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Abstract: The use of intranasal implantable drug delivery systems has many potential advantages for
the treatment of different diseases, as they can provide sustained drug delivery, improving patient
compliance. We describe a novel proof-of-concept methodological study using intranasal implants
with radiolabeled risperidone (RISP) as a model molecule. This novel approach could provide very
valuable data for the design and optimization of intranasal implants for sustained drug delivery. RISP
was radiolabeled with 125I by solid supported direct halogen electrophilic substitution and added to a
poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) solution that was casted on top
of 3D-printed silicone molds adapted for intranasal administration to laboratory animals. Implants
were intranasally administered to rats, and radiolabeled RISP release followed for 4 weeks by in vivo
non-invasive quantitative microSPECT/CT imaging. Percentage release data were compared with
in vitro ones using radiolabeled implants containing either 125I-RISP or [125I]INa and also by HPLC
measurement of drug release. Implants remained in the nasal cavity for up to a month and were
slowly and steadily dissolved. All methods showed a fast release of the lipophilic drug in the first
days with a steadier increase to reach a plateau after approximately 5 days. The release of [125I]I−

took place at a much slower rate. We herein demonstrate the feasibility of this experimental approach
to obtain high-resolution, non-invasive quantitative images of the release of the radiolabeled drug,
providing valuable information for improved pharmaceutical development of intranasal implants.

Keywords: intranasal implant; molecular imaging; SPECT/CT; risperidone; radioiodination

1. Introduction

Implantable drug delivery systems are capable of providing sustained drug delivery
over prolonged periods of time [1–6]. The interest in this type of system has been expe-
riencing an increase over recent years due to its potential advantages over conventional
drug delivery systems. Implantable systems can be used for either systemic or local drug
delivery, with many advantages. First of all, once implanted, these devices area capable of
providing unattended sustained drug delivery [7–9]. Therefore, patients are not required
to rely on continuous and repeated oral intake of medication, which will improve patient
compliance [7]. A wide variety of implantable drug delivery systems have been described,
including subcutaneous implants [10–14], cardiovascular devices [15–21], or orthopaedic
implants [22,23]. Among these type of implantable devices, intranasal implants have been
described for local drug delivery [24]. These devices are normally applied within nasal
sinuses after surgery to maintain sinus patency while releasing corticoesteroids to reduce
inflammation and reduce polyp recurrence [24].
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Intranasal drug delivery has shown potential not only for treating local conditions but
to administer drug systemically or even to achieve a more effective delivery of drugs into
the brain [25,26]. Most of the formulations developed for intranasal delivery are liquid- or
gel-based formulations [27–29]. The only type of implantable devices clinically available
for intranasal applications are the previously mentioned nasal implants/stents for local
drug delivery. Accordingly, there is a clear need for new types of implantable devices that
combine the advantages of implantable devices and intranasal drug delivery.

As in vitro release kinetics might differ from in vivo forms, there is a real need for the
development of advanced techniques to measure drug release from intranasal implants
in vivo. Radionuclide-based non-invasive molecular imaging techniques are currently
widely used in the clinical setting for diagnosis of multiple diseases and or pathophysi-
ological altered conditions. In addition, their fully translational nature (“from bench to
bedside and back”) has fostered the use either of positron emission tomography (PET) or
single-photon emission computed tomography (SPECT) technologies in pharmaceutical
development. These techniques can provide three-dimensional, fully quantitative, non-
invasive, longitudinal, whole-body images with submillimeter resolution and an extremely
high sensitivity that is unsurpassable by any other in vivo imaging technology, given that
micro or nanomolar concentrations of radiolabeled molecules in tissues can be detected. In
addition, the current state-of-the-art multi-technology devices adapted for small animal
imaging combine high-resolution molecular imaging using microPET or microSPECT with
anatomical imaging using computed tomography (CT).

The main potential drawback of these techniques is their much lower throughput as
compared to others, their cost, and the need for special facilities for the use of radioac-
tive material. However, their fully translational nature and their aforementioned unique
characteristics could make them ideal for research, as in the case described in this work.

