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Radiometric CCD Camera Calibration 
and Noise Estimation 
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Abstract-Changes in measured image irradiance have many 
physical causes and are the primary cue for several visual 
processes, such as edge detection and shape from shading. Using 
physical models for charged-coupled device ( C C D )  video cameras 
and material reflectance, we quantify the variation in digitized 
pixel values that is due to sensor noise and scene variation. This 
analysis forms the basis of algorithms for camera characterization 
and calibration and for scene description. Specifically, algorithms 
are developed for estimating the parameters of camera noise and 
for calibrating a camera to remove the effects of fixed pattern 
nonuniformity and spatial variation in dark current. While these 
techniques have many potential uses, we describe in particular 
how they can be used to estimate a measure of scene variation. 
This measure is independent of image irradiance and can be 
used to identify a surface from a single sensor band over a 
range of situations. Experimental results confirm that the models 
presented in this paper are useful for modeling the different 
sources of variation in real images obtained from video cameras. 

Index T e m s - C C D  cameras, computer vision, camera calibra- 
tion, noise estimation, reflectance variation, sensor modeling. 

I. INTRODUCTION 

INCE the early and important work of Horn [lo], machine S vision researchers have derived algorithms from increas- 
ingly accurate models for image formation. Much of the recent 
work has concentrated on models for the interaction of light 
with matter [9], [17], [20], [24], [26]. Another aspect of image 
formation that has received less attention is the behavior of 
sensors. It is becoming clear, however, that accurate sensor 
models are important for many machine vision algorithms 
[121, [141, 1211. 

In this paper we examine the properties of charge-coupled 
device (CCD) image sensors from the perspective of machine 
vision. By studying the operation of a CCD camera imaging 
system, the various noise sources that corrupt digital pixel 
values can be quantified. The resulting camera model allows 
certain components of the sensor noise to be removed by 
a calibration procedure, while the remaining noise can be 
quantified accurately and accounted for by machine vision 
algorithms. 

In addition to sensor noise, scene changes in reflectance and 
illumination can also cause variation in measured pixel values. 
By modeling reflectance and illumination variation, we define 
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the scene variation for a surface patch. Using the camera model 
developed in this paper, we show how scene variation can be 
estimated from single band images. This measure does not 
depend on image irradiance and can be used to identify a 
surface independent of the power of the scene illumination. 

11. MODELING CCD VIDEO CAMERAS 

The concept of the CCD was proposed [6] and experi- 
mentally verified [ l ]  in 1970. Almost from the beginning, 
researchers recognized the potential advantages of CCD image 
sensors over vidicon tubes. In spite of the development of 
other solid-state imaging technologies [8], CCD video cameras 
are the most prominent sensing devices used in machine 
vision. This popularity is a result of their high resolution, 
high quantum efficiency, wide spectral response, low noise, 
linearity, geometric fidelity, fast response, small size, low 
power consumption, and durability. In addition, since a CCD 
is based on fixed sensing elements of equal size, the device 
provides precise spatial quantization that enables accurate spa- 
tial representation of images in a computer. In the 1980s the 
consumer market for video cameras has led to the emergence 
of relatively inexpensive CCD cameras. 

A. Overview of CCD Camera Operation 

The operation of a CCD is often compared to measuring the 
spatial distribution of rainfall over a field by placing an array 
of buckets on the field [15]. Following a storm, the buckets 
are systematically transferred by conveyor belts to a metering 
station where the amount of water in each bucket is measured. 
Each measurement then represents the amount of rainfall at a 
particular location on the field. 

Instead of measuring rainfall over a field, a CCD is used 
to measure the spatial distribution of light incident on a thin 
wafer of silicon. The measurement process relies on the fact 
that when a photon strikes silicon, an electron-hole pair is 
generated. The photon-generated electrons (photoelectrons) 
can then be collected in one of many discrete collection sites, 
each of which is associated with photons incident on a small 
area of the silicon surface. 

Each collection site is formed by growing a thin layer of 
silicon dioxide on the silicon and depositing a conductive 
gate structure over the oxide. Applying a positive electrical 
potential to the gate creates the depletion region where pho- 
toelectrons may be stored. An electronic representation of the 
spatial distribution of the light incident on a CCD is formed 
by integrating photoelectrons in the individual collection sites 
(also called potential wells) over a fixed time interval. 
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The process of charge coupling is used to move stored 
charge in a CCD. During charge coupling, charge packets at 
collection sites are transferred from site to site by manipulating 
gate potentials. The separation of individual charge packets is 
preserved during these transfers. The charge transfer efficiency 
(CTE) of a device quantifies the fraction of charge that can be 
effectively transferred from one collection site to an adjacent 
collection site. 

