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(a)

(b)

Fig. 3. (a) Observation of "
00 change of ice slab on duraluminum mold at

13.5 GHz. Points (1–3) correspond to the ice time existence in one day; (4)
two days; (5) 32 days; (9–10) 47 days; (11) 66 days; and (12) 85 days. (b)
The measurements analogous to (a) at 37.5 GHz.

the other hand, quick freezing may produce a specific distribution of

salt concentration in ice volume.

However, the main result of the measurements, as it follows

from Figs. 2 and 3, is the hysteresis of "
00 in the case of slow-

cycle temperature change for many days. Our other experiments with

different temperature conditions and with long-time measurements

also indicated the effect of ambiguity of electromagnetic losses.

The discussion on hysteresis of the real part of ice dielectric

permittivity at 1 kHz was published earlier in [7]. It was observed

for the ice that formed the 2% NaCl solution. This experiment lasted

for about an hour. However, this observation was interpreted as the

influence of the heat of phase transition. In our experiments, the

analogous explanation is not true because there was a small amount

of salt and a long period of keeping ice at a low-ambient temperature.

We conclude that the hysteresis effect in our experiments may

be connected with the existence of supercooling salt microscopic

inclusions at temperatures lower than eutectic point, where they

are in a liquid state. The possible supercooling temperature is

determined by the shape and the size of liquid inclusions. It seems

that their metamorphism determine the volume-liquid concentration

and, consequently, the imaginary part of dielectric permittivity. The

determination of the exact origin of electromagnetic-loss ambiguity

requires a more detailed investigation of freshwater ice structure and

physical and chemical peculiarities of inclusions.

V. CONCLUSIONS

There are significant time changes of the imaginary part of dielec-

tric permittivity even for constant-value salt-impurity concentration

in freshwater ice. Different values of electromagnetic loss were

experimentally observed at the identical temperature. Thus, for the

determination of ice dielectric loss, we must take into account the

ice-time existence after water is frozen, the ice-temperature history,

and the inclusions characteristics. Disregarding these conditions in

previous papers led not so much to measurement errors, but to the

description of ice with different structures. Therefore, the cryosphere

remote sensing requires taking into account the time changeability of

ice electromagnetic properties.
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Radiometric Sensitivity Computation in

Aperture Synthesis Interferometric Radiometry

Adriano Camps, Ignasi Corbella, Javier Bará, and Francesc Torres

Abstract— This paper is concerned with the radiometric sensitivity

computation of an aperture synthesis interferometric radiometer devoted
to earth observation. The impact of system parameters and the use

of simultaneous redundant measurements are analyzed. The Interfero-
metric Radiometer Uncertainty Principle is presented; it quantifies the
relationship between radiometric sensitivity and angular resolution.

Index Terms—Interferometry, radiometry, remote sensing, sensitivity.

I. INTRODUCTION

An interferometric radiometer measures the correlation between the

analytic signals collected by different antennas [S1(t) and S2(t)].
These correlations provide the samples of the so-called visibility
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function, which has dimensions of Kelvin.

V1; 2(u; v) =
1
2
E[S1(t)S

�
2 (t)]

=

� +� �1

T (�; �)~r12 �

u� + v�

c

� e�j2�(u�+v�) d� d� (1)

where (u; v) is the baseline and is equal to the difference between the

antenna positions over the XY plane normalized to the wavelength;

T (�; �) K is the so-called modified brightness temperature [1].

T (�; �) =
TB(�; �)

1� �2 � �2
Fn1(�; �)F

�
n2(�; �) (2)

where TB(�; �), dimensions of Kelvin, is the brightness temperature;

(�; �) are the director cosines, with respect the (X; Y ) axes, equal

(sin � cos �; sin � sin �); Fn1; 2(�; �) are the normalized antenna

voltage pattern; and ~r12(�), the fringe-wash function, (without units)

takes into account spatial decorrelation effects [2].