On the other hand, visible-light in vivo imaging techniques such as bioluminescence
and fluorescence are widely available, relatively non-expensive, and can provide a high
experimental throughput. However, they have several problems intrinsically bound to the
physical nature of the wavelength of visible light photons, including those related with
autofluorescence of biological tissues and mainly the lack of real 3D information as visible
light photons are significantly absorbed by the tissues, and hence the exact location and
intensity of a signal cannot be obtained. Furthermore, these techniques are intrinsically
non-quantitative, and only magnitudes such as “relative light units” can be obtained, but
there is no way to really obtain fully quantitative values.

This work describes a proof-of-concept study describing the use of intranasal implants
for drug delivery using risperidone (RISP) as a model molecule. Applying solid-based
radioiodination, we herein radiolabeled RISP with a long-lived radionuclide (125I), de-
signed poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) (PLGA)-based
intranasal microimplants adapted for administration to rats, loaded them with 125I ra-
diolabeled RISP, and in vivo imaged microimplants for a month using high-resolution
MicroSPECT/CT.

2. Materials and Methods
2.1. Risperidone Radiolabelling

RISP (Enke Pharma-Tech Co., Ltd., Cangzhou, China) was radiolabeled by direct
electrophilic substitution with 125I (Figure 1) under oxidative conditions using a modified
protocol derived from Saddar et al. [30]. Given the very low solubility of RISP in aqueous
solvents, we used Iodination Beads (ThermoFischer Sicentific, Waltham, MA, USA) to
achieve mild oxidation conditions and permit a solid-supported reaction in a RISP powder
suspension. The radionuclide was chosen on the basis of its long half-life and radioactive
properties that could permit follow up of the release of the radiolabeled RISP for more than
1 month. 125I has a half-life of 59.49 days, and it decays by electron capture to an excited
state of 125Te that immediately decays by emission of 35 keV gamma rays.
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Figure 1. Solid supported 125I-radiolabelling of RISP via direct halogen electrophilic substitution.

For the radiolabeling reaction, one Pierce™ iodination bead was pre-wetted in 500 µL
of PBS (pH = 6.5) for 5 min, removed from the solution, and dried over filter paper. Thirty
milligrams of RISP was weighted in a bottom-flat glass vial, and the iodination bead was
added along with 300 µL of fresh PBS and 18,5 MBq of [125I]INa solution (Perkin Elmer Inc,
Amsterdam, the Netherlands) in <5 µL. The suspension was thoroughly mixed by shaking
and left with gentle magnetic stirring for ≈72 h.

2.2. Quality Control

The radiolabeling reaction was periodically monitored by radio thin-layer chromatog-
raphy (radioTLC). For this purpose, samples were taken from the reaction vial just after
increasing the stirring speed. Such samples (that contained both the non-dissolved RISP
and the reaction solution) were added into 10 µL of an acidified PBS solution (3 mL of HCl
1 M:2 mL of PBS) to dissolve RISP, then seeded at 1 cm from the bottom of a 10 cm iTLC SG
strip (Agilent Technologies, Santa Clara, CA, USA) that was developed to a final distance
of 8 cm from the origin with 0.9% NaCl. Chromatograms were analyzed using a radioTLC
scanner (Scam RAM, LabLogic, Sheffield, UK). The separation method had previously been
validated by our group using non-radioactive RISP and iodide samples visualized with a
7.5 g/L KMnO4, 50 g/L K2CO3, and 0.625 g/L NaOH solution as described in the Section 3.

2.3. 125I-Risperidone Extraction and Purification

At the endpoint of the reaction, the iodination bead was removed from the radio-
labeling vial, the suspension was thoroughly mixed and transferred into an Eppendorf
tube, the vial was washed twice with 200 µL of PBS, and the three samples were mixed.
The overall reaction suspension was centrifuged at 9000 rpm for 1 min, and the super-
natant was removed. The solid precipitate was then washed twice with 200 µL of PBS, and
the supernatant was analyzed by radioTLC as described above to check for the absence
of free [125I]I−. The precipitate containing 125I-labelled RISP (125I-RISP) was then dried
overnight with gentle shaking at 37 ◦C in a ThermoMixer C (Eppendorf Thermoshaker,
Hamburg, Germany).

