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Objectives: This study aims to evaluate digital mammography (DM), digital breast

tomosynthesis (DBT), dynamic contrast-enhanced (DCE), and diffusion-weighted (DW)

MRI, individually and combined, for the values in the diagnosis of breast cancer, and

propose a visualized clinical-radiomics nomogram for potential clinical uses.

Methods: A total of 120 patients were enrolled between September 2017 and July 2018,

all underwent preoperative DM, DBT, DCE, and DWI scans. Radiomics features were

extracted and selected using the least absolute shrinkage and selection operator (LASSO)

regression. A radiomics nomogram was constructed integrating the radiomics signature

and important clinical predictors, and assessed with the receiver operating characteristic

(ROC) curve, calibration curve, and decision curve analysis (DCA).

Results: The radiomics signature derived from DBT plus DM generated a lower area

under the ROC curve (AUC) and sensitivity, but a higher specificity compared with

that from DCE plus DWI. The nomogram integrating the combined radiomics signature,

age, and menstruation status achieved the best diagnostic performance in the

training (AUCs, nomogram vs. combined radiomics signature vs. clinical model,

0.975 vs. 0.964 vs. 0.782) and validation (AUCs, nomogram vs. combined radiomics

signature vs. clinical model, 0.983 vs. 0.978 vs. 0.680) cohorts. DCA confirmed the

potential clinical usefulness of the nomogram.

Conclusions: The DBT plus DM provided a lower AUC and sensitivity, but a higher

specificity than DCE plus DWI for detecting breast cancer. The proposed clinical-

radiomics nomogram has diagnostic advantages over each modality, and can be

considered as an efficient tool for breast cancer screening.
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INTRODUCTION

Breast cancer has been a major concern and the second leading

cause of cancer death among women (1). The prevalence of
breast cancer has increased in the recent years, mainly due to the

implementation of an early screening mammography (2).

Although there is still no effective way to prevent breast

cancer, studies have shown that early detection and treatment

can increase the chance of full recovery for the patients (3).

Digital mammography (DM) using 2D technique, as a widely
used tool for detecting breast cancer, has a serious limitation that

the visibility of lesions may be decreased since they are frequently

obscured by dense fibroglandular and other normal tissues

within the breast (4), which often leads to a missed diagnosis

or misdiagnosis (5). To address this issue, digital breast

tomosynthesis (DBT) rotates the X-ray tubes in a limited

angle, thus allowing an improved identification of anomalies
obscured by normal tissues (6, 7). Therefore, the DBT is

commonly considered to be capable of decreasing the recall

rates and increasing the detection rates for breast cancer

compared with DM (8). Magnetic resonance imaging (MRI), as

another popular tool for breast screening, has been demonstrated

to be very sensitive in detecting breast cancer (9). While, the
relative low specificity of MRI screening may lead to a high rate

of overtreatment (10). Besides, the high examination fees of MRI

also hinder the clinical application in early breast screening.

In the clinical practice, the diagnosis of breast cancer based on

DM, DBT, or MRI mainly relies on visual inspections of the

morphological changes of breast lesions, including size, shape,

and gray level changes, and, thus, require experienced clinicians
to make decisions. Previous reports have compared the diagnostic

capabilities of DMwith DBT (11, 12) andmammography withMRI

(13, 14), all based on subjective visual examinations and the lack of

quantified assessments. Recently, the radiomics-based computer

aided diagnosis (CAD) has received increasing attention due to its

quantitative advantages (15, 16). By using automated data
characterization algorithms, the radiomics can extract and select

discriminative and quantified features from a region of interest,

which were shown to reflect biological information regarding the

tumor and were highly correlated with disease status (17).