In the ideal case, no decorrelation effects ~r12(�) � 1 and identical

antenna patterns Fn1 = Fn2 = Fn, the modified brightness temper-

ature can be recovered by means of a discrete Fourier Transform of

the visibility samples

T (�; �) = F
�1[V (u; v)]: (3)

In large interferometers, in order to simplify the signal distribution

network, the cross-correlations are usually performed at baseband by

means of real correlators after in-phase and quadrature demodulation

V1; 2 / E[i1(t)i2(t)] + jE[q1(t)i2(t)]: (4)

II. RADIOMETRIC SENSITIVITY COMPUTATION

Radiometric sensitivity is defined as the minimum input change that

can be detected at the output [2]–[4]. In a interferometric radiometer,

it is limited by the discretization and the finite coverage of the spatial

frequencies plane (u; v) and the SNR, which can be improved by

increasing the integration time and/or the predetection bandwidth

[3]. The finite (u; v) coverage and the discretization errors set the

saturation limit that is reached for high SNR’s.

A. Discretization and Finite (u; v) Coverage

In a total-power or Dicke radiometer, the measured antenna tem-

perature is given by equations 4.55–4.60 of [4]. The error committed

depends on the particular brightness temperature distribution being

observed and can be minimized by maximizing the antenna main-

beam efficiency (MBE), which requires the use of antennas with

a tapered illumination that, in turn, reduce the achievable spatial

resolution.

On the other hand, an interferometric radiometer forms the bright-

ness temperature map by a discrete-inverse Fourier transform of the

visibilities measured by the array (3). It has been shown [1], [5], [6]

that, as proposed in [7], the optimum shape of a two-dimensional

(2-D) interferometric array is a Y . Y -arrays generate the largest

regular (u; v) coverage over an hexagonal grid for a given number

of antennas, thus maximizing the angular resolution or, conversely,

minimizing the hardware requirements [1].

The impulse response of the interferometer in the direction (�0; �0)
can be interpreted as the beam synthesized by the array, and it is

called the equivalent array factor (AFeq) [3] because of its similarities

with phased arrays

AFeq(�; �; �0; �0) =A
n

W (un; vn)~rn
u� + v�

fo

� e+j2�(u(��� )+v(��� ))
(5)

where A is the pixel’s area in the (u; v) plane; A = d2 for T -arrays;

A =
p
3d2=2 for Y -arrays; A = d for one-dimensional (1-D) arrays;

and d is the spacing between adjacent antennas normalized to the

wavelength or the minimum baseline. The function W (u; v) is a

window used to weight the visibility samples.

In a similar way, the MBE can be defined as

MBE =
main lobe

jAFeq(�; �)j d


4�

jAFeq(�; �)j d

(6)

where the AFeq is not squared because it refers to brightness

temperatures, a power measurement, however, from (5), the AFeq
may have negative lobes. The MBE can be optimized by a proper

selection of the window function. Table I shows the sidelobe level

(SLL) and the MBE at the SLL for five different windows for

an Y -array with NEL = 43 antennas per arm spaced d = 0:89
wavelengths, as proposed for MIRAS [7]. Decorrelation effects have

been neglected since B=f0 � 2%. The saturation of the radiometric

sensitivity shown in Fig. 1 is due to the discretization or MBE error

computed at the center of the instantaneous field of view (FOV) [1].

The error decreases with the array size and the window smoothness.

B. SNR

If the real and imaginary parts of the visibility function are

obtained by cross-correlating the in-phase and quadrature components

of the signals collected by the antennas once digitalized [7], slightly

different results are obtained from those presented in [2], [3], and

[8] for the 1-D interferometer ESTAR, or radioastronomy. Three

effects that now have been taken into account are predetection filters’

shape (rectangular or Gaussian), single sideband (SSB) or double

sideband (DSB) receivers with the same predetection bandwidth, and

correlator’s type.

The MIRAS fringe-wash function was computed in [5] and [6],

taking into account the overall frequency response of the receiving

chain [7]. It was found that the fringe-wash function is better

approximated by a Gaussian filter (7a) than by a rectangular filter

(7b) with the same noise bandwidth B (7c).

jH(f)j = e
� ((f�f )=B)

(7a)

jH(f)j = �
f � fo

B
(7b)

B
�
=

+1

�1

jH(f)j2 df (7c)

where �(x) = 1 for jxj � 1=2 and 0 elsewhere. Consequently, it is

expected that more accurate results are obtained with the Gaussian

model.

Following the procedure used in [3], the standard deviation of the

real and imaginary parts of the visibility function can be computed,

taking into account that I/Q demodulation is performed prior to the

correlation [6, App. 1]. The main results are listed below for Gaussian

(8a) and for rectangular predetection filters (8b)

�
2
r; i =

1

2
p
2B�eff

(TA + TR)
2 1 + e

��(2�f=
p
2B)

+ V
2
r; i(u; v) 1 + e

��(2�f=
p
2B)

�V 2
i; r(u; v) 1� e

��(2�f=
p
2B)

(8a)
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TABLE I
SLL [dB] AND MBE FOR THE MIRAS SPACEBORNE-INSTRUMENT EQUIVALENT-ARRAY FACTOR (�2mn = u2mn + v2mn, �max =

p
3NELd)

Fig. 1. Radiometric sensitivity dBK (10 log �T ) versus SNR [10 log (TA=�V )]. TA = 200 K, MIRAS instrument. Radiometric sensitivity saturation
is due to the discretization and finite (u; v) coverage errors.

�
2

r; i =
1

2B�eff
(TA + TR)

2
1 + �

2�f

B

+ V
2

r; i(u; v) 1 + �
2�f

B

�V
2

i; r(u; v) 1� �
2�f
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(8b)

where �(x) = 1� jxj for jxj � 1 and 0 elsewhere; Vr and Vi are the

real and imaginary parts of the visibility function; TA is the antenna

temperature; TR = TR1 = TR2 is the receivers’ noise temperature;

�f = fo�flo is the difference between the filter’s central frequency

fo and the local oscillator’s frequency flo; and �eff is the effective

integration time that depends on correlator’s type, i.e., �eff = � for an

analog correlator, and �eff = � /2.46 for 1-bit � 1-bit correlator with
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sampling frequencies fs = 2B [9]. At this point, it is interesting to

note the following.

1) The variance �2V = �2r + �2i , computed with rectangular

predetection filters, is
p
2 times larger than with Gaussian filters

because noise is more compacted in frequency and suffers less

from decorrelation effects.

2) For any kind of filter, an improvement by a factor of two is

achieved in SSB receivers (j�f j > B=2), as compared to

DSB receivers (�f = 0), at the expense of higher speed

correlators and higher power consumption. In practice, the

use of SSB demodulation simplifies receiver’s design when

reradiation from local oscillator to the antenna must be kept

below the threshold of the signals received in the protected

band, i.e., 1.400–1.427 MHz [7]. It also reduces local oscillator

AM noise and offsets can be easily removed by high-pass

filtering the signals prior to correlation.

3) The use of digital correlators reduces the integration time �

by a factor that depends on quantization levels and sampling

frequency [9].

Since the brightness temperature map is obtained by means

of a discrete Fourier transform of the visibility samples, the

visibility errors are translated into the temperature map

T̂ (�; �) =A
m n

Wmn

� [V (umn; vmn) + eV (umn; vmn)

+jeV (umn; vmn)]

� ej2�(u �+v �)
(9)

where (eV r , eV i) are the errors in the real and imaginary

parts of the visibility function. Prior to computation of the

radiometric sensitivity some considerations about redundancy

and hermiticity must be pointed out.

1) Hermiticity of the Visibility Samples: Only half of the base-

lines must be measured (u ≥ 0, v ≥ 0 and u < 0, v > 0). The other

half is obtained by conjugating the measured baselines. In doing so,

the noise is Hermitian too.

V
�
(u; v) = 1

2
E[S1(t)S

�
2 (t)]

�

= 1
2
E[S2(t)S

�
1 (t)] = V (�u; �v): (10)

2) Redundancy and Correlation Between Errors: In [5], [6], [10]

and [11], it is shown that the cross-correlation of the errors of two

identical baselines 1–2 and 3–4 (except for the antenna positions)

with the same integration time � , one of them delayed �d, is given

by (rectangular predetection filters)

E[�V12(t+ �d)�V
�
34(t)] =R

V̂ V̂
(�d)� V12V

�
34

=
V13V

�
24

B�eff
sinc

�d

�
: (11)

being R
V̂ V̂

(�d), the cross-correlation between the measured vis-

ibilities V12 and V34 at t = �d. Note that, in an actual onboard

interferometer like MIRAS [7], all baselines are measured in the same

time interval and �d = 0. Given its importance, we explicitly show

that the noise of a visibility sample (8b) can be obtained from (11).

�
2
V =�

2
V + �

2
V = E[j�V12j2] = R�V �V (0)

=
V11V

�
22

B�eff
=
jV (0; 0)j2

B�eff
=

(TA + TR)
2

B�eff
(12)

From (11), it can be seen that, with ideal noise-free receivers, errors

between simultaneous measurements (�d = 0) of different visibility

samples are strongly correlated if the spacing between the antenna

pairs 1–2 and 3–4 is much smaller than the downfall of the amplitude

of the visibility function. This situation holds for scenes consisting

on point sources [2], [10], and averaging simultaneous measurements

does not improve SNR significantly. On the contrary, for a smooth

temperature distribution, as in the case of earth observation, the

visibility function decays rapidly, errors are only partially correlated,

and averaging reduces noise power.

On the other hand, if the receiver’s noise temperature is much

higher than the brightness temperature to be measured, the aver-

aging of simultaneous measurements improves the SNR, due to

the reduction of receiver’s noise. This is not the case with earth

observation at low microwave frequencies, in which receiver’s noise

temperature (TR � 80 K) is usually lower than the average brightness

temperature (TA � 250 K). In any case, the improvement shown by

(13), reproduced from [3], will always be lower than the upper bound

found for a linear array, which takes into account uncorrelated errors

�Tno redundancy =
TB + TRp

B�

p
NV

! �T redundancy
uncorr errors

=
TB + TRp

B�

p
c+ ln NV (13)

where NV stands for the total number of visibilities and c is the

Euler’s constant.

A detailed analysis of redundancy and its improvement on radio-

metric sensitivity requires a specific array configuration and scene

under observation. However, for Y -arrays, which provide a very

low degree of redundancy [5], [7], [10], [11], this improvement can

be approximately found if we realize that only baselines relating

antennas on the same arm can be redundant. By the zero baseline

it is understood that the one corresponding to u = v = 0, which

in MIRAS is nonredundant, since it is measured by a dedicated

Dicke radiometer. Recall also that when the Hermitian property is

considered every (u; v)-point is actually duplicated. For the Y -array

with three arms, each with NEL = 43 elements, plus a central

element, there are 3NEL(3NEL + 1)/2 + 1 = 8386 baselines

[the extra one corresponding to V (0; 0)], 3N2

EL + 3NEL + 1 =

5551 nonredundant baselines or nonredundant (u; v) points, and

3(NEL�1) = 126 redundant (u; v) points with different degrees of

redundancy. It means that 8386� 5551 = 2709 redundant complex

correlations (visibilities) lead to only 126 redundant (u; v) points.

This leads to an improvement of a 1% for a 43 antennas per arm

Y -array [10], [11], even in the case in which errors between these

visibility samples are assumed to be completely uncorrelated.

3) Snapshot Radiometric Sensitivity: As shown in the previous

section, visibility errors are Hermitian and, for computational pur-

poses, uncorrelated from sample to sample. With these considerations,

the snapshot radiometric sensitivity, that is, the average error in each

brightness temperature map obtained after an integration time of �

seconds, is

�T (�; �) =A
m n

Wmn

� [eV (umn; vmn) + jeV (umn; vmn)]

� ej2�(u �+v ��)

�T (�; �) =E[�T (�; �)�T (�; �)
�
]

=A
2

m n

W
2
mn(�

2
rmn + �

2
imn)

+

u >0; v �0
u �0; v >0

W
2
mn(�

2
rmn + �

2
imn)

� cos[4�(umn� + vmn�)] (14)
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TABLE II
BASIC PARAMETERS OF MIRAS INSTRUMENT

which can be approximated by

�T (�; �) ' A
TA + TR

B�eff
�w

�ol

�f

p
NV (15)

where A =
p
3d2=2, the local oscillator factor is given by �ol =p

2 = 1:41 for DSB receivers and �ol = 1 for SSB receivers;

the filter factor is given �f =4
p
2 = 1:19 for Gaussian filters

and �f = 1 for rectangular filters; and the windowing factor �w
is defined as

�w =
m n

W 2
mn=NV (16)

where the number of visibility samples, including the Hermitian

ones, is NV = 6N2

EL + 6NEL + 1 for Y -arrays. In the

MIRAS case, NEL = 43 and the windowing factor �w =

1; 0:5212;0:5717;0:5446; and0:4517 for the rectangular, triangular,

Hamming, Hanning, and Blackmann windows, respectively (Table I).

Note that the weighing function attenuates visibility samples between

distant antennas, where SNR is worse; thus, the radiometric sensitivity

is improved at the expense of a loss in the angular resolution. MIRAS

spaceborne snapshot radiometric sensitivity can be computed from

(15) and (16) with the parameters listed in Table II [7]. Fig. 1 shows

the snapshot radiometric sensibility in decibels f10 log (�T ) [dBK]g
versus the SNR. For an SNR in the MIRAS range 31.6–33.2 dB, the

radiometric sensitivity is bounded by 7.1–15.0 K and 3.2–6.8 K for

the rectangular and Blackmann windows, respectively.

4) Radiometric Sensitivity Improvement by Pixel Averaging:

Radiometric sensitivity can be improved in a 2-D interferometric

radiometer by means of “pixel averaging.” That is, since a pixel

remains in the FOV for a long time, the recovered values can be

averaged after proper correction of the dependence with the angle

of incidence. In the MIRAS case, a pixel remains in the FOV for

about 22 s (�FOV = FOV width/platform velocity = 165 Km/7

Km/s = 22 s), from which 11 s correspond to each polarization.

The improvement on the radiometric sensitivity in each polarization

is then �Tpixel avg.=�Tsnap-shot = (11s=0:3s) = 6 or 6
p
2

in a single polarization instrument. This improvement is achieved

because unsimultaneous measurements are independent and the error

is reduced by the square root of the number of measurements,

or equivalently, the integration time is increased to the total time

the pixel remains in the FOV �FOV. After pixel averaging, for

the MIRAS instrument (dual polarization instrument), the expected

radiometric sensitivity values are then �TMIRAS � 2:5 and 1:1

K for the rectangular and Blackmann windows, respectively, and

TA � 200 K.

III. RADIOMETRIC SENSITIVITY IN INTERFEROMETRIC

RADIOMETERS AND TOTAL POWER RADIOMETERS:

THE INTERFEROMETRIC RADIOMETER UNCERTAINTY PRINCIPLE

In order to compare in a homogeneous way the radiometric

sensitivities of interferometric radiometers and ideal total-power

radiometers, we must take into account all the available integration

time. Note that a 2-D interferometric radiometer images all the

space simultaneously, while a total-power radiometer images only the

pixel pointed by the antenna beam. That is, the MIRAS spaceborne

instrument will image (3NEL + 1)2 = 1302 = 16:900 pixels

simultaneously [1] every � = 0.3 s, from which there are 8.689

in the alias-free FOV. An ideal total-power radiometer imaging

only the alias-free FOV pixels with the same angular resolution

would have a maximum integration time of �pixel = �=8:689 =

0:3s=8:689 = 34:5 �s, leading to a worst-case radiometric sensitivity

of �TTPRad
pixel = Tsys= (B�pixel) � 14:5 K, which is very close to

the snapshot radiometric sensitivity of the interferometer radiometer

when the rectangular window is used (Section II-B3).

The radiometric sensitivity improvement achieved by windowing

can be now understood as the spatial averaging of the pixel’s value

with its neighbors. In fact, the sensitivity improvement by windowing

is approximately related to the half-power synthesized beamwidths

given in [6] and [12] by

�T IntRad
rectangular

�T IntRad
W

=
1

�W
' ���3 dBW

���3 dB
rectangular

: (17)
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In [6] and [12], the angular resolution of Y -arrays is analyzed,

and for the rectangular window ���3 dBrect. � �=(4
p
3NELd). For an

arbitrary window W , the product �TW��
�3dB;W is found to be

�TW��
2

�3 dB;W

'
p
3

2
d
2 TA + TR

B�eff
�w

�ol

�F

p
NV

�

�w 4
p
3NELd

'
p
3�

2 4

TA + TR

B�eff

�ol

�F
; (NEL > 1) (18)

which can be approximated by

�T ��
2

�3 dB;W ' TA + TR

B�eff

�ol

�F
d: (19)

Equation (19) is the new Interferometric Radiometer Uncertainty

Principle. It states that the product of the radiometric sensitivity �T

by the 2-D angular resolution ��2
�3 dB is a constant that depends only

on receivers and correlators parameters, and it is independent on the

window used to process the visibility samples. It can be viewed as

the interferometric radiometer version of the total-power radiometer

uncertainty equation given in (6.149) of [4].

IV. CONCLUSIONS

The radiometric sensitivity of a general 2-D interferometric ra-

diometer has been computed in this paper. The impact of the filters’

shape has been analyzed and quantified as well as the type of demod-

ulation (SSB or DSB) and the kind of correlator. The improvement

achieved by means of pixel averaging has been discussed and results

have been particularized for the MIRAS instrument, a Y -shaped

interferometric radiometer with 43 antennas per arm, currently under

study at the European Space Agency. It has been shown that after

pixel averaging, radiometric sensitivities are expected to be about

2.5 or 1.1 K, depending on the weighing function used to taper

the visibility samples. Finally, The new interferometric radiometer

uncertainty principle has been stated: it establishes that the product

of the radiometric sensitivity by the angular resolution is a constant

that depends only on the kind of receivers, correlators, and minimum

baselines.
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Reciprocity of the Bidirectional Reflectance

Distribution Function (BRDF) in Measurements

and Models of Structured Surfaces

William C. Snyder

Abstract—The bidirectional reflectance distribution function (BRDF)
is one of the most important surface properties for terrestrial remote

sensing, but its definition for structured surfaces is not fully understood.
The BRDF of flat surfaces has a straightforward definition and is usually

considered to be reciprocal, which means the value is the same when
the source and detector angles are switched. Structured surfaces, such

as forest canopies and grasslands, require an extension of the definition
of BRDF and some additional measurement conditions. In this paper,
a definition for the BRDF of structured surfaces is proposed, and it

is shown that with this definition, the BRDF is reciprocal. In addition,
some of the related geometrical measurement requirements are discussed.

It is concluded that reciprocity should apply for both measurements
and models of structured surfaces and that field measurements violate

reciprocity not because the BRDF itself is nonreciprocal, but because of
uncorrected geometric and radiometric factors.

Index Terms—Electromagnetic scattering by rough surfaces, radiative

transfer, radiometry, remote sensing.

I. INTRODUCTION

Land-cover bidirectional reflectance is of prime importance in ter-

restrial remote sensing. In the solar-reflective region of the spectrum,

the bidirectional properties are applied to normalize the effects of

different sun-sensor geometries to provide consistent surface features

for classification and change detection [1]. In the thermal infrared

region, the bidirectional characteristics are applied to account for the

reflected downwelling irradiance and to compute the angular emis-

sivity [2]. The bidirectional reflectance distribution function (BRDF)

characterizes surface bidirectional reflectance for all combinations

of incident and reflected zenith and azimuth angles. BRDF is an

optical property of a material that does not depend on external

factors, such as illumination or atmospheric transmission. In practice,

BRDF can be modeled, but cannot be measured or applied directly
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