2.4. Preparation of Microimplants Containing 125I-RISP or [125I]INa

To prepare PLGA-based microimplants, silicone molds were used (see Figure 2A,B).
These implants were prepared by using a 3D-printed poly(lactic acid) and casting silicone
on top as described previously (Figure 2C,D) [11]. The silicone (Xiameter® RTV-4250-S)
(Notcutt, Surrey, UK) was prepared by mixing a silicone elastomer with a curing agent (ratio
10:1). The molds contained two parts: a part containing 3 cavities to prepare 3 implants
and a lid. ViatelTM DLG 7509 E PLGA (75/25 D,L-Lactide/glycolide ratio; Mn = 61.9 kDa;
Mw = 104.2 kDa; Tg = 50 ◦C; ester end group) (Ashland Specialities Ireland, Mullingar,
Ireland) was used to prepare implants. In order to achieve this, approximately 20 mg of the
dry solid 125I-RISP mixture was dissolved in 70 µL of dichloromethane. Subsequently, 16 mg
of PLGA was added to the 125I-RISP solution, and the solution was carefully mixed (to avoid
bubble formation) for 20 min. Using the silicone mold and a positive displacement pipette,
15 µL of the 125I-RISP/PLGA mixture containing around 750 kBq was added to the silicone
molds to prepare each microimplant. After 24 h at room temperature, microimplants were
taken out from the molds, burrs were carefully removed and longitudinally cut in half, and
their activity was measured in a dose calibrator calibrated for 125I. Such halves contained
150–225 kBq 125I and were rigid enough for intranasal in vivo administration. As controls
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for in vitro and in vivo release studies, microimplants containing [125I]INa were prepared
in a similar way but using [125I]INa instead of 125I-RISP.
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2.5. In Vitro Release Studies

Microimplants containing either 125I-RISP or [125I]INa were placed in 2 mL PBS at
37 ◦C with constant agitation (350 rpm) in a thermomixer. Five microliter triplicate samples
were taken at defined time points for up to 30 days and radioactivity measured in a
gamma counter (Hidex Automatic Gamma Counter, Turku, Finland) calibrated for125I, and
percentage release ratios were calculated.

In parallel, the release of unlabeled RISP from PLGA implants in PBS (pH = 6.5) at
37 ◦C was evaluated using HPLC. For this purpose, an Agilent 1220 Infinity II LC gradient
system (Agilent Technologies UK Ltd., Stockport, UK) equipped with a Phenomenex®

SphereCloneTM C18 ODS column (150 mm length × 4.60 mm internal diameter, 5 µm
particle size) was used. The mobile phase contained a mixture of organic (85% v/v) and
aqueous phases (15% v/v). The aqueous phase contained 10 mM sodium dihydrogen
phosphate buffer. On the other hand, the organic phase contained a mixture of methanol
and acetonitrile (75:25% v/v). RISP detection was carried out at 235 nm.

2.6. Animal Studies

Female Wistar rats (212 ± 22.5 g, Harlan Laboratories S.A., Barcelona, Spain) were
used. Animals were socially housed on 12 h light–dark cycles under standard conditions in
compliance with the current regulation and given free access to food and water.

2.7. Microimplant Intranasal Administration and In Vivo Release Studies

Radiolabeled microimplants halves (≈5.5 mm × 0.5 mm) were introduced into a
20 GA 1.1 mm × 30 mm i.v. catheter (Insyte Autoguard BC, BD medical, Madrid, Spain)
previously cut at around 15 mm from the hub to flatten the bevel and shorten its length. A
total of 7–10 mm of the catheter were slowly introduced through the nostril of anesthetized
rats (2% isoflurane in 100% O2 gas), the shaft was carefully pushed until the implant was
left into the nasal cavity, and then the catheter was removed (Figure 3). Six animals were
treated with 125I-RISP microimplants, while three were treated with microimplants loaded
with [125I]INa as controls. The correct placement of the microimplants inside the nasal
cavity was verified by microSPECT/CT imaging.
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Figure 3. Microimplant (red arrow) placed inside the modified catheter (A). Intranasal administration
of the implant to the animal (B).