Subsequent analysis, including statistics, machine learning

classifiers, and nomogram can give associations between imaging
features and the underlying pathophysiology (18). Radiomics-based

studies on breast cancer have been proposed for predicting the

axillary lymph node metastasis (19–23), molecular subtypes (24–

28), tumor grades (29–31), and treatment responses (32–37). Some

recent studies also conducted a radiomics-based quantified analysis

for the diagnosis of breast cancer based on DM (38, 39), DBT (40,

41), and MRI (42, 43) separately, and demonstrated improvements
of the diagnostic performance using radiomics compared with

visual examinations by radiologists. A recent effort evaluated

T2W, DCE, and DWI separately and in combination, but ignored

the clinical values of mammography screening, and lack of

correlating their findings with clinical evaluation, which may limit

the clinical applicability (44).
To our knowledge, direct and quantified comparisons among

MD, DBT, and MRI have not been reported. Therefore, the

present study aims to widen the understanding of mammography

and MRI in breast cancer screening by directly and quantitatively

comparing the diagnostic efficiency of each modality individually

and in combination. Besides, this study aims to propose a visualized

clinical-radiomics nomogram based on the optimal imaging

combination and important clinical factors for early assessment
of suspected breast lesions.

MATERIAL AND METHODS

Patients
This retrospective analysis of breast DM, DBT, andMRI data was

approved by the Institutional Research Ethics Board of our institute

(Approval No. 2013010). The informed consent requirement was

waived. A total of 120 patients [mean age ± standard deviation (SD),

48.81 ± 10.83] were enrolled between September 2017 and July 2018

in our hospital. The number of the patients harboring pathologically

confirmed benign or malignant lesions were 50 and 70, respectively.
Inclusion criteria were as follows: (i) older than 18 years;

(ii) underwent DM, DBT, and MRI screening before surgery; and

(iii) underwent surgical resection with pathological confirmation.

Exclusion criteria were: (i) combined with other tumor diseases;

(ii) during menstruation, pregnancy, or lactation periods; (iii)

history of breast surgery, radiotherapy, or chemotherapy, as well
as breast implants; and (iv) having artifacts in the images. All

patients were randomly divided into training and validation cohorts

at a 2:1 ratio using stratified sampling. Clinical factors including age,

family history of breast cancer, history of biopsy, and menstruation

status were obtained from the electronic medical record system of

our hospital.

Digital Mammography, Digital Breast
Tomosynthesis, and Magnetic Resonance
Imaging Acquisitions
Preoperative DM and DBT examinations were performed by a
radiographer with 10 years of work experience using a DBT scanner

(Hologic Selenia Dimensions, Hologic, USA). The obtained images

of the compressed breast were reconstructed with a 1-mm

intersection spacing to give a three-dimensional view of the

tissue, slice by slice, and suitably spaced. The number of the slices

depends on the compressed breast thickness. The following
parameters were used to perform the DBT scanning: The voltage

range of the X-ray tubes: 20.0–49.0 kV (step: 1.0 kV), nominal

power: 3.0 kW, current time range: 300–400 mAs, scanning

time < 4.0 s, reconstruction time: 2.0–5.0 s, and pixel size: 70 mm.

The obtained DBT images were interpreted on a Hologic breast

computer-aided diagnosis (CAD) workstation (SecureViewDx;

Hologic) equipped with two 5-megapixel monitors.
Preoperative MRI scans were performed using a 1.5-T MRI

scanner (HDx, GE Healthcare). The axial diffusion-weighted

imaging was used with the following parameters: the b-value:

800 s/mm2, repetition time (TR)/echo time (TE)/inversion time

(TI): 5,000 ms/64 ms/0 ms, flip angle: 90°, slice thickness: 6 mm,

slice gap: 7.5 mm, field of view: 240 mm, matrix size: 128 × 128.
The axially vibrant sequence (a 3D T1-weighted imaging

Niu et al. Radiomics Prediction of Breast Cancer

Frontiers in Oncology | www.frontiersin.org September 2021 | Volume 11 | Article 7259222

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


technique covering bilateral breasts conventional scans or

dynamic enhanced scans to obtain axial or sagittal images with

high signal-to-noise ratio and high resolution) with the following

parameters: TR/TE/TI: 6.2 ms/3.0 ms/13 ms; flip angle: 10°; slice

thickness: 3.2 mm; slice gap: 3.2 mm, 48 slices per volume; field

of view: 360 mm; matrix size: 350 × 350. The contrast agent was
injected intravenously (0.1 mmol/kg of Gd-DTPA-MBA,

Omniscan, GE Healthcare), followed by a 20-mL saline flush,

both at the rate of 3 ml/s. After the intravenous injection,

continuous non-interval scans were performed in eight phases,

with a scan time for each phase of 43 seconds. All scanned images

were stored in the Picture Archiving and Communication System
(PACS) in our hospital in a Digital Imaging and Communications

in Medicine (DICOM) format. The details about their scan

parameters are shown in Supplementary Tables S1, S2.

