned in this way remains Poisson. The probability
for a datable artifact to survive the thinning and become a dated specimen (ie yield a CRA)
is assumed constant within layers, independent of the event that any other artifact survives,
and independent of the age of the specimen given its layer (ie thinning can depend on age
through layer).

Let f̃Ψ,Θ(ψ, θ) be the density of the (ψ, θ) values generated by these processes. This density
breaks down into conditional components

f̃Ψ,Θ(ψ, θ) = f̃Θ|Ψ(θ|ψ)f̃Ψ1...ΨM−1|Ψ0,ΨM
(ψ1 . . . ψM−1|ψ0, ψM )f̃Ψ0,ΨM (ψ0, ψM ).

We condition on knowledge of the number Nm of dated events in a layer. Since these events
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are Poisson, their density is uniform in the interval in which they are generated,

f̃Θ|Ψ(θ|ψ) =
M∏
m=1

(ψm−1 − ψm)−Nm ,

just as in Equation (5). We assume that all the change points generated by PΛ are recorded
by the archaeologist. We may then condition on knowledge of the number of events generated
by PΛ. As a consequence the ψ1 . . . ψM−1 are again uniform,

f̃Ψ1...ΨM−1|Ψ0,ΨM
(ψ1 . . . ψM−1|ψ0, ψM ) ∝ s(ψ)1−M .

Our process model thus determines the prior density for all unknown parameters except ψ0

and ψM .

We do not attempt to model the processes which determine the density f̃Ψ0,ΨM (ψ0, ψM ).
Instead we impose a weak bias towards shorter intervals with f̃Ψ0,ΨM (ψ0, ψM ) = 1/(R−s(ψ))
and thereby obtain the reference prior f̃Ψ,Θ = f

(2)
Ψ,Θ. An alternative non-informative choice

is f̃Ψ0,ΨM (ψ0, ψM ) = 1. This would lead to a marginal prior span density equal (R−s). The
functions we are considering here are relatively weak functions of s, whenever s� R. Among
these mild reweightings we slightly favour f̃Ψ0,ΨM (ψ0, ψM ) = 1/(R− s(ψ)) because it gives
uniform prior span, which is a convenient property (it is non-informative in respect of span,
and may easily be reweighted). Could we not equally choose f̃Ψ0,ΨM (ψ0, ψM ) = s(ψ)1−M ,
so that f̃Ψ,Θ coincides with f

(1)
Ψ,Θ? The factor s(ψ)1−M may vary a great deal over a small

interval. It is highly informative with respect to (Ψ0,ΨM ) and, as we have seen, modifies the
posterior distribution substantially. There is no information which supports that weighting
for those variables. We conclude that the deposition-process model we have just described
leads to a prior density like f (2)

Ψ,Θ and unlike f (1)
Ψ,Θ.

In fact it is possible to find a process model which leads, in a natural way, to f (1)
Ψ,Θ. Suppose

that ψ0, ψ1 . . . ψM are all generated by a Poisson point process having constant intensity
in [P,A]. This new process model is otherwise the same as the one above, so that the
θm,n are again generated by a thinned Poisson process of intensity constant in (ψm−1, ψm].
The density for events (θ, ψ) generated by this new process is exactly f

(1)
Ψ,Θ. The constant

density prior f (1)
Ψ,Θ is therefore equivalent to the assumption that all the boundary layer

events in the model occur at a constant rate over the entire interval [P,A]. The constant
prior tends to inflate the span of the reconstructed dates to fill the interval [P,A], when
[P,A] is merely a conservative estimate, chosen so that P and A lie well outside the range
of dates present in the analysis. A constant prior will be appropriate when P and A are
given dates windowing a process which ran continuously before P and after A. This is all
in contrast to the earlier model in which the events ψ1, ψ2 . . . ψm−1 occur at a constant rate
in some sub interval [ψ0, ψM ]. In that model the date generation process is modelled as
running for some interval of time starting after P and ending before A.