After microimplant administration, in vivo images were acquired just post-administration
(day 0) and at 1, 3, 7, 11, 14, 18, 21, and 28 days. SPECT scans were acquired in a U-
SPECT6/E-class (MILabs, the Netherlands) using an ultrahigh resolution UHR-RM-1 mm
multi-pinhole collimator. Rats were placed prone on the scanner bed under continuous
anesthesia with isoflurane (2% in 100% O2 gas) to acquire dynamic scans of the head in
list mode format over 30 min. Following the SPECT acquisition, and without moving the
animals, CT scans were performed to obtain anatomical information using a tube setting
of 55 kV and 0.33 mA. All the SPECT images were reconstructed using the 125I photopeak
centered at 29 keV with a 20% energy window width and using a calibration factor to obtain
the activity information (MBq/mL). Finally, attenuation correction was applied using the
CT attenuation map. To obtain fully quantitative values (MBq), the system was calibrated
using a point source prepared from [125I]INa.

Studies were exported and analyzed using the PMOD software (PMOD Technologies
Ltd., Adliswil, Switzerland), where fully three-dimensional fused SPECT/CT images were
processed. The retention of radioactivity in the microimplant was calculated for each image
as follows: a spherical volume of interest (VOI) containing the entire microimplant was
drawn over SPECT images using the CT co-registered images as anatomical reference.
Then, a semiautomatic delineation tool was used applying a predefined threshold of 1% of
the maximum voxel value to obtain a new VOI that delimited the entire signal. Finally, the
average value inside the VOI (MBq/mL) multiplied by the volume (mL) was calculated to
estimate the amount of radioactivity retained in the microimplant. From these data, the
corresponding 125I decay correction based on the half-life (T1/2) of 125I and the time elapsed
between the administration and the imaging was applied (A = A0 ∗ e(−ln(2) ∗ t/T1/2). The
percentage of the release was calculated as the inverse of the percentage of the retention
detected in each image and considering the retention value in the 1 h post-administration
image as the administered dose for each animal.

3. Results and Discussion
3.1. Reaction Optimization and Radiolabelling Yield

The radiolabeling yield was studied at different time intervals by radioTLC. Before
taking a sample for radioTLC, the stirring speed was increased to be able to pipette a
representative sample containing both a fraction of the solid (RISP) and the liquid in a
suspension. Furthermore, after around 24 h, a solid precipitate could not be seen any more,
and the suspension had a milky-turbid visual appearance. At 24 h, the labelling yield was
around 50%, and it only increased marginally up to 72 h.
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RISP iodination reaction was first tested in an Eppendorf tube. Although the tube was
inverted several times every 2 h, a rather large part of the RISP was not in contact with the
solution because it precipitated under reaction conditions and the contact of the solid with
the iodination bead was not sufficient to get appropriate yields. Radiolabeling was then
tested in a flat-bottom 5 mL glass vial that permitted continuous magnetic stirring at low
speed for the overall reaction time (up to 72 h). Using the simple approach of combining a
surface-based reaction on the iodination beads with a water-insoluble molecule such as RISP,
we were able to carry out the radioiodination exchange reaction in suspension. Although
the reaction yield was relatively low (around 25%), after extraction, centrifugation, and two
consecutive washing steps, virtually all [125I]I− was removed from the reaction mixture as
determined by the radioTLC measurement of radioactivity in the different supernatants.
The extraction and purification processes were optimized to maximize the purity of the
final product, not the reaction yield.

RISP has previously been radiolabeled with 125I [30], although by direct electrophilic
substitution by oxidation with chloramine-T in an alcoholic solution of RISP. Strong ox-
idation with aggressive reagents such as chloramine-T might produce alterations in the
molecule, and this requires a careful optimization of reaction conditions and times. In our
hands, mild oxidation with iodination beads produced a smoother and more controllable
reaction, albeit the final reaction yield was usually lower. Nonetheless, we decided to
use a solid-supported electrophilic substitution and a final extraction step to maximize
purity of 125I-RISP and not reaction yield. In this way, using high specific activity [125I]INa
(≈629 GBq/mg), we were able to obtain >99% pure 125I-RISP in sufficient amount to make
PLGA microimplants containing radiolabeled RISP for in vivo imaging. Given the chemical
structure of RISP, we might have considered radiolabeling it with fluorine-18 (a PET ra-
dionuclide with a half-life of 109.8 min) producing an identical molecule to the parent one.
This is not only a very complex synthesis that has only been described in one paper thus
far [31] (and never been used for in vivo imaging), but is also performed with an extremely
short half-life radionuclide that could in no way be used for long-term release studies such
as the ones presented here.