Breast Lesion Segmentation
Regions of interest (ROIs) were manually segmented slice by
slice for each patient using the ITK-SNAP software (version

3.6.0) by a radiologist with 12 years of working experience

according to the breast imaging reporting and data system (BI-

RADS). The radiologist was blinded to the pathological results

for the patients. The ROIs included the breast lesions and edges,

exporting as a compressed package in an NII format for
further analysis.

Radiomics Feature Extraction
Radiomics features including 18 first-order statistical, 13 shape-

based, and 74 textual features were extracted based on the
segmented ROIs using the Pyradiomics package in Python 3.6

(https://pyradiomics.readthedocs.io/en/). The texture feature

category consists of the gray level cooccurence matrix

(GLCM), gray level run length matrix (GLRLM), gray level size

zone matrix (GLSZM), neighboring gray tone difference matrix

(NGTDM), and gray level dependence matrix (GLDM) features.

The first-order and texture features were also calculated from the
original images that were filtered with eight types of filters:

logarithm, square, gradient, exponential, laplacian of Gaussian,

wavelet, and localbinarypattern2D (45). Detailed descriptions of

the features and calculation protocols can be found in a previous

report (46).

Feature Selection
To obtain reliable and discriminative features, 30 patients were

randomly selected to perform the intraclass correlation

coefficient (ICC) analysis (47), 15 from the training group and

15 from the validation group. The ROIs were double-blind

segmented by another radiologist with 8 years of working
experience. Features with ICC > 0.75 were retained, then

further selected by the Mann-Whitney U test. Features with

P < 0.05 were considered significant variables between the benign

and malignant groups. Finally, the least absolute shrinkage and

selection operator (LASSO) logistic regression was used to

identify the most discriminative features with a 10-fold cross-

validation for selecting the parameter lambda using the “glmnet”

package in R language v3.6 (available from URL: https://www.r-

project.org) (48).

Development of the Radiomics Signature,
Clinical Model, and Nomogram
The radiomics signature formula was calculated for each patient by a

linear combination of the selected features weighted by the respective
LASSO coefficients. The logistic regression was used to identify the

discriminative clinical predictors. A clinical model was established

using the multivariate logistic regression with the Akaike’s

Information Criterion (AIC) as the stopping rule (49). A radiomics

nomogram for differentiating benign and malignant lesions was

constructed incorporating the radiomics signature and the most
important clinical factors using the “rms” package in R v.3.6.

Statistical Analysis
The Mann-Whitney U-test, t-test, Chi-Square test, and Shapiro-

Wilk test were performed on continuous and discrete variables,

respectively. All hypothesis tests were two-sided. The ROC curve
analysis was performed to evaluate the diagnostic performance of

each model, with the area under the ROC curve (AUC),

accuracy, sensitivity, and specificity calculated as comparison

metrics. The optimal cutoff value was obtained on the ROC curve

with the maximum Youden index (50). ROC curves were

evaluated with the DeLong test using the “pROC” package in
R. Calibration curves were plotted to assess the calibration of the

model-predicted results with truth values. The decision curve

analysis (DCA) (51) was performed using the “rmda” package to

assess the potential clinical usefulness of the models.

RESULTS

Patient Characteristics
The clinical characteristics of the patients were statistically
analyzed and shown in Table 1. The age and menstruation

status were significantly different between the benign and

malignant groups (P < 0.05). No statistical difference was

observed in the types of family history and history of biopsy. A

clinical model was built integrating the age and menstruation

status for detecting malignant lesions.