Consider the weaknesses in the deposition models we have outlined. The assumption that
temporal deposition rates of datable artifacts are constant within layers is unreliable. The
same problem may arise from sample selection bias. A layer typically contains many poten-
tially datable artifacts. The archaeologist is often interested in the start and end dates for
the layer and will, for that reason, select artifacts for dating that are likely to lie close to
the extremes expected within the layer. This violates the assumptions we made about the
thinning process. The selection may be biased in a number of other respects. Sensitivity
to this assumption can be explored, by splitting such layers into two or three layers, and
repeating the analysis. The constant prior density f (1)

Ψ,Θ also has these faults.
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4 Calibrated date and phase models

When the ψ parameters of the process model of Section 3 cannot be given the simple
interpretation of that model, it may be best to drop the ψ variables from the model, but
maintain the property of uniform prior span in the θ parameters. Models of calibrated dates
(ie θ), with no layer parameters (no ψ-parameters), were common in the early literature (see
for example Buck et al. 1991). They are particularly prone to show unrealistic spreading
bias. The state space for this prior, ΩΘ say, is simply the set of calibrated date sets θ which
satisfy stratigraphic constraints. Thus in the case study of Section 2 we could remove the
ψ variables and use

ΩΘ = {θ;P ≤ θ6,1 ≤ θ5,2, θ5,1 ≤ θ4,1 ≤ θ3,1 ≤ θ2,1 ≤ θ1,1 ≤ A}.
If fΘ(θ) is the prior density for a posterior density on ΩΘ, take

s(θ) = max(θ) −min(θ) (8)

and use
fΘ(θ) = s(θ)2−K/(R− s(θ))

as reference prior. Under certain conditions this prior approximates the marginal of f (2)
Ψ,Θ(ψ, θ)

after integration over ψ. We can show this explicitly when M = 1. Also, fΘ(θ) has uniform
density on span, so it will often express the state of prior knowledge in radiocarbon date
calibration. When this is not the case it makes a reasonable reference prior, with known
properties, which can be modified so that it becomes representative of prior knowledge.

A setup like this, but using a prior fΘ(θ) = 1, intended to be non-informative, is used in
many places in the literature. This is reasonable when, as in Buck et al. 1991, the number
of dates is very small. However, authors using fΘ(θ) = 1 should note that they are asserting
that a span of 2s is favoured over s by about 2K−2 as prior knowledge; the weighting depends
now on K, the number of dates, which can be quite large, rather than on M+1, the number
of layer variables, which is typically smaller. The resulting spreading bias can be extreme
even in small problems.

The multi-phase models of Buck et al. 1992 include constant prior densities like f (1) as
a special case. In multi-phase models, dated objects are associated with phases, which
may overlap, rather than an abutting sequence of layers. For m = 1, 2 . . .M , variables
αm, βm ∈ [P,A], αm ≤ βm, with units calendar years AD, parameterise the start (αm)
and end (βm) of the m’th phase. Phase parameters (α, β) constrain the calibrated dates
in the same way that layer parameters do, with αm ≤ θm,n ≤ βm for each n = 1 . . .Nm.
Constraints between phase parameters may be used to represent prior knowledge about the
temporal order of the processes represented by the phases. Let ΩA,B ⊂ [P,A]2M be the
space of a priori acceptable phase parameter sets in this model. If it is known that the start
of phase m coincides with the end of phase m + 1, then we set αm = βm+1. Constraints
of this kind reduce the dimension of ΩA,B. Let d denote the number of phase parameters
in the model (so d = dim(ΩA,B)). Note that, depending on the prior constraints defining
ΩA,B , β1 and αM need not be the latest and earliest dates in a state. We must use

s(α, β) = max(β) −min(α)

to calculate the span.

What is a suitable prior here? We break the prior up as we did in Section 2.3, setting

fA,B,Θ(α, β, θ) = fΘ|A,B(θ|α, β)fA,B(α, β).
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Prior ignorance of θ is represented by the choice

fΘ|A,B(θ|α, β) =
M∏
m=1

(βm − αm)−Nm .