3.2. Quality Control Validation

As can be seen in Figure 4A, using iTLC SG strips developed in saline and stained
with permanganate, the mixture of RISP and KI showed no interferences in TLC, and both
species could be clearly resolved.
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When using radioactive samples for QC of RISP radiolabeling, both species were able
to be properly resolved and identified (see a representative radioTLC chromatogram in
Figure 4A,B).

3.3. In Vivo and In Vitro Release Studies

SPECT-CT images show the correct placement of the microimplant inside the nasal
cavity of the animals (Figure 5), thus demonstrating the feasibility and accuracy of the
administration procedure we developed. The sensitivity and resolution of MicroSPECT
depends on the radionuclide used and the scanner, but it can be as low as 0.5 mm. Fur-
ther details of the MicroSPECT/CT system were previously reported by Prieto et al. [32].
Longitudinal images acquired in all animals for around 4 weeks showed that the implants
remained inside the nasal cavity for a long time (Figure 6). The amount of radioactivity
in the microimplant progressively decreased over time (all data were corrected for the
decay of 125I and were hence comparable). When comparing the release of 125I-RISP and
[125I]I−, a clearly different pattern was seen with faster clearance of the former (Figure 6),
probably due to its lipophilic nature. 125I-RISP release reached around 45% by day 3 and
then steadily but slowly increased up to 80% by day 21. [125I]I− release was much slower,
and it only accounted for 17% by day 12, and then it increased with a larger slope up to
around 45% by day 21. Between 3 and 4 weeks after implantation, the implant moved
from its original placement position towards the nostril, probably due to the progressive
dissolving of the PLGA matrix (see Figure 6A at 28 days). The in vivo imaging technique
used allowed us to even be able see this phenomenon.
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In vitro release studies of 125I-RISP and [125I]I− from the microimplants also showed
a different pattern, although the different experimental conditions between in vitro and
in vivo experiments figures were somewhat different (Figure 7). HPLC release studies of
unlabeled RISP implants showed a fast release of RISP in the first 2 days (up to 65%) and
then a very slow increase up to 80% by day 7.

All three methods (in vivo SPECT-CT imaging, in vitro radioactivity release studies,
and HPLC release studies) showed a fast release of the drug in the first days and then
a much steadier increase to reach a plateau-like situation. Release profiles are mostly
comparable, but figures and slopes are different for each method, yet all three methods
show that RISP can be released from our implants for a long time.



Pharmaceutics 2023, 15, 843 8 of 12
Pharmaceutics 2023, 15, 843 8 of 12 
 

 

 
Figure 6. (A) Comparative release of radioactivity in vivo from 125I-implants. MicroSPECT-CT im-
ages clearly show a progressive decrease in the amount of radioactivity in the nasal cavity over time, 
both for 125I-RISP and [125I]INa implants. Hotter colours indicates higher concentration of radioac-
tivity. The plot in (B) shows comparative quantitative values of radioactivity release as measured in 
the images on the left (mean ± SD). 

In vitro release studies of 125I-RISP and [125I]I− from the microimplants also showed a 
different pattern, although the different experimental conditions between in vitro and in 
vivo experiments figures were somewhat different (Figure 7). HPLC release studies of 
unlabeled RISP implants showed a fast release of RISP in the first 2 days (up to 65%) and 
then a very slow increase up to 80% by day 7. 

 
Figure 7. Radioactivity release in vitro from 125I-implants are shown in (A), while (B) shows RISP 
release from implants as determined by HPLC (mean ± SD). 

Figure 6. (A) Comparative release of radioactivity in vivo from 125I-implants. MicroSPECT-CT
images clearly show a progressive decrease in the amount of radioactivity in the nasal cavity over
time, both for 125I-RISP and [125I]INa implants. Hotter colours indicates higher concentration of
radioactivity. The plot in (B) shows comparative quantitative values of radioactivity release as
measured in the images on the left (mean ± SD).
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The highly lipophilic drug used in these experiments was slowly but steadily released
from the microimplants, while the release of a hydrophilic compound ([125I]INa) took place
at an slower rate. If both the lipophilic molecule and the ionic one would be equally trapped
in the PLGA implant matrix, and their release would only depend on the progressive
dissolution of the implants over time in vivo, quantitative values and release profiles of 125I-
RISP and [125I]I− would be similar. Our data show that the lipophilic or hydrophilic nature
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of the molecule of interest definitely conditions its release (as expected). Consequently, the
dissolution of the implants would be responsible to some extent for the release of the loaded
test molecule, but the specific physicochemical characteristics of the molecule under study
and its interactions with the implant matrix are also of paramount importance, not only
in in vitro experiments, but also in vivo, as shown by our images. The exact relationship
between the release produced by dissolution of the implant and progressive release from
the matrix are difficult to estimate for small ionic molecules (such as iodide) when a matrix
as PLGA is used.

It is important to note that 125I-RISP was not seen in the brain or any other part of the
animal. The reason behind this could be the small amount of radioactivity used in each
implant (just a few kBq, as compared to magnitudes in the order of MBq usually used for
in vivo imaging in small animals). Furthermore, the passage of iodinated RISP through the
nose to brain cribiform plate is unknown, and it might be different to some extent different
to that of RISP, leading to a lower entrance into the brain. However, it is important to note
that previous studies showed that intranasal RISP formulations showed enhanced drug
uptake [33–35]. This work describes a new method for RISP radiolabeling and loading
into intranasal microimplants. These implants have been designed to be implanted inside
the nasal cavity to provide enhanced brain delivery of drugs for potential treatment of
schizophrenia. Intranasal implants can revolutionize the treatment of chronic conditions
affecting the central nervous system as they can provide sustained drug delivery and
enhanced brain targeting. As mentioned previously, nasal stents and nasal drug eluting
implants are currently been used to treat nasal polyps [24,36–39]. Accordingly, they are
designed for localized drug delivery. Modifying this type of implant to provide sustained
drug release into the brain can be used in the treatment of a wide range of chronic conditions.
These devices are capable of providing prolonged drug delivery and, therefore, have
potential to improve patient adherence to treatment [40–43]. This is especially important
for schizophrenia treatment, as it has been reported that up to 75% of patients discontinue
the treatment within the first year and a half [44]. Non-adherence to treatment has an
enormous impact for this patient as it increases the risk of relapse, hospitalization, and
even suicide rates [45–49]. Moreover, there is an obvious economic impact for healthcare
systems. In the UK, it has been estimated that the cost of relapse per patient can be up
to GBP 15,000 per year [50]. This figure is four times higher than the equivalent cost
for non-relapse patients [51]. In addition, in order to improve patient compliance, nasal
drug delivery will improve brain uptake, minimizing the risk of systemic exposure and
potential side effects. Therefore, intranasal implants for the treatment of chronic conditions
affecting the central nervous system offer multiple benefits to conventional treatment.
However, before these systems can be used, in vivo testing is required. In the present work,
we have shown potential alternatives to evaluate in vivo drug release using radiolabeled
microimplants containing RISP.

4. Conclusions

To the best of our knowledge, this is the first study to describe the use of radiolabeled
RISP for the development of intranasal implantable devices. This procedure can be used
to evaluate drug release in vitro and in vivo in a simple way. This is especially important
for in vivo drug delivery. We herein demonstrate the feasibility of this approach and its
application to obtain high-resolution images of the release of the radiolabeled drug from
the microimplants for more than one month. Furthermore, the possibility to accurately
quantify in vivo the amount of the drug in the target, instead of simply measuring the
concentration of the drug or its metabolites in the body fluids (i.e., blood, urine, etc.) as
a result of the release, provides very valuable data for the development and fine-tuning
of implantable long-term drug release devices. Future studies addressing the relationship
between dosage of the number of therapeutic molecules in the brain and blood of the
animals and the values quantitatively evaluated by imaging would further help clarify
this point.
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