Evaluation of Diagnostic Performance of
Digital Mammography, Digital Breast
Tomosynthesis, and Magnetic
Resonance Imaging
Diagnostic performance of the radiomics signature derived from
the DM, DBT, DCE, and DWI individually and in combination

were assessed (Table 2). Figure 1 shows the ROC curves of each

radiomics signature. The results indicated that the DCE generated
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the highest AUCs and sensitivities among the four modalities, but
had relatively low specificities. The diagnostic performance of

DWI plus DCE was significantly higher than DM plus DBT in

terms of sensitivity. Besides, the DWI plus DCE yielded the highest

positive predictive values (PPV) and the lowest misdiagnosis rates.

Development of the Combined Radiomics
Signature and Nomogram
Radiomics features selected from the four modalities were

combined and further selected to generate a combined feature

set consisting of seven features, three from DBT, two from DCE,

and two from DWI. Diagnostic performance of each feature was

evaluated and is listed in Table 3. The combined radiomics
signature (combined Rad score, Supplementary S3.) integrating

the seven features and their corresponding LASSO coefficients

was built and shown as follows:

Combined Rad score

= 0:5665 −Wavelet _HHL _ glszm _ ZonePercentage� 2:7374

+  Wavelet _ LHL _ firstorder _ Skewness� 1:4977

+  Log _ sigma _ 3 _ 0 _mm_ 3D _ glrlm _ ShortRunLowGrayLevelEmphasis

� 2:1381 +  Wavelet _ HHLglcm_ Imcl� 1:8133

+ Original _ glcm _ClusterShade� 1:4596

+  Logarithm _ glcm _ InverseVariance � 1:6268

− Exponential _ glcm _MCC� 0:7365:

A radiomics nomogram was constructed integrating the

combined Rad score with the age and menstruation status

(Figure 2A). The risk of being a malignant lesion can be read

off the scale in the last row by vertically drawing a line from the

total points. Calibration curves are shown in Figures 2B, C,

TABLE 1 | >Statistical analysis results of clinical characteristics.

Characteristic Training cohort P Validation cohort P

Benign (n = 33) Malignant (n = 46) Benign (n = 17) Malignant (n = 24)

Age (years) 0.008 0.009

<40 10 (30.3) 4 (8.7) 6 (35.2) 2 (8.3)

40–49 14 (42.4) 19 (41.3) 8 (47.1) 9 (37.5)

50–59 8 (24.2) 11 (23.9) 3 (17.6) 4 (16.7)

>=60 1 (3.0) 12 (26.1) 0 (0.0) 9 (37.5)

Family history of breast cancer, n (%) 0.693 1.000

+ 2 (6.1) 5 (10.9) 2 (11.8) 2 (8.3)

– 31 (93.9) 41 (89.1) 15 (88.2) 22 (91.7)

History of biopsy, n (%) 0.171 1.000

+ 2 (6.1) 0 (0.0) 1 (89.7) 1 (4.2)

– 31 (93.9) 46 (1.0) 16 (10.3) 23 (95.8)

Menstruation status, n (%) 0.001 0.002

+ 6 (76.8) 20 (49.3) 1 (89.7) 13 (30.3)

– 27 (23.2) 26 (50.7) 16 (10.3) 11 (69.7)

BI-RADS (DM plus DBT), n (%) <0.001 <0.001

0, 1, 2, 3 8 (24.2) 0 (0.0) 6 (35.3) 1 (4.2)

4A, 4B, 4C 24 (72.7) 32 (69.6) 11 (64.7) 15 (62.5)

5, 6 1 (3.0) 14 (30.4) 0 (0.0) 8 (33.3)

BI-RADS (MRI), n (%) <0.001

1, 2, 3 18 (54.5) 0 (0.0) 8 (47.1) 0 (0.0)

4, 5 15 (45.5) 46 (100.0) 9 (52.9) 24 (100.0)

BI-RADS, breast imaging reporting and data system; DM, digital mammography; DBT, digital breast tomosynthesis; MRI, magnetic resonance imaging.

TABLE 2 | Diagnostic performance of each modality used alone and in combination.