Buck et al. 1996 then set fA,B(α, β) = 1 for each (α, β) ∈ ΩA,B , and all later authors follow
their choice. However, f∆(s) ∝ (R− s)/s2−d is then the marginal prior density of the span.
If the number of degrees of freedom d is large then the constant phase prior again weights
strongly in favour of large span. The uniform span density

fA,B(α, β) = s(α, β)2−d/(R− s(α, β)) (9)

makes a better reference prior. We have not motivated Equation (9) from a model of the
processes generating its events. It does reduce to f (2) when the phases are in sequence and
abutting (βm−1 = αm), and uniform span is desirable if prior knowledge is not informative
in respect of this parameter. However, consider the following problem. Phase models form a
large class. If we take the union of the events in two independent phase models the result is
a phase model. We might expect the prior density to be the product of the densities for the
two phase models. This is not what Equation (9) gives. An understanding of phase models
as models of events generated by processes, generalising the model of Section 3 would be
desirable.

5 Reservoir offsets and inbuilt-age

In this section we gather together three more or less unrelated points. Firstly, the setup
used here (and in Buck et al. 1991) allows heterogeneous date types to be calibrated
together. Thus if ym,n is an obsidian hydration date, we simply replace the likelihood factor
`(ym,n|θm,n) by the appropriate density for that observation process.

Secondly, the error analysis of so called “reservoir offsets” is universally poorly handled.
The atmosphere is a kind of carbon reservoir. Since its radiocarbon activity varies spatially,
calibration data are strictly applicable to the immediate carbon reservoir from which the
calibrating material was sourced. However, it is widely assumed that any spatial variation
in the calibration data can be modelled as a reservoir offset ∆ which does not vary in time.
The atmospheric activity in New Zealand is considered to differ from that for which the
standard calibration data has been developed (e.g. McCormac et al. 1998). Thus if µNZ

is the New Zealand calibration function, then µNZ(θ) = µ(θ) −∆NZ, and McCormac et al.
1998 report ∆NZ = −27 with a σ(∆) = 5 standard error. The offset model we have just
described is one in which all CRA’s y in the observation model of Equation (1) suffer an
additional common random offset δ, so that

ym,n = µ(Θm,n)− δ + ε(Y )
m,n + ε(µ)

m,n|Θm,n

with δ ∼ N(∆, σ(∆)2). The unknown offset is a nuisance parameter in the likelihood,

L(y,∆|θ, δ) =
e−(δ−∆)2/2σ(∆)2√

2πσ(∆)2

M∏
m=1

Nm∏
n=1

`(ym,n + δ|θm,n).

Uncertainty in offset measurements has until now been treated by setting

σ(Θm,n)2 =? σ(µ)(Θm,n)2 + σ(Y )
m,n

2
+ σ(∆)2
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and replacing each CRA ym,n by ym,n+∆ in the subsequent analysis. This gives independent
random offsets,

ym,n =? µ(Θm,n)− δm,n + ε(Y )
m,n + ε(µ)

m,n|Θm,n

with δm,n ∼ N(∆, σ(∆)2) realised independently for each CRA ym,n, m = 1, 2 . . .M and
each n = 1, 2 . . .Nm. We do not believe this is intended. The practical impact of this error
is generally slight since σ(∆) is usually small compared to σ(Y )

m,n. The sensitivity of southern
hemisphere dating results to this observation model misspecification is investigated further
in Jones and Nicholls 1999b. In the case study of Section 2 no offset is used.

Finally, we come to the problem of “in-built age”. Radiocarbon measurement ym,n dates
the death of the material comprising dated specimen (m,n). It is deposited in its archeao-
logical context some time after dying. It is possible that the context date, φm,n say, signif-
icantly post-dates the event dated by radiocarbon. Certainly we can usually assume that
φm,n ≥ θm,n. Heart wood from large trees may have millenia of in-built age. It follows that
radiocarbon event dates need not observe the temporal order suggested by stratigraphy.
In practice it is usual to assume that the formation of the archaeological context and the
dated event are isochronous. The data in Table 1 come from short lived species of shrub,
so it is expected that dates for radiocarbon event (demise of shrub) and context (buried
hearth) are not separated by any significant interval of time. However, there will be cases
in which the event and context dates are not isochronous. The likelihood is unchanged by
these considerations. If the measured event date θm,n is independent of all layer boundary
dates ψ once we condition on the context date φm,n, then we can break up the new prior
density, fΨ,Φ,Θ(ψ, φ, θ) say, as

fΨ,Φ,Θ(ψ, φ, θ) = fΘ|Φ(θ|φ)fΦ|Ψ(φ|ψ)fΨ(ψ).

Here the functions fΦ|Ψ(φ|ψ) and fΨ(ψ) are identical, respectively, to fΘ|Ψ(θ|ψ) and fΨ(ψ)
of Section 2.3 (so φ here takes the place of θ in that prior). Assuming conditional inde-
pendence of event dates given context dates, we can model fΘm,n,Φm,n as a function of
φm,n − θm,n if the dated material type is known. For example, for CRA’s from wood of
known species, explicit modelling of tree growth rate and shape supports an exponential
density fΘm,n|Ψm,n

(θm,n|ψm,n) ∝ exp(−(φm,n − θm,n)/γ), whose mean γ is related to the
tree lifespan and growth habit.

6 Discussion and Conclusions

Before concluding, we return to the Stein effect we mentioned in the introduction. A
Bayesian derivation of the James-Stein shrinkage estimator (θ̂JS

m,n say) for the unknown
mean parameters Θm,n of observations of independent normal variates ym,n ∼ N(Θm,n, c

2),
with c a known constant, is given, for example, in Carlin and Louis 1996 pages 84-88. The
unknown means Θm,n are assumed to be independently realised from a normal prior dis-
tribution with unknown mean and variance. Estimates θ̂JS

m,n are squeezed by this overall
prior distribution toward the mean of the observations. Our Θ-parameters are thinned re-
alisations of nested Poisson processes. However, the basic setup is the same and shrinkage
occurs for the same reasons. Our analysis is complicated by the presence of a non-linear
function µ in the observation process, and by stratigraphic constraints. As a consequence
we are not able to get a general Stein-like point estimator for Θ in closed form, though a
sample based estimate is easily obtained for any particular dataset.

Under what circumstances is it appropriate to use a uniform-span prior? A small number
of outlier values will in certain cases be shrunk excessively towards a larger central pool of
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dates. In a similar fashion, James-Stein estimators have a lower total mean squared error
loss than the maximum likelihood estimator even though the mean squared loss on a single
parameter can be much larger. The rule for James-Stein estimators applies here: squeeze a
set of dates when it is appropriate to spread the error loss through the whole set. We refer
readers to the literature on James-Stein estimators.

Under what circumstances does a uniform-span prior make a difference ? To the best of
our knowledge, replacing f (1) by f (2) makes no significant difference for data sets of the
kind considered in the Bayesian radiocarbon calibration literature up to the present. The
full data set discussed in Anderson et al. 1996, of which our example is a small part, is
highly sensitive. However, a Bayesian analysis of that data has not been published. The
radiocarbon likelihood Equation (3) has a span dependence which is approximately Gaussian
(at least over large date ranges) whilst the weighting of the prior f (1)

Ψ,Θ (relative to f
(2)
Ψ,Θ)

towards greater spans is a power. It follows that spreading due to f (1) will be visible in
so far as it is admitted by the likelihood. Such spreading is noticeable when the standard
errors σ(θ) approach in magnitude the span of values seen in y, the CRA data.

Can one interpret ψ0 and ψM literally as dates marking the start and end of activity in the
series under study? This is the case when the model of Section 3 gives a good description
of the processes which generated the dated specimens. One is then able to make simple
summarising statements about the processes under study. In particular, the absence of
datable specimen becomes informative. When the deposition model is quite unrealistic the
ψ variables should either be dropped (density fΘ and parameter space ΩΘ of Section 4
replace fΨ,Θ and parameter space ΩΨ,Θ of Section 2.3) or they should be interpreted as
irrelevant auxiliary variables used to form a non-informative prior for θ. Whether ψ variables
are present or not we should, in this case, use the revised definition of span s(θ) given in
Equation (8). This quantity estimates a lower bound on the duration of the activity which
generated the dated specimens, rather than estimating the duration itself.

The posterior distribution of the span is sensitive also to errors in the measurement of
the standard errors σ(Y )

m,n which accompany a CRA. In this paper, as elsewhere, σ(Y )
m,n are

assumed to be known parameters of the observation process, when in fact they are mea-
sured. If the σ(Y )

m,n are overestimated then the posterior distribution of the span is shifted
to unrepresentatively small values. If the σ(Y )

m,n are underestimated, the reverse is true.

The usual caveats of Bayesian modelling apply: prior densities of meaningful quantities
should be sumarised via histograms or if possible analytically to check that these marginal
densities represent prior information reasonably well. Buck et al. 1991 illustrate this proce-
dure. When there is doubt about which model to use, Bayes factors may be helpful. Bayes
factors have reputation for being easy to interpret but hard to estimate. However we have
found estimation with the Meng-Wong estimator (see Appendix B and Meng and Wong
1996) quite straightforward in all radiocarbon calibration problems we have encountered.
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Simulation for fΨ = f
(2)
Ψ

s ∼ Uniform(0, R)

ψM ∼ Uniform(P,A− s)
ψ0 = ψM + s

for each m ∈ {1, 2 . . .M − 1}
xm ∼ Uniform(ψM , ψ0)

[ψ1 . . . ψM−1]← sort(x1 . . . xM−1)

return ψ

Simulation for fΨ = f
(1)
Ψ

for each m ∈ {0, 1, . . .M}
xm ∼ Uniform(P,A)

[ψ0 . . . ψM ]← sort(x0 . . . xM )

return ψ

Rejection algorithm returning (ψ, θ) ∼ h(ψ, θ|y, f)

repeat

ψ ∼ fΨ(ψ)
u ∼ Uniform(0, 1)

until u ≤ hΨ(ψ|y, f)/cfΨ(ψ)

for each (m,n) ∈ {(1, 1) . . . (M,NM )}
θm,n ∼ hΘ|Ψ(θ|ψ, y)

return (ψ, θ)

Figure 5: Rejection algorithm returning samples (ψ, θ) ∼ h(ψ, θ|y, f). The marginal prior
density fΨ(ψ) is simulated using to the appropriate function above, depending on whether
prior model f = f (1) or f = f (2) is used. The function ψ = sort(x) sorts the elements
of the vector x into descending order. The quantity c is defined in Equation (10). The
simulations θm,n ∼ hΘm,n|Ψ,Y (θm,n|ψ, y), which might themselves be carried out by rejection
(or numerical inversion) are not detailed.
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Appendix A: Rejection sampling algorithm

In this section we describe an algorithm returning samples distributed according to the
posterior density. This algorithm is adequate for small data sets only.

Let I x∈S equal the indicator function for the event that x is a member of the set S. The
density h(ψ, θ|y, f) breaks down as

h(ψ, θ|y, f) = hΨ(ψ|y, f)
M∏
m=1

Nm∏
n=1

hΘm,n|Ψ,Y (θm,n|ψ, y),

where hΨ(ψ|y, f) is the marginal posterior density for the ψ dates

hΨ(ψ|y, f) = fΨ(ψ)
M∏
m=1

Nm∏
n=1

∫ ψm−1

ψm
`(ym,n|θm,n)dθm,n
ψm−1 − ψm ,

and
hΘm,n|Ψ,Y (θm,n|ψ, y) ∝ `(ym,n|θm,n)× I θm,n∈[ψm,ψm−1]

We simulate ψ ∼ hΨ(ψ|y, f) via rejection, using fΨ(ψ) as the envelope (covering) function.
We then simulate θm,n ∼ hΘm,n|Ψ,Y (θm,n|ψ, y), using their conditional independence. We
bound the ratio hΨ(ψ|y, f)/fΨ(ψ) by noting that if

c =
M∏
m=1

Nm∏
n=1

max
z∈[P,A]

`(ym,n|z) (10)

then
hΨ(ψ|y, f) ≤ cfΨ(ψ).

Algorithmic details are given in Figure 6

Appendix B: estimation of Bayes factors

How are the Bayes factors given in Section 2.4 actually estimated ? Let

Zh =
∫

Ω

L(y|θ)fΨ,Θ(ψ, θ)dψdθ

and let
Zf =

∫
Ω

fΨ,Θ(ψ, θ)dψdθ

We need to estimate the ratio of posterior to prior normalising constants, P (y|M) = Zh/Zf ,
for each model. After some searching we found a stable and efficient estimator: the simplest
“importance sampling” estimator reported in Meng and Wong 1996. When samples are iid,
the standard error can be computed directly, without resampling.

Let Sf = {ψ(f,i), θ(f,i)}Jf

i=1 be a set of iid samples distributed according to the prior density,
fΨ,Θ, and let Sh = {ψ(h,i), θ(h,i)}Jh

i=1 be a set of iid samples distributed according to hΨ,Θ,
the posterior density. Let r = Zh/Zf and let r̂MW (S) denote the Meng-Wong estimator
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for r computed from the sample set S = {Sf , Sh}. An iterative sequence of estimates, r̂t
with t = 1, 2 . . ., is given below. Let J = Jf + Jh, let

Ef (r̂t|S) ≡ J

Jf

Jf∑
i=1

L(y|θ(f,i))
JhL(y|θ(f,i)) + Jf r̂t

and let

Eh(r̂t|S) ≡ J

Jh

Jh∑
i=1

1
JhL(y|θ(h,i)) + Jf r̂t

.

The iteration determining r̂MW is

r̂t+1 = Ef (r̂t|S)/Eh(r̂t|S).

The sequence r̂1, r̂2 . . . converges to the unique number r̂MW from any starting value r̂1.
We initialise the sequence with the Gelman estimator r̂1 = r̂GM for r,

r̂GM =
1
Jf

∑Jf

i=1 h(ψ
(f,i), θ(f,i)|y)

1
Jh

∑Jh

i=1 f(ψ(h,i), θ(h,i))
.

Let ε2 = ES{(r̂MW (S)−P (y))2} and let ε̂ estimate ε. Meng and Wong give an error estimate,

ε̂2

r̂2MW

=
JfJh
J
× 1
Ef (r̂MW )

− J

JfJh
,

to first order in J , the total number of samples.

When samples are obtained by rejection, with the proposal function proportional to the
prior, (or a marginal density of the prior as in Appendix A) one has the neat result that,
if s samples are realised from a total of b rejection sampling draws, then r̂R = s/b is an
estimate for r with variance r(r− 1)/b. Starting with this result, Pauler et al. 1997 give an
estimator for r having smaller variance. We used this simple “rejection count” estimator to
check estimates R̂MW obtained using our implementation of the Meng-Wong estimator.

Appendix C: Metropolis-Hastings sampling algorithm

We implemented a Metropolis Hastings MCMC algorithm to generate samples ψ, θ dis-
tributed with density h(ψ, θ|y, f) for f = f (1) and f = f (2).

We define an algorithm generating a realisation {ψ(j), θ(j)}Jj=0 of a Markov chain of random
variables {Ψ(j),Θ(j)}Jj=0, with equilibrium density hΨ,Θ. In order to get an efficient sampler,
it is effective to use several transition rules, labelled v = 1, 2 . . ., each with its own transition
kernel. Each rule is made up of a generation step, in which a candidate state (ψ′, θ′)
is generated according to a density qv for rule v, and an acceptance step, in which the
candidate state is accepted with probability αv(ψ′, θ′|ψ, θ), or rejected. The algorithm is as
follows.

Let (Ψ(j),Θ(j)) = (ψ, θ). (Ψ(j+1),Θ(j+1)) is determined in the following way.

1. Pick a new state (ψ′, θ′) ∼ qv(ψ′ θ′|ψ, θ).
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2. Accept (ψ′, θ′) (ie, set (Ψ(j+1),Θ(j+1)) = (ψ′, θ′)) with probability

αv(ψ′, θ′|ψ, θ, f) ≡ min
{

1,
h(ψ′θ′|y, f)qv(ψ θ|ψ′, θ′)
h(ψ θ|y, f)qv(dψ′dθ′|ψ, θ)

}
.

If (ψ′, θ′) is not accepted, set (Ψ(j+1),Θ(j+1)) = (ψ, θ) (ie, no change).

Sufficient conditions for (Ψ,Θ) to have equilibrium distribution h are given, for example,
in Tierney 1996. We have four update types, with distinct generation distributions qv, so
the above algorithm is repeated for each update type, v = 1, 2, 3, 4 in sequence, and the
sequence repeated until enough samples have been generated.

The first three update types are quite standard. We give the candidate generartion procedure
only. The fourth type is particularly effective for MCMC mixing. It is hard to compute the
acceptance probability so we give more detail.

• Update a single θ variable, v = 1, (ψ, θ → ψ, θ′).
A parameter θm,n is chosen uniformly at random (UAR) from the set {θ1,1 . . . θN,NM}.
A new value for θm,n (θ′m,n say) is selected UAR on the interval [ψm, ψm−1].

• Update a single ψ variable, v = 2, (ψ, θ → ψ′, θ).
An index m is chosen UAR in 0, 1 . . .M . A new value of ψ′

m for ψm is selected UAR
on the interval [max(θm+1,·),min(θm,·)] (the interval is [L,min(θ1,·)] if m = 0 and
[max(θM−1,·), U ] if m = M).

• Shift all dates, v = 3, (ψ, θ → ψ′, θ′).
In this update S is a positive constant with units years chosen to give a reasonable
acceptance rate for the update. A scalar shift s is chosen uniformly at random in
[−S, S] and added to each variable.

• Expand the dates about their mean, v = 4, (ψ, θ → ψ′, θ′).
A scalar multiplying factor ρ is chosen uniformly at random in [2/3, 3/2]. Let av(ψ, θ)
denote the arithmetic mean of the sequence ψ, θ of dates. We set θ′m,n = ρθm,n− (ρ−
1)av(ψ, θ) and ψ′

m = ρψm − (ρ − 1)av(ψ, θ), for each m = 0 . . .M and n = 1 . . .N .
This operation scales all the dates by ρ whilst keeping av(ψ, θ) = av(ψ′, θ′). This time
the correct acceptance rates are difficult to calculate. We find

α4(ψ′, θ′|ψ, θ, f (1)
Ψ,Θ) = min

{
1,
L(y|θ′)
L(y|θ) × ρM−2

}
and

α4(ψ′, θ′|ψ, θ, f (2)
Ψ,Θ) = min

{
1,
L(y|θ′)
L(y|θ) ×

R− (ψ0 − ψM )
R− ρ(ψ0 − ψM )

× 1
ρ

}
with

L(y|θ′)
L(y|θ) =

e−|y−µ(θ′)|2/2σ(θ′)2

e−|y−µ(θ)|2/2σ(θ)2
×

M∏
m=0

N∏
n=1

σm,n(θm,n)
σm,n(θ′m,n)

The posterior hΨ,Θ(ψ θ|y, f (1)
Ψ,Θ) may in general be simulated adequately with moves v = 1

and v = 2 alone. However, in order to simulate reliably the posterior with prior density
f(2)Ψ,Θ, we require in addition move v = 4. Move v = 3 improves the efficiency of the
sampling process.
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