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Abstract: In the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral 

calibration and characterization experiment of the Resonon PIKA II imaging spectrometer 

was conducted at the US Department of Energy’s Idaho National Laboratory (INL) UAV 

Research Park. The purpose of the experiment was to validate the radiometric calibration 

of the spectrometer and determine the georegistration accuracy achievable from the  

on-board global positioning system (GPS) and inertial navigation sensors (INS) under 

operational conditions. In order for low-cost hyperspectral systems to compete with larger 

systems flown on manned aircraft, they must be able to collect data suitable for 

quantitative scientific analysis. The results of the in-flight calibration experiment indicate 

an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 

24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 m 

(based on RMSE) with a flying height of 344 m above ground level (AGL).  

Keywords: hyperspectral; radiometric calibration; geometric correction; UAV; imaging 

spectrometer 
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1. Introduction 

AIRBORNE hyperspectral imaging systems are widely used for environment research applications 

since the development of imaging spectrometers such as AVIRIS (Airborne Visible / Infrared Imaging 

Spectrometer) and HyMap (Hyperspectral Mapping) [1,2]. Hyperspectral sensing techniques for 

vegetation applications are widespread and include weed detection [3–5], crop monitoring and yield 

prediction [6–8], and estimation of biophysical parameters such as water, chlorophyll and nitrogen [9–12]. 

To date hyperspectral processing techniques for vegetation applications have primarily involved the 

development and use of narrowband vegetation indices, often times in conjunction with radiative 

transfer modeling [13,14]. Currently, hyperspectral imaging is generally accomplished by sensors 

mounted on manned aircraft, and to a limited degree, spaceborne platforms. Manned flights are 

scheduled months to years in advance for high quality systems such as AVIRIS and HyMap, and have 

considerable mission costs. In addition, weather conditions can force the cancellation of a mission, as 

many commercial manned-aircraft systems providers are oversubscribed and cannot accommodate 

remaining on-station for considerable time periods. 

With the recent development of low-cost compact imaging spectrometers and unmanned aerial 

vehicles (UAVs), a UAV-based hyperspectral imaging system could overcome scheduling and 

acquisition limitations as well as open new areas of research by providing an on-demand platform that 

can rapidly collect data and stay on station for hours [15,16]. However, these low-cost hyperspectral 

systems require radiometric and geometric calibration to allow quantitative scientific analysis [17,18]. 

To date, several related studies have paired small, lightweight, rotary or fixed-wing UAV platforms 

with some combination of video, multi-band digital cameras, synthetic aperture radar (SAR), and laser 

scanning [19–27]. Yet, to our knowledge, few studies have successfully tested pushbroom hyperspectral 

sensors on small, lightweight, fixed-wing UAVs [28,29].  

This paper describes the integration of a sophisticated, light weight commercial off-the-shelf 

imaging spectrometer with a medium-altitude, long-endurance unmanned aerial vehicle and presents 

results of a calibration and characterization experiment. The main objectives were to validate 

laboratory-derived radiometric calibration of the spectrometer and determine obtainable 

georegistration accuracy from the on-board global positioning system (GPS) and inertial navigation 

system (INS) for the resulting imagery. Importantly, this study demonstrates several challenges of 

hyperspectral-UAV systems and provides a means for comparison to future experiments intending to 

utilize imagery for quantitative scientific analysis in general, and dryland vegetation management 

applications in particular.  

2. System Overview 

2.1. Sensor System  

The Resonon Airborne Hyperspectral imaging system (Resonon Inc., Bozeman, MT, USA) was 

chosen for this study due to its UAV-centric design, including its compact size and relatively low cost 

and weight. The complete system consists of the Resonon PIKA II imaging spectrometer and the  

P-CAQ airborne data-acquisition unit. The PIKA II is a visible/near-infrared pushbroom system, 

configurable up to 240 bands in the 400 nm to 900 nm spectral range, with a spectral channel 
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bandwidth of 2.1 nm. The P-CAQ provides the ability to configure the PIKA II, capture and record 

image data, and synchronize it with the GPS/INS telemetry data provided by the UAV autopilot. 

Sensor parameters include frame rate, spectral binning, gain and percent shutter (equivalent to 

integration time over shutter speed). These parameters can be adjusted based on mission requirements 

in real-time via a ground-based control station. The manufacturer-supplied specifications for the PIKA 

II and P-CAQ are shown in Table 1. The sensor was calibrated before flight by Resonon in their 

laboratory using an integrating sphere (Lapsphere, Inc., NH, USA) and the following parameters: 320 

cross track pixels, 80 bands (6.2 nm resolution), 3.15 cm ground pixel size, 305 m altitude and 125 

frames per second.  

Table 1. Characteristics of the PIKA II and P-CAQ sensor system. 

Parameter PIKA II/P-CAQ 

Volume (mm) 

PIKA II  

P-CAQ 

 

102 × 165 × 70 

102 × 165 × 82 

Weight (kg) 

PIKA II  

P-CAQ  

 

1.043 

1.16 

Average power (W) 15W nominal, 30W max 

Aperture (F/#) f/3 

IFOV(mrad) 0.65 

Crosstrack FOV (deg) 

Crosstrack pixels 

12.0 

640 max 

Wavelength range (nm) 400–900 

Spectral resolution (nm) 2.1 max 

Number of spectral bands 240 max 

Bit depth 12 bits 

Frame rate (Hz) 135 fps max in-flight  

Smile <1 Pixel 

Keystone <1 Pixel 

2.2. Platform  

The platform utilized for this experiment is a catapult-launched Arcturus T-16 airframe (Arcturus 

UAV, Rohnert Park, CA, USA), which is a fixed-wing UAV, shown in Figure 1. It is designed to carry 

payloads weighing up to 8 kg in a 12,000 cm
3
 compartment, with an endurance range in excess of 12-h 

based on flight configuration. The long-endurance is achieved through the wet-wing design and 

onboard electric generation. 

Command and control of the airframe is accomplished by the Cloud Cap Piccolo II Autopilot 

(Cloud Cap Technology, Hood River, OR, USA) which provides a complete GPS/INS solution needed 

for autonomous operation of the aircraft. The Piccolo II incorporates three gyroscopes, three 3-axis 

accelerometers, and a GPS receiver to provide a 50 Hz Total State Extended Kalman Filter navigation 

solution with an output telemetry stream of 25 Hz. 
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Figure 1. Arcturus T-16 on the catapult launcher at the Idaho National Laboratory (INL) 

UAV Research Park. 

 

2.3. System Integration 

In order to efficiently utilize acquired hyperspectral imagery, automated methods for georeferencing 

the raw image data are typically implemented; this is referred to as direct georeferencing. To 

successfully implement direct georeferencing, the following conditions must be met [30]: (1) the 

position and orientation offset between the GPS, IMU, and sensor must be determined; (2) the offset 

and orientation must remain constant during each mission; and (3) sensor systems must be  

clock-synchronized with sufficient accuracy. To achieve this, a mounting and harnessing system was 

designed to provide vibration isolation, boresight and leveling adjustment, and a fixed offset from the 

Piccolo II mount (Figure 2). The P-CAQ data acquisition system was interfaced directly to the Piccolo 

II via an ancillary RS232 serial port for the real-time synchronization of image data with orientation 

data and in-flight parameter adjustment, such as shutter speed and spectral binning. Furthermore, the 

Piccolo II was integrated with a NovAtel Differential Global Positioning System (DGPS) receiver in 

order to provide a full Real-Time Kinematic (RTK) DGPS/INS navigation solution with a reported 

horizontal and vertical accuracy of up to 2 cm (NovAtel, Inc., Calgary, AB, Canada). The positional 

precision improves the accuracy of the direct georeferencing workflow, which helps decrease the 

preprocessing time required to utilize the collected data. Finally, the sensor payload was integrated 

with the on-board power generation to reduce battery load and extend system endurance.  
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Figure 2. Modeled design of payload mounting harness. 

 

3. Methods 

3.1. Data Collection  

The PIKA II hyperspectral data for this project were collected at Idaho National Laboratory’s (INL’s) 

UAV Research Park on 27 July 2010, under FAA Certificate of Authorization #2009-WSA-73. The 

UAV Research Park is located on the 2,046 km
2
 INL desert site, approximately 60 km west of Idaho 

Falls, Idaho, USA. Elevations within the UAV Research Park range from 1,480 to 1,490 m. At its 

center is a 304 m × 30 m black asphalt runway (1,482 m mean sea level (MSL)), which is painted with 

white fiducial marks ranging from 7.5 cm × 7.5 cm to 1 m × 1 m. PIKA II data were collected on 27 

July 2010 from 1:00 to 2:13 pm local time, resulting in 12 overpasses of the runway under 

predominately clear-sky conditions, however, a few low cumulus clouds were visible well to the north 

and west of the study area. Table 2 describes the PIKA II flight configuration used in the study. The 

spectral response was binned to 80 channels resulting in a 6.2 nm spectral channel bandwidth. The 

binning occurs onboard the aircraft by the P-CAQ, which averages adjacent spectral pixels. An 

example of a georeferenced 3-band composite of a hyperspectral flight line overlaying an ortho-image 

base map in shown in Figure 3(A). Figure 3(B) shows a zoomed image of the 3 calibration tarps used 

for calibration (described below) and visible at the center of the image. 

Table 2. PIKA II flight configuration. 

Parameter Flight Configuration 

Elevation-AGL (m) 344 

Nominal ground speed (m/s) 28 

Swath width (m) 80 

GSD (cm) 28 

Wavelength range (nm) 396.3–892.1 

Spectral resolution (nm) 6.2 

Cross track pixels 320 
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Table 2. Cont.  

Parameter Flight Configuration 

Number of spectral bands 80  

Gain (db) 0 

Frame rate (Hz) 107 fps  

Figure 3. (A) INL UAV runway with example hyperspectral flightline from 2010.  

(B) Calibration tarps ranging from 2.5%, 24%, and 56% reflectivity placed north to  

south, respectively. 

 

During the UAV mission, in situ radiance measurements of a 0.6 × 0.6 m Spectralon white 

reference panel (Labsphere, North Sutton, NH, USA) were acquired at 30-second intervals using a 

FieldSpec Pro Spectroradiometer (Analytical Spectral Devices Inc. (ASD), Boulder, CO, USA). The 

field spectrometer collects spectral data from 350 to 2,500 nm, with a spectral resolution that ranges 

from 3 to 12 nm. The spectrometer was configured with an 8-degree fore-optic, which provided a 

ground field of view (FOV) of approximately 8.5 cm when held from approximately 0.6 m above the 

panel. In addition to the Spectralon panel, three 2.5 × 2.5 m polyester fabric calibration tarps (Group 

VIII Technologies, Inc., Provo, UT, USA), with reflectivity of 56%, 24%, and 2.5%, were deployed 

A 

B 



Remote Sens. 2012, 4              

 

 

2742

during the over flights. Just after the completion of the over flights, a series of 15 reflectance 

measurements were acquired for each of the tarps and the Spectralon panel. Conversion to reflectance 

was accomplished by acquiring a spectral sample of a NIST-traceable Spectralon panel prior to the 

measurements for each tarp.  

3.2. Image Pre-Processing  

Pre-processing of the raw PIKA II data was accomplished through the use of Space Computer 

Corporation’s (Los Angeles, CA, USA) GeoReg software specifically developed to georegister and 

convert raw digital number data cubes collected by Resonon’s hyperspectral sensors to radiance 

(µW/steradian/cm
2
/µm). Conversion to radiance was accomplished by applying vendor-supplied,  

lab-derived radiometric calibration coefficients The GeoReg software performs georegistration by 

combining the external orientation data recorded during flight with a camera model (interior 

orientation) and elevation model. The digital elevation model for this experiment was derived from 

high-density lidar data collected in 2006 using a Leica Geosystems ALS50-II scanning lidar. The 

resulting lidar point cloud was processed using the MARS software (Merrick, Boulder, CO, USA) to 

classify bare-earth returns and then rasterized using Idaho State University’s Boise Center Aerospace 

Laboratory (BCAL) LiDAR Tools (http://code.google.com/p/bcal-lidar-tools/) to produce a 1 m  

bare-earth digital elevation model.  

3.3. Geometric Analysis  

In order to assess the overall positional accuracy of the direct georeferencing process, a 3-band 

GeoTIFF true-color composite image was generated for 5 flight lines of the runway. The resulting 

images were overlaid with the known ground control points (GCPs) with a reported accuracy of  

±0.01 m and a high-resolution ortho-rectified aerial image collected in 2006. An initial accuracy 

assessment was conducted to identify any systematic errors (i.e., roll, pitch, and yaw bias) using 5 

control points for each of the images. The ΔX and ΔY for each control point were examined for 

consistency of magnitude and direction, and then averaged. Due to the inconsistency of measured 

errors within each flight line, the yaw bias was undeterminable. The resulting averages were further 

examined for consistency of magnitude and direction, and averaged to obtain an overall adjustment for 

pitch and roll bias. These biases were used in the GeoReg software, and the data cubes were 

reprocessed. For each of the reprocessed data cubes, the average RMSEX, RMSEY, overall RMSE and 

approximate circular standard error were calculated using 20 random check points from each flightline, 

selected from the reference GCPs (n = 126) according to the method described in the National Spatial 

Data Infrastructure Geospatial Positioning Accuracy Standards [31].  

3.4. Radiometric Analysis  

Radiometric calibration is typically conducted in a laboratory environment using an integrating 

sphere to produce calibration coefficients for each wavelength band recorded by the sensor. These 

coefficients are then used to convert the digital numbers (DNs) recorded by the sensor into units of 

radiance. As stated above, vendor-supplied coefficients were applied to each of the data cubes to 
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convert to spectral radiance (µW/steradian/cm
2
/µm) using the GeoReg Software. No prior geometric 

corrections were applied to any of the data cubes used for this analysis in order to avoid errors that 

would be introduced during the resampling process. In-flight calibration experiments similar to those 

presented by Green and Pavri for AVIRIS [32] were applied to validate the PIKA II’s radiometric 

calibration under operational conditions. Specifically, our methods include acquiring in situ 

measurements that describe the atmosphere and surface properties of the Spectralon white reflectance 

panel at the time of PIKA II overflight. These in situ measurements are used to constrain parameters in 

the radiative transfer modeling and independently predict at-sensor radiance.  

3.4.1. In situ Spectral Measurements 

Using the field spectrometer (ASD) discussed above, fifteen spectral reflectance measurements of 

each calibration tarp were acquired between 11:00 and 11:30 am under clear sky conditions. The 15 

spectra were averaged and subsequently used as input for the radiative transfer modeling process 

(MODTRAN). In addition, radiance measurements (n = 120) were acquired of the Spectralon reference 

panel [33] at 30 s intervals during the UAV over passes in order to characterize any uncertainty that 

might have been associated with potential changes in atmospheric conditions. The mean and standard 

deviation of the resampled Spectralon radiance data are shown in Figure 4. Specific weather conditions 

(wind speed, temperature, relative humidity, solar radiation and pressure) were also obtained in five 

minute intervals as recorded by a NOAA weather tower located 2.75 km west of the runway.  

Figure 4. ASD measured radiance of Spectralon calibration panel. Mean and standard 

deviation (STD = ±1σ) are shown. 

 

3.4.2. Radiative Transfer Modeling 

The derived mean ASD reflectance spectra for each calibration tarp were input into the 

MODTRAN4 V3.1 radiative transfer code to predict at-sensor radiance for the PIKA II mission [34]. 

The MODTRAN runs were constrained by the PIKA II sensor characteristics, flight parameters, and 

atmospheric conditions at the time of acquisition (summarized in Table 3). Reflectance signatures were 

resampled to the PIKA II spectral calibration parameters. 
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Table 3. MODTRAN parameters. 

Parameter Flight Configuration 

Date 2010-07-27 

GMT 17:30:00 

Latitude 43.599° 

Longitude −112.905° 

Sensor altitude 1.782 km AGL 

Atmospheric model Mid-latitude summer 

Aerosol model Continental (rural) 

Solar zenith angle 24.57°  

Solar azimuth angle 175.46° 

Terrain elevation 1.483 km AGL 

Water vapor content 1 g/cm2 

Ozone column Default 

CO2 mixing ratio 365 ppm 

Visibility 50 km 

3.4.3. PIKA II Radiometric Evaluation 

In order to evaluate the radiometric calibration and in-flight stability of the PIKA II sensor, the 

regions-of-interest (ROIs) associated with the three calibration tarps were manually identified in each 

of 12 runway overpasses. Nine pixels were selected from the center of each tarp and the spectra were 

examined for noise and adjacency effects. First, to evaluate the radiometric quality of each of the data 

cubes the signal-to-noise ratio (SNR) was calculated as described by Fujimoto et al. [35]. This method 

uses the ratio of the mean to the standard deviation of a homogenous area within a scene to obtain an 

estimation of SNR for each band. For this study, the ROI of the 56% reflectance was used. SNRs of 

each individual image were averaged to obtain the estimated achievable SNR for the PIKA II. 

Second, the average PIKA II measured radiance spectra of the 12 overpasses was compared with the 

MODTRAN predicted radiance for each of the three calibration tarps. It is important to note that during 

the initial analysis of the data, the PIKA II radiance values were observed to be approximately twice the 

predicted value. It was discovered that a difference in internal hardware between the airborne P-CAQ 

and the P-CAQ used in the laboratory for calibration resulted in a bit shift and caused the resulting factor 

of 2 increase in the derived radiance. As a result, all of the PIKA II data was divided by 2 before 

comparison. For further comparison, the ratio of PIKA II measured radiance over the MODTRAN 

predicted radiance was calculated for each of the tarps in order to determine where residual errors 

occurred. Finally, the intraflight stability of the PIKA II was evaluated by comparing the mean spectrum 

for each of the calibration tarps for all 12 overpasses and calculating the deviation from the mean. 

4. Results and Discussions 

4.1. Geometric Correction 

The initial georegistration accuracy assessment, presented in Table 4, indicates an approximate 4.3 

degrees of positive pitch bias and 2.8 degrees of positive roll bias. These biases were most likely 
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introduced while mounting the sensor payload and the Piccolo II autopilot into the UAV airframe. 

Subsequent georegistration accuracy assessment of the 20 check points resulted in an average 

overall RMSER of 4.6326 m and an approximated circular standard error of 7.8497 m. Results for all 5 

images are summarized in Table 5. The largest source of error appears to be related to poor estimations 

of yaw angle. This is most apparent just after rapid changes in aircraft attitude during periods of level 

flight. These turbulent events result in new heading estimations and an apparent pivot in the resulting 

image. Also, runway image observations indicate the presence of two additional, relatively  

higher-frequency error patterns (Figure 5). The first is a scan-line to scan-line error, which is the 

highest frequency error. It most likely results from differential movement or vibration of the  

airframe [36]. The second, lower-frequency error, which is S-shaped, is likely to be a result of the 

Kalman filters used to predict aircraft position and orientation from the 25 Hz telemetry stream 

acquired from the Piccolo II autopilot. 

Table 4. Initial georegistration analysis. 

Parameter ΔX(m) ΔY(m) 

Image 20 −31.04 −7.80 

Image 27 −33.22 −4.41 

Image 29 

Image 42 

−31.23 

−36.22 

−4.88 

−10.48 

Image 66 −34.41 −6.36 

Average Δ −33.19 −6.69 

Estimated roll bias 2.8°  

Estimated pitch bias 4.3°  

Table 5. Accuracy computations in meters (NSSDA 1998) [31]. For all images 

RMSEMIN/RMSEMAX were between 0.6 m and 1.0 m and thus the following equation was 

used to approximate circular standard error (Accuracyr): 2.4477 × 0.5 × (RMSEX + 

RMSEY). RMSER = sqrt[∑((x data, i − x check, i)
2
 + (y data, i − y check, i)

2
 )/n], where i 

represents coordinates of the ith check point and n represents the number of check points.  