Cohort AUC(95%CI) ACC (95%CI) SEN SPE PPV NPV

DM alone Training Cohort 0.727 (0.612–0.842) 0.696 (0.583–0.795) 0.739 0.636 0.739 0.636

Validation Cohort 0.694 (0.524–0.863) 0.707 (0.545–0.839) 0.750 0.647 0.750 0.647

DBT alone Training Cohort 0.850 (0.766–0.940) 0.798 (0.692–0.880) 0.804 0.788 0.841 0.743

Validation Cohort 0.830 (0.698–0.968) 0.781 (0.624–0.894) 0.708 0.882 0.895 0.682

DWI MRI Training Cohort 0.858 (0.775–0.942) 0.810 (0.706–0.890) 0.913 0.667 0.793 0.846

Validation Cohort 0.831 (0.696–0.966) 0.781 (0.624–0.894) 0.750 0.824 0.857 0.700

DCE MRI Training Cohort 0.879 (0.978–0.960) 0.861 (0.765–0.928) 0.957 0.727 0.830 0.923

Validation Cohort 0.855 (0.727–0.984) 0.829 (0.674–0.929) 0.833 0.824 0.870 0.778

DM plus DBT Training Cohort 0.909 (0.842–0.976) 0.861 (0765–0.928) 0.826 0.909 0.927 0.790

Validation Cohort 0.880 (0.779–0.981) 0.805 (0.651–0.912) 0.708 0.941 0.944 0.700

DWI plus DCE Training Cohort 0.930 (0.877–0.982) 0.873 (0.780–0.938) 0.891 0.849 0.891 0.849

Validation Cohort 0.885 (0.768–1.000) 0.878 (0.738–0.959) 0.875 0.882 0.913 0.833

DM, digital mammography; DBT, digital breast tomosynthesis; DWI, diffusion-weighted imaging; DCE, dynamic contrast enhanced; AUC, area under the ROC curve; CI, confidence

interval; Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value.
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indicating acceptable agreements between the nomogram-
estimated probabilities and actual outcomes of the lesions. The

45-degree blue line and the red dotted line represent an ideal

diagnosis and the performance of our nomogram, respectively.

As the red dotted line is closer to the blue line represents a better

diagnostic performance. Figures 2D, E show that the nomogram

exhibited better diagnostic capabilities compared with the

combined Rad score or the clinical model alone (AUCs in the
training cohort, nomogram vs. combined Rad score vs. clinical

model, 0.975 vs. 0.964 vs. 0.782; AUCs in the validation cohort,

nomogram vs. combined Rad score vs. clinical model, 0.978 vs.

0.983 vs. 0.690). The diagnostic performance of the combined

Rad score, clinical model and nomogram are shown in Table 4.

Figure 3 shows the results of the decision curve analysis for each
model. The nomogram exhibited a greater net benefit compared

with the combined Rad score or the clinical model. When the

threshold probability of the patient was between 0.44 and 0.68, or

over 0.78, a greater benefit can be obtained by using the nomogram,

indicating a good potential in clinical applications.

DISCUSSION

Prior to this study, there have been researches evaluating the

diagnostic capabilities of DM (32, 38, 39), DBT (40, 41), MRI

(42–44) separately for detecting breast cancer, all based on

subjective visual examinations, and lack of direct and
quantitative comparisons of different modalities. On the

contrary, this study performed comprehensive radiomics

analyses to quantitatively assess the diagnostic performance of

different modalities separately and in combination. We found

that the radiomics signature derived from DM always showed the

worst diagnostic performance in terms of AUC, sensitivity, and

specificity compared with the other individual modalities. This
may be explainable since the DM only obtains one image, which

may lead to overlapping glands, and, hence, is not sufficient to

analyze the distribution of dense and adipose tissues (52). The

result was in accordance with previous studies that also showed

the DM-based diagnosis often leads to high false negative and

false positive rates due to the fact that the lesions may be

A B

FIGURE 1 | ROC curves of the DM, DBT, DCE MRI and DWI MRI used individually and in comibination in the training (A) and validation (B) cohort.

TABLE 3 | Diagnostic performance of the selected features for the diagnosis of breast lesions.