An image is read out of the device by transferring the 
charge packets integrated at each collection site in parallel 
along electron conducting channels connecting columns of 
collection sites. A serial output register with one element for 
each column receives a new row of charge packets after each 
parallel row transfer. Before the next parallel transfer, the 
output register transfers each of its charge packets in sequence 
to an output amplifier that generates a signal proportional to the 
amount of charge. Once all of the charge packets in the serial 
register have been read out through the output amplifier, the 
next row can be transferred in parallel into the serial register. 
The process continues until the entire two-dimensional array 
of collection sites has been read out. Reliable techniques 
have been developed to prevent photoelectrons that might be 
generated during the read-out process from contaminating the 
charge packets being transferred. 

In a video camera, the signal generated by the CCD is 
converted into an analog video signal. An RS-170 composite 
signal consists of interlaced lines of image and synchronization 
information and is updated at a rate of 30 frames/s. The video 
signal is low-pass filtered to prevent aliasing during subsequent 
sampling by a frame grabber that produces the final digital 
image. 

B .  The Camera Model 

We begin by considering the signal generated for a single 
collection site. Ideally, an imaging system might produce a 
value I (number of electrons) at a collection site given by 

where T is integration time (in seconds), (5,  y) are continuous 
coordinates on the sensor plane, B(x,y,X) is the incident 
spectral irradiance (Wattshit area), and q ( X )  is defined as 
the ratio (electrons/Joule) of electrons collected per incident 
light energy for the device as a function of wavelength A. 
S,(z,y) is the spatial response of the collection site. We 
note that q(X)  is similar to device quantum efficiency that 
is defined as the ratio of electron flux to incident photon flux 
as a function of wavelength. As one might expect, there are 
several noise sources in CCD imaging systems that prevent 
us from measuring ideal pixel values. In what follows, we 
examine the effect of these noise sources. 

Processing errors during CCD fabrication cause small vari- 
ations in quantum efficiency and charge collection volume 
from collection site to collection site [5 ] .  Thus, if a CCD 
array is uniformly illuminated, these variations will lead to 
a site-to-site nonuniformity in collected charge. This spatial 
nonuniformity is often referred to as fixed pattem noise. In 

general, the site-to-site variation in quantum efficiency will 
exhibit some dependence on wavelength. In this paper, we 
will neglect this wavelength dependence to simplify camera 
calibration. We model the number of electrons collected at a 
site by K I ,  where I is as defined in (1) and K is a constant 
associated with the collection site that accounts for the product 
of a scaling of q ( X )  and a scaling of ST(%, y). We characterize 
K as having mean 1 and a spatial variance ug over all of 
the collection sites. For a carefully manufactured device, there 
is little spatial variation in collection site response and u& is 
small. 

We note that we are assuming that the number of electrons 
collected at each site is independent of the number of electrons 
collected at other sites. This assumption can be violated in 
CCD sensors when a single site is illuminated with sufficient 
intensity to cause stored charge to overflow from a potential 
well and to mix with charge in other potential wells. This 
effect is called blooming and in severe cases can affect many 
collection sites in the vicinity of an overexposed site. In this 
work, we assume that our imaging system is configured to 
avoid overilluminating individual collection sites, and bloom- 
ing effects are not considered. 

Thermal energy in silicon generates free electrons. These 
free electrons, known as dark current, can be stored at col- 
lection sites and thereafter become indistinguishable from 
photoelectrons. The expected number of dark electrons gener- 
ated is proportional to the integration time T and is highly 
temperature dependent. Cooling a sensor can reduce dark 
current generation to less than one electron per collection site 
per second [13]. For many devices, there are small fluctuations 
in the amount of dark current generated from collection site 
to collection site [8]. 

Shot noise is a result of the quantum nature of light and 
characterizes the uncertainty in the number of electrons stored 
at a collection site. This number of electrons follows a Poisson 
distribution so that its variance equals its mean. ShGt noise 
is a fundamental limitation and cannot be eliminated. It is 
important to note that any dark current contributing to the 
charge stored at a collection site will increase the mean and 
therefore the variance in the number of electrons. The number 
of electrons integrated at a collection site is given by 

K I  + NDC + N s ,  (2) 

where NDC is the number of electrons due to dark current and 
N s  is the zero mean Poisson shot noise with a variance that 
depends on the number of collected photoelectrons ( K I )  and 
the number of dark electrons ( N D c ) .  

After charge is collected at each site, the CCD must transfer 
the charge to the output amplifier for readout. The charge 
transfer efficiency of real CCD’s is less than 1. Charge that 
is not effectively transferred is either lost or deferred to 
subsequently transferred charge packets. The noise associated 
with charge transfer has been quantified [7]. Current buried- 
channel CCD’s, however, achieve charge transfer efficiencies 
greater than 0.99 999. It is reasonable, therefore, to neglect 
the effects of transfer inefficiency and to assume that all of 
the charge collected at each site is transferred to the output 
amplifier. 



HEALEY AND KONDEPUDY: RADIOMETRIC CCD CAMERA CALIBRATION AND NOISE ESTIMATION 269 

The on-chip output amplifier sequentially transforms the 
charge collected at each site into a measurable voltage. The 
amplifier generates zero mean read noise NR that is inde- 
pendent of the number of collected electrons. Amplifier noise 
dominates shot noise at low signal levels and determines the 
read noise floor of the device. The voltage signal leaving 
the CCD is transformed into a video signal by the camera 
electronics. This signal is electrically low-pass filtered to 
prevent aliasing during subsequent sampling. This filtering 
also serves to remove high-frequency noise components. If 
we denote by A the combined gain of the output amplifier and 
the camera circuitry, then the magnitude of the video signal 
leaving the camera corresponding to each collection site is 

(3) 

To generate a digital image that can be stored in a computer, 
the analog signal from the camera is quantized both spatially 
and in magnitude using an analog-to-digital converter (ADC) 
on a frame grabber. For most systems, approximately one sam- 
ple is taken for each collection site. The ADC approximates the 
analog voltage V using an integer multiple of a quantization 
step q so that each value of V satisfying 

1 1 
2 2 

V = ( K I  + NDC + N s  + N R ) A .  

(4) (n  - - ) q  < v I (n  + - ) q  

is rounded to a digital value D = nq, where n is an integer 
satisfying 

( 5 )  0 5 n 5 2' - 1 

and b is the number of bits used to represent D. To prevent 
clipping, q and b are chosen so that V does not exceed 
(2' - 0.5)q. The quantization process can be modeled as the 
addition of a noise source NQ so that 

(6 )  

Under reasonable assumptions [22], NQ can be shown to be 
a zero mean random variable that is independent of V with a 
uniform probability distribution over the range [ - & q ,  &q] and 
a variance g .  

A frame grabber that digitizes a composite video signal must 
separate synchronization information from image data. The 
uncertainty in the circuitry that performs this task can lead to 
linejitter that typically amounts to a small fraction of a pixel 
[4]. The effects of linejitter can largely be corrected and should 
eventually be eliminated [ 181. In addition, nonvideo digital 
output cameras that are not susceptible to linejitter-such as 
the Cohu 41 10, the Videk Megaplus, and the Photometrics Star 
I-are gaining popularity. Since linejitter can be compensated 
for and causes primarily geometric distortion rather than 
radiometric distortion, we will not examine its effects further 
in this paper. 

D = ( K I  + NDC + N s  + NR)A + NQ. 

\ 

111. MODELING REFLECTANCE AND ILLUMINATION VARIATION 

In this section, we examine how spatial variation in illumi- 
nation and reflectance in a scene leads to spatial variation in the 
amount of charge collected across the sensor plane. Our goal 
is to model a nearly uniform reflectance card illuminated by 

a nearly spatially uniform source. This model will be used to 
derive procedures for noise estimation and camera calibration 
in later sections. The problem of obtaining accurate geometric 
calibration is not addressed in this paper, but robust techniques 
have been developed [18], 1251. 

Define a three-dimensional coordinate system (x, y, 2 )  with 
z along the optical axis of the imaging system and the (x,y) 
plane coinciding with the sensor plane. Consider a planar matte 
surface oriented normal to the optical axis of the system and 
illuminated by a distant source. For this configuration, the 
imaging geometry is accurately modeled by an orthographic 
projection. We assume a magnification of 1. Let [A, Xz] be the 
range over which q(A)  is nonzero. We can model the spatially 
varying spectral reflectance of the surface by 

where x(X) is the mean reflectance for each X and ~ ( x ,  y, A) 
represents the random spatial variation of the reflectance as a 
function of wavelength. Thus, 

and 

where E is an expected value operator applied over (2, y). 

irradiance incident on the planar surface by 
For spatially varying illumination, we model the spectral 

where 

and 

E[l(X! Y, A l l  = 0 A E [ A l , A Z I ,  (12) 

where, as before, E is an expected value operator over (2, y). 
The reflected radiance of the surface in the direction of the 
camera is then 

R(z,  Y, A)L(x, Y, A) = wm)  + Y, A), 

+ R(X)l(x, Y1 A) 

(13) 

where 

4 x ,  Y, A) = T ( Z ,  Y, 

+ T(Z1 Y, AY(x,!/, A). (14) 

If we assume that the variation in surface reflectance ~ ( z ,  y, A) 
and the variation in the illumination l ( x ,  y, A) are uncorrelated, 
then E[c(z,y,X)] = 0 for A E [A,,A2]. 

For the image of such a surface, the spectral irradiance 
pattern incident on the sensor is given by 

B(x:  Y, A) = [R(z, Y, X)-+, Y, A) * P(5, Y, A)l t (X) ,  (15) 

where * denotes spatial convolution, p(z, v ,  A) is the point 
spread function of the optics, and t ( A )  is the spectral trans- 
mission of the optics. 
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From ( l ) ,  the ideal number of electrons collected at a site 
( a ,  b )  is given by 

~ ( a ,  b)  = T J J J B ( ~ : ? / ,  X ) s r ( x  - xai y - ~ b )  
X Y X  

. q(X) dx dy dX, (16) 

where Jy Jx denotes integration over the area of the collection 
site, (X,, Yb) are the coordinates of the center of the collection 
site, and Sr(xly)  is defined as the response of a collection 
site that is centered at (0,O). Note that while in Section I1 we 
considered I at a single collection site, we now consider I ( a ,  b )  
defined over all the collection sites. We can break I ( a ,  b)  into 
a constant component S and a spatially varying compQnent 
E(a,b)  according to 

I ( a ,  b )  = s + E(a,  b ) ,  (17) 

where 

s = TS*&X)W *P(Z,Y,X))t(X) 

. ST(x - X,, y - yb) q(X) d~ dy dX 

(18) 

E(a1 b )  = T J  / /(.(x: Y, A) * P(Xl  Y, X ) ) t ( X )  
X Y X  

. Sr(% - X, , y  - Yb) q(A) d~ d y  dX. 

(19) 

Since E[t(x,y,X)] = 0 for X E [/ \1 ,X2],  E(a,b) has zero 
mean and a variance that depends on the spatial variation 
of the reflectance of the planar surface and on the spatial 
variation of the illumination. The illumination L ( x ,  y, A) can 
often be controlled in applications to achieve acceptable levels 
for I (u ,  b) .  In addition, the overall system transmission can be 
scaled using neutral density filters or by adjusting the camera 
lens aperture. 

The blurring by p(x, y, A) and the spatial integration by the 
collection sites serve to spatially low-pass filter the reflected 
spectral irradiance pattem R(x ,  y, X)L(x, y, A). Ideally, this 
low-pass filtering would be sufficient to prevent aliasing during 
the sampling by the CCD collection sites. For radiance pattems 
containing high spatial frequencies, however, the filtering can 
be insufficient and significant aliasing can occur [ 1 11, [ 161. 
When images are taken of pattems containing high spatial 
frequencies, steps must be taken to account for the aliasing of 
the input pattem that occurs during sampling at the collection 
sites. 

IV. ESTIMATING SENSOR NOISE 

In many situations, image sensors can be characterized 
and calibrated before they are used in applications. From 
the CCD camera model described in Section 11-B, we can 
estimate the dependence of the noise variance on the signal 
level using controlled images. In this section, we describe a 
method for estimating this dependence for the part of the noise 
that does not vary from collection site to collection site. In 
Section V, a calibration algorithm is presented that removes 

the effects of the spatially varying noise sources that are not 
considered in this section. Other algorithms for estimating 
noise variance have been applied to arbitrary images [2], 
[ 191. These algorithms, however, assume that noise variance 
is independent of signal level, which as shown in 11-B is not 
the case for images sensed by CCD cameras. 

Generalizing the individual pixel model of (6), a digitized 
two-dimensional image of a planar surface of a material is 
described by 

D(% b)  = ( K ( a ,  b ) I (a ,  b )  + NDC(a,  b )  + N S ( a ,  b )  
+ NR(% b))A -t NQ(a,  b ) ,  (20) 

where I (a ,  b )  is modeled using (17). Quantities with properties 
that depend on pixel location (a, b)  are indicated explicitly. 

In what follows, we describe a method for estimating the 
variance of the noise sources that are intrinsic to the CCD. 
Consider a pixel (a, 6 )  with corresponding spectral irradiance 
B(x ,  y, A). The observed D(a,  b )  is a random variable 

(21) D(a,  b )  = 4% b) + N ( a ,  b) ,  

where the expected value of D ( a ,  b )  is given by 

p(a ,  b )  = K(a,  b) I (a ,  b)A + Eoc(a, b)A, (22) 

where E ~ c ( a ,  b )  is the expected value of N ~ c ( a ,  b) .  N ( a ,  b )  
is the zero mean noise given by 

(23) N ( a ,  b )  = Nl(U, b )  + &(a,  b ) .  

N l (a ,  b )  is the part of the noise that depends on the number 
of collected electrons 

N ~ ( u ,  b )  = N ~ ( u ,  b)A (24) 

and Nc(a ,  b)  is the part of the noise that does not depend on 
the number of collected electrons 

(25) 

Since Ns(a ,  b )  is a Poisson noise source, the variance of 
Nl(a ,b)  is 

Nc(a ,  b)  = N R ( ~ ,  b)A + N Q ( ~ ,  b ) .  

a f ( a ,  b )  = A2(K(a ,  b) I (a ,  b )  + E D C ( ~ ,  b ) )  (26) 

and the variance of Nc(a ,  b )  is 

where U; is the variance of N ~ ( a , b )  and q is explained 
in Section 11-B. From the independence of Nl(a ,b)  and 
Nc(a ,b) ,  the total variance of the noise N ( a , b )  is given by 
the sum of the variance of the noise component .;(U, b )  that 
depends on the signal level I ( a ,  b )  and the variance of the 
constant component U& 

(28) &(a, b)  = .;<a, b)  + 0;. 
A convenient way to estimate the total noise variance is to 

digitize two images D1 and D2 using the same nearly spatially 
invariant irradiance field B ( x ,  y, A) for each image. Such a 
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field can be obtained using a nearly uniform calibration card 
illuminated by a single source. We then have 

b)  = 4% b)  + &(a, b)  (29) 

D2(a, b )  = p ( a ,  b)  + N2(a, b) .  (30) 

If we form the pixel-by-pixel difference image Da(a,  b ) ,  we 
obtain 

D ~ ( a , b )  = D l ( ~ , b ) - D z ( ~ , b )  = N l ( ~ , b ) - N ~ ( a , b ) .  (31) 

Note that while in &(a, b )  and &(a,  b )  each pixel ( a ,  b )  
has a characteristic mean, each pixel of D A ( u , ~ )  has a zero 
mean. From the independence of Nl(a ,b)  and N2(a.b),  each 
pixel of D A ( ~ ,  b )  has a variance of 20&(a, b) .  From (26) and 
(28), we can write 

g i ( a ,  6) = A2(I(., b )  + EDC) + A2(K(a ,  b)  - l)I(a,  b)  

+ 0% + A ~ ( E D c ( ~ ,  b )  - E D C ) ,  (32) 

where Eoc is the mean value of E ~ c ( a .  b )  over the array. 
Using the properties that 

(33) ( K ( a ; b )  - 11 << 1 

IEDc(~, b)  - EDCI << EDC 
and 

(34) 

and assuming that the spatial variation in I ( a , b )  is small so 
that we can replace I ( a , b )  by its spatial mean 7, we can 
approximate oi , (a ,  b )  by 

(35)  

Using this approximation, each pixel in Da(a.  b )  can be 
considered to be a sample of a zero mean random variable 
with a variance of 2u&. 

Given the digital images &(a,  b )  and &(a ,  b ) ,  the ex- 
pected value of p ( a , b )  over all of the pixels is 

(36) 

If each image has n rows (1 5 b 5 n) and m columns 
(1 5 a 5 m),  then we can estimate p by 

0; = A2( I  + EDC) + 0;. 

p = PA + EocA. 

and cr$ by 

where PA is the sample mean of the pixels in DA(u,  b )  and 
M = nm. 12 and 8ir are consistent estimates of p and ciT.  In 
general, the variance of the estimator 8ir depends on the fourth 
moment of the pixel values of DA(u,  b )  about the mean. If we 
assume that the pixels of D A ( ~ ,  b )  are normally distributed 
[23], then the variance of G& is 

(39) 

and can be approximated by 

2(G&)2  
x ___ 

( M  - 1)’ 

The normal assumption is reasonable for high levels of 7 where 
NI(u ,  b )  dominates Nc(a ,  b )  and the Poisson distribution of 
the shot noise approaches a normal distribution. 

If we now consider P pairs of images Dl(a,b)% and 
&(a ,  b)% (1 5 i 5 P )  where each pair is obtained at 
a different level of 7, then we can compute Gz, $&*, and 
~ a r [ 8 ; , ~ ]  for each pair using (37), (38), and (40). From this 
set of estimates, we can estimate A and 0;. 

From (35)  and (36) we have that 

0; = Ap+c$ .  (41) 

We will compute estimates Â  and G; for the parameters A and 
U; using a line fitting technique that minimizes the weighted 
sum of squares 

(G& - (A^Gi + 8;))z x 2 =  (42) 
1<i<p V + k I  

This minimization produces the maximum likelihood estimates 
for A and 0; under the assumption that each of the Girt is 
normally distributed [3 ] .  This assumption is justifiable since 

1 has a chi-square distribution in M - 1 degrees of 
freedom [23] so that for large M ,  GGt will be approximately 
normal. Details of the minimization are given in an appendix. 

( M -  l)2N 
4 

V. CAMERA CALIBRATION 

In this section, we describe and analyze a calibration pro- 
cedure that corrects for spatial nonuniformities due to fixed 
pattern noise and variations in dark current. An important 
benefit of this procedure is that the noise in a resulting 
corrected image is dominated by shot noise at high levels of 
I rather than by fixed pattern noise. 

A .  Estimating Variation in Dark Current 

Suppose that we digitize an image in a dark environment 
so that I (a ,b)  f 0. From (20), each pixel in such an image 
is modeled by 

D ( a ,  b )  = (NDC(a ,  b )  + NS(a,  b )  + NR(a ,  b ) ) A  + NQ(a, b )  
(43) 

and has mean E ~ c ( a , b ) A  and variance o%(u,b). If we 
average s of these dark images, we obtain an estimate of 
the mean E ~ c ( a , b ) A  that has a variance ~ i , ( u , b ) / s .  Let 
% ( U :  b )  denote a dark reference image obtained in this way. 

B .  Estimating Fixed Pattern Variation 

In order to estimate the fixed pattern noise K(a ,  b ) ,  we 
consider a series of images of a nearly uniform reflectance card 
illuminated by a nearly spatially uniform source. Combining 
(17) and (20), each image is described by 

o ( a ,  b )  = ( K ( a ,  b)[S + E(a,  b ) ]  -t NDC(a, b))A + N(a,b) ,  
(44) 
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. .  
where N(a,b)  is the zero mean noise of (23). To estimate 
K(a, b) using D(a,  b), we must be able to distinguish the fixed 
pattem noise K(a ,  b) from spatial variation E(a,  b) caused by 
nonuniform illumination and surface reflectance and also from 
spatial variation due to the other noise sources N ~ c ( a ,  b) and 

The effects of spatially nonuniform illumination and surface 
reflectance can be overcome by considering n1 different 
imaging configurations. Each new configuration is selected 
such that for each collection site, a new patch on the card 
illuminated by a new part of the source is imaged for each new 
configuration. A new configuration, therefore, can be obtained 
by moving both the calibration card and the light source. 

Suppose that for each imaging configuration we digitize 
and average ng frames. Since N(a,b) has zero mean, this 
averaging will produce an estimate of 

N ( a ,  b). 

(K(a,  b)4(a,  b)  + Eoc(a, b) )A ,  (45) 

where I; (a, b) = S + E; (a, b) is the number of electrons 
that would be collected at pixel (a, b) by an ideal sensor for 
the ith imaging configuration. The variance of this estimate 
is & ( U ,  b ) /n z .  By subtracting the dark reference image 
Do(a,  6) we can obtain for each configuration an estimate 
h 

e;(a, b)  M K(a ,  b)li(a,  b)A 15 i 5 7 ~ 1  (46) 

with spatial variation due only to fixed pattem noise and spatial 
variation in illumination and surface reflectance. 

To estimate l ,(u, b)A, we consider m xm windows centered 
at each (a, b). The window size is chosen large enough so that 
the mean of K(a,b) over the window is nearly 1 and small 
enough so that variation in illumination and surface reflectance 
is small except for the possibility of isolated outliers due, for 
example, to a small spot on the calibration card. For our setup, 
a window size of 9 x 9 provides these desired properties. We 
use the mean E,(a,b) of e,(a,b) over an m x m window 
centered at (a, b) to estimate & ( U ,  b)A. 

After considering n1 imaging configurations, for each pixel 
(a, b) we have n1 points (&(a ,  b), e,(a, b)). From (46), each 
of these points lie approximately on a line through (0,O) with 
slope K(a,b).  

To estimate the slope K(a ,b ) ,  we define 

We compute the mean of the slopes of the n1 points 

Using this line as an initial estimate, we remove outlier 
points from the original point set (&(a, b), e,(a, b)) that have 
m,(a, b) differing from $a, b) by more than a fixed amount. 
To identify outliers, we first consider the distribution of the 
slopes. Variation in slopes is due mostly to small variations in 
card reflectance. For a good calibration card this variation is 
approximately Gaussian, with a small variance and with some 
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Fig. 1 .  ( & ( u , b ) , e * ( u , b ) )  for fixed ( n , b ) , n i  = 20. 

isolated outlier points of much higher or lower reflectance. 
Fig. 1 shows a point set with one outlier point. 

Our goal is to obtain an estimate of the slope that is not 
influenced by the outliers. We retain each point with a slope in 
m(a,  b) fpS, where ii is an estimate of the standard deviation 
CJ in m,(a,b) over different configurations. The estimate G 
is obtained by averaging the sample standard deviation in 
m,(a, b) over many different locations (a, b). After removing 
these outliers, the points are averaged-again and a new slope 
is computed to produce an estimate K(a ,  b) of K(a ,  b). The 
estimate of K ( a ,  b) is not sensitive to the choice of p because 
outliers tend to be far from the mean. We used p = 1.5 for 
our experiments. Thus, 

- 

where ( E ;  (a, b) , ei (a, b)) are the ni (a, b) samples that remain 
after removing outliers. 

Since the points outside the cone defined by m(a, b) f p S  
have been removed, the variance in the remaining samples of 
m;(a ,b)  is less than (pS)'. Thus, 

where var denotes variance and is the smallest n:(a,b) 
over the image. Since the quantization step of the imaging 
system is q and the maximum intensity representable is about 
2bq, choosing 21 so that var[k(a ,b)]  is less than & 
ensures sufficient accuracy in K(a,b):Thus, we use 21 = 
10(22b)(pS)2. The worst-case ratio 2 can be measured, 
allowing us to determine n1. 

A total of ng images are averaged to reduce the variance of 
N ( a ,  b) to obtain the estimate ei(a,  b) in (46). A method for 
estimating the variance of noise sources has e n  presented 
in Section IV. Using (41) and the estimates A and S;, we 

A 
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can estimate the noise U& as a function of the mean image 
intensity. The variance of the estimates e i (a ,b)  is given by 
a$ fn2. Thus if we allow an upper limit of $ on the variance 
of the estimates, we can determine the required 722. 

Define a corrected version D c ( a ,  b )  of an image D(a,  b )  by 

From (20) and (51), 

s e r e  we are _assuming that the errors in the estimates 
DD(u,  b)  and K(a ,  b )  are small compared to the variance 
of the remaining noise. At high levels of I ( a .  b ) ,  the noise in 
the corrected image is dominated by the shot noise N s ( a ,  b ) ,  
which has a variance that is proportional to I ( a ,  b ) .  This is 
the best we can achieve with an imaging system. By contrast, 
at high levels of I ( a ,  b )  the noise in the uncorrected image 
D(a,b)  is dominated by the fixed pattern variation K ( a , b )  
and has a variance that is proportional to 12(a ,  b). 

This correction procedure requires that D(a,b)  is a linear 
function of I ( a ,  b ) .  Fortunately, the photoelectric effect is a 
very linear process, and CCD’s exhibit excellent linearity. One 
must be cautious, however, because many video cameras are 
adjusted to produce a nonlinear response. This nonlinearity 
must be corrected (see [21]) if the calibration procedure of 
this section is used for such a camera. 

VI. ESTIMATING SCENE VARIATION 

Using the models of Section 111, we examine how spatially 
varying illumination and reflectance in the scene combine with 
camera noise to produce variation in measured pixel values. 
From our camera model, we show that it is possible to produce 
separate estimates of the image variance due to camera noise 
and to scene variation. In addition, this analysis allows us to 
compute a measure of scene variation from an image that is 
independent of the image irradiance level. 

As in Section 111, we consider the case of planar surfaces 
of a single material. This case is of particular interest because 
the amount of scene variation measured in images of such 
surfaces is often comparable to the level of image variation 
due to camera noise. From (17) and (52), the corrected image 
of such a surface is 

where N l ( a ,  b )  and Nc(a ,  b )  are the noise components defined 
by (24) and (25). The mean of Dc(a ,b)  is 

and the spatial variance of Dc(a ,  b )  is 

where U; is the spatial variance of E(a,b) and 

where U$ is defined by (35). From (54) and ( 5 3 ,  we have that 

We will refer to V .  = $ as the scene variation. As shown in 
Section 111, Vs depends on the surface, the illumination, and 
the imaging configuration, but it is independent of scalings of 
either the illumination or the imaging system response. 

Using (57), Vs can be approximated from estimates of o&, 
a$,v, and p ~ .  We can estimate 1-1.0 and 0; from Dc(a ,  b )  
using the sample mean ED and sample variance 5;. To 
estimate g$,,, in (56),  we must estimate each factor. The 
e_xpected value in (56) can be estimated from the values of 
K(a ,  b )  corresponding to D c ( a ,  b) .  Equation (41) can be used 
to estimate g& by 

wAere % is the spatial mean of the dark reference image 

Since the scene variation V ,  is independent of the level 
of image irradiance, it is useful for identifying a surface 
in situations where the imaging configuration is fixed but 
where p~ may change over time. Such an environment 
frequently occurs in visual inspection tasks where the imaging 
geometry is tightly controlled, but where the observed image 
irradiance values may change due, for example, to drift in the 
illumination intensity or a change in the camera integration 
time. For these cases, the spatial variance of the measured pixel 
values will not be a stable scene descriptor since it changes 
with image irradiance. The scene variation Vs, on the other 
hand, will not change with changes in p~ and therefore can 
be used for scene description and surface identification over a 
range of image irradiance levels. 

DD(.,b). 

VII. EXPERIMENTAL RESULTS 

The methods described in this paper were used to character- 
ize and calibrate a monochrome video CCD camera imaging 
system based on a Sony XC-77 camera and a RasterOps TC- 
PIP frame grabber. The camera has a linear response and 
is equipped with an infrared blocking filter. In this section, 
experimental results are presented to verify the accuracy of 
the models for sensor noise and scene variation. 

A .  Estimating Sensor Noise 
The parameters A and 0; that describe the noise variance 

as a function of the signal level p have been estimated for our 
imaging system using the algorithm described in Section IV. 
The estimates E ,  Z&, and ztar [S i r ]  were computed using (37), 
(38), and (40) from a fixed 100 x 100-pixel region in images 
of a nearly uniform reflectance card (Applied Image MT-6) 
illuminated by a nearly spatially uniform source (Newport 
Model 765). Different levels of p were obtained by placing 
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Fig. 2. The sensor noise estimate. 

different neutral density filters in front of the camera. The 
results of the estimation are plotted in Fig. 2. Each “0” 

indicates a point (@%, 3Lt) that has been estimated from a pair 
of images Dl(a ,b )% and 0 2 ( a , b ) % ,  as described in Section 
IV. The line in Fig. 2 is the best fit to the-points in the 
sense of (42). The estimated parameters are A = 0.003384 
and 3; = 1.1196, giving a x 2  of 4.3496. This value of x 2  
corresponds to a goodness of fit probability Q(x2/4) = 0.3607 
(see Appendix). Thus it is reasonable to accept the model of 
(41) and the fitted parameters. 

The camera calibration method of Section V determined 
n1 to be 11 and n2 to be 18 for our imaging system. 
Keeping a saf2margin,  we used n1 = 20 and n2 = 20 
to determine Do(a,b)  and k ( a , b ) .  The mean of k ( a , b )  
over the array was 0.99998,with a standard deviation of 
3.72 x lop3. The resulting K ( a , b )  applied to an image of 
maximum intensity causes 27% of the pixels to be modified 
by an amount exceeding one quantization step, with 3% of 
these modifications exceeding two quantization steps. The 
maximum modification over the sensor is five quantization 
steps at maximum intensity_liThis was repeatable over several 
experiments. The mean of Do(a,  b)  over the array was 10.74, 
with a standard deviation of 0.555. 

B.  Estimating Scene Variation 

The relationship defining scene variation in terms of image 
statistics and sensor noise (see (57)) was tested on images of 
painted squares on the Macbeth color chart using 100 x 100- 
pixel regions within a painted square. The parameters p~ and 
0; are estimated using the sample mean and sample variance 
of the pixels in the region. The value of 0; in (56) is estimated 
using (58) with the fitted values of Â  and 3; from the noise 
estimation procedure. The expected value in (56) and in 
(58) are estimated by tke appropriaKmeans over the area in 
the calibration images K(a ,  b )  and Do(a,  b )  that corresponds 
to the 100 x 100 region of interest. 

Fig. 3 shows the results for four different painted squares. 
Each of the seven 0’s indicate a point (@o, 3; - 3gN)  
estimated from a fixed 100 x 100 image region within the 

PLJ 

Fig. 3. Experimental verification of (57). 

square. Different levels of p~ are generated by placing neutral 
density filters in front of the camera. We recall from Section 
VI that the scene variation V ,  does not change when p~ is 
changed in this way. The curves in Fig. 3 are the best least 
squares fit to the points of the form given in (57) and show 
that the dependence is predicted accurately by the model for 
this data. 

C .  Relative Contributions to Image Variance 

The variance over a region of an image of a single surface 
is due to variation in the illumination and surface reflectance, 
spatial variation in the dark current, variation in K(a ,  b ) ,  and 
the sensor noise components. The spatial variance in dark 
current and U: are independent of intensity level. The shot 
noise variance is linearly dependent on intensity, and scene 
variance is proportional to the square of intensity. 

Fig. 4 shows the fractional contribution of each of these 
factors to the total variance for a square on the color chart. 
Note that the total variance increases as p increases. We 
observe that the scene variance is the major contributor to the 
total variance at higher intensities, while 0% is the dominant 
contributor at lower intensities. 

VIII. CONCLUSION 

Image sensors play the important role in machine vision 
of transforming the signal of interest in the 3-D world into 
the digital image that is processed by algorithms. Given 
the underconstrained character of the problems addressed by 
machine vision, accurate sensor models can often be used 
to improve the capability of an algorithm. In this paper, we 
have analyzed the noise properties of CCD camera imaging 
systems. This analysis was used to develop techniques for 
noise characterization and camera calibration. Experiments 
with a CCD video camera suggest that these models can be 
used to quantify accurately the noise properties of a CCD 
imaging system. 

Using a physical reflectance model, we have examined the 
effect of small variations in material reflectance on digitized 
image irradiance values. Using our sensor noise model and 
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Fig. 4. Parts of total noise versus intensity. 

calibration scheme, the image variance due to sensor noise can 
be separated from the variance due to effects in the scene. This 
allows us to estimate scene variation for a surface patch from 

The covariance matrix that quantifies the uncertainty in the 
estimate ( A :  G & )  is given by 

The value of x2 for the fit has a chi-square distribution 
with P - 2 degrees of freedom. If xk is the value of x2 
corresponding to the estimate ( i , G & ) ,  then it is useful to 
consider the goodness of fit measure 

30 

Q ( x i f / P  - 2 )  = / f(z)dz. (67) 

where f(x) is the chi-square density with P - 2 degrees of 
freedom. Q ( x i f / P  - 2 )  is then the probability that a value 
of x2 obtained by the fitting procedure will exceed X L  given 
that the model is correct. Thus, very small values of Q are 
evidence for an incorrect model. 

X t 
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