Parameter RMSEX RMSEY RMSER AccuracyR 

Image 20 2.99 4.48 5.39 9.15 

Image 27 2.58 1.89 3.20 5.48 

Image 29 4.23 2.59 4.96 8.34 

Image 42 3.53 5.81 6.80 11.43 

Image 66 1.79 2.17 2.81 4.85 

Average   4.63 7.85   
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Figure 5. Examples of geometric errors (scan-line to scan-line and S-shape) apparent in the 

flightline imagery analyzed in this study. Note the scan-line to scan-line errors indicated by 

the linear runway markers. 

 

These results are consistent with other findings, in that the application of autopilots designed for 

small UAVs are limited when used for directly georeferencing remotely sensed image data [23]. This 

is primarily due to the accuracy of the microelectromechanical systems (MEMS) inertial sensors and 

the time synchronization between image acquisition and the telemetry data. Because the PIKA II 

records at a higher rate than the GPS/INS, an interpolation method is used in GeoReg to link the GPS 

and image data, resulting in georegistration errors. Incorporation of a fiber-optic gyroscope could 

improve results; however, as Gurtner et al. [37] state, this would be counter to the low-cost nature of 

the intended approach. 

4.2. Radiometric Analysis  

The in-flight calibration results show a high degree of congruency between the PIKA II measured 

radiance and the MODTRAN predicted radiance. Figure 6(A) shows the average PIKA II spectra, and 

Figure 6(B) shows the high-resolution MODTRAN modeled signatures. The average PIKA II 

measured and resampled MODTRAN predicted at-sensor radiance for each tarp is shown in  
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5. Conclusions  

While this research experiment demonstrated the ability to collect and directly georeference 

hyperspectral data acquired from a UAV platform through the autopilot navigation data, the utility of 

the data is limited by the achieved accuracy. The georeferencing was found to have an average RMSER 

of 4.63 m and an approximated circular standard error of 7.85 m. The limited accuracy resulted from 

sensor accuracies of the INS and the state-estimation process implemented by the autopilot, which was 

designed for autonomous navigation and not for remote sensing applications. Utilization of these data 

was further complicated by the dynamic image formation process of pushbroom sensors, the PIKA II 

narrow field of view, and the vibration from the aircraft, which together results in weak internal image 

geometry [38]. One path to improve the results is to incorporate more accurate inertial measurement 

devices, but this would increase the cost and complexity of the overall system. The second path is to 

develop better post-processing methodologies, such as the utilization of point correspondence and 

mutual information workflows [39]. 

The PIKA II in-flight radiometric calibration experiment and associated SNR estimates suggested 

that the system, under operating conditions described herein, may be of limited use for quantitative 

remote sensing of vegetation applications, such as vegetation stress studies requiring the red edge or 

specific bands such as 530 and 570 nm for Photochemical Reflectance Indices (PRI) [40,41]. The 

average agreement of the modeled radiance between the PIKA II and reflective tarps was  

85.7%–96.3%. The estimated SNR using the 56% reflective tarp had an average maximum value of 

133. Improved radiometric performance of the PIKA II could be achieved through applying a specific 

airborne configuration, such as a reduction in band numbers or an increase in flight altitude. 

Ultimately, a UAV-mounted PIKA II system could overcome scheduling and acquisition limitations 

for some applications as well as open new areas of research by providing an on-demand platform that 

can rapidly collect data and stay on station for hours. 

Future work will focus on improving the post-processing georeferencing workflow to increase 

positional accuracy. In addition, the incorporation of a low-cost magnetometer will be investigated to 

improve yaw measurements and reduce geometric error. Finally, radiometric calibration will continue 

to be evaluated during future flight campaigns in order to optimize sensor performance.  
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