Feature Dataset Mean ± SD P-value AUC

Benign Malignant

Wavelet_HHL_glszm_ZonePercentage Training Cohort 0.006 ± 0.006 0.002 ± 0.002 <0.001 0.772

Validation Cohort 0.006 ± 0.006 0.002 ± 0.002 0.021 0.716

Wavelet_LHL_firstorder_Skewness Training Cohort 0.076 ± 0.297 -0.147 ± 0.215 <0.001 0.737

Validation Cohort 0.040 ± 0.377 -0.176 ± 0.168 0.010 0.740

Log_sigma_3_0_mm_3D_glrlm_ShortRunLowGrayLevelEmphasis Training Cohort 0.057 ± 0.028 0.037 ± 0.020 <0.001 0.736

Validation Cohort 0.062 ± 0.062 0.035 ± 0.015 0.181 0.625

Wavelet_HHLglcm_Imcl Training Cohort -0.099 ± 0.049 -0.072 ± 0.033 <0.001 0.738

Validation Cohort -0.085 ± 0.042 -0.067 ± 0.015 0.181 0.625

Original_glcm_Clus-terShade Training Cohort -2,413.833 ± 11,596.710 3,361.392 ± 14,159.810 0.026 0.648

Validation Cohort -2,950.967 ± 10,227.370 5,047.669 ± 1,264.26 0.013 0.730

Logarithm_glcm_InverseVariance Training Cohort 0.161 ± 0.026 0.146 ± 0.022 <0.001 0.667

Validation Cohort 0.152 ± 0.022 0.151 ± 0.020 <0.001 0.507

Exponential_glcm_MCC Training Cohort 0.583 ± 0.305 0.776 ± 0.158 0.002 0.710

Validation Cohort 0.539 ± 0.269 0.761 ± 0.155 0.003 0.772

Glszm, gray level size zone matrix; glrlm, gray level run length matrix; glcm, gray level co-occurrence matrix; SD, standard deviation; AUC, area under the ROC curve.
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obscured or hidden by the overlapping fibroglandular tissues
(5, 53). The addition of DBT to DM can significantly improve the

diagnostic AUC, accuracy, specificity, PPV, and NPV, and

generate a similar sensitivity compared with the DM alone.

This was in line with some previous reports that also indicated

that breast DBT can lead to improvements in AUC and

specificity by visual assessments (54, 55). This may be because
the DBT can improve the lesion visibility by providing thin

section tomographic images and reducing the overlap of breast

tissues, and, hence, represents a clearer edge, shape, and structure

of the lesion. The addition of DBT to DM did not improve the

diagnostic sensitivity by visual assessments compared with DM

alone as reported in an earlier study (14). The discordance may

be because they performed the research with a cancer-only
population. The DCE plus DWI yielded higher AUCs and

sensitivities, but lower specificities than the DM plus DBT. The

result was partially in line with a previous literature that also

indicated that the MRI was superior to the X-ray technology in

the diagnostic AUC and sensitivity, but weaker in the specificity
(14, 56).

The DBT showed a similar diagnostic AUC, slightly increased

specificity, and lower sensitivity compared with DCE or DWI,

which was in line with a previous research that also

demonstrated the inferiority of breast DBT in the sensitivity

compared with MRI by visual examinations (14, 53, 57). This
may be explained since the DCE can reflect the neoangiogenesis

within the tumor that is associated with the growth and

progression of the malignant tumor (58). While, the DWI can

represent tissue microenvironments and membrane integrities

through depicting the diffusivity of the tissues (59). Therefore,

the MRI tends to be more sensitive than DBT or DM on tumors

with higher malignant degrees. The DCE yielded higher AUC,
accuracy, sensitivity, and specificity compared with DWI, which

may be due to the higher resolution and the use of a contrast

agent in DCE (44). We found that the addition of DBT to MRI

(DBT plus DCE plus DWI) can increase the AUC and sensitivity

A

B

D E

C

FIGURE 2 | Development and validation of the nomogram model integrating the combined Rad score, age and menstruation status. (A) Construction of the

nomogram; (B, C), Calibration curves of the nomogram in the training (B) and validation (C) cohort; (D, E), ROC curves of the nomogram, combined Rad score and

clinical model in the training (D) and validation (E) cohort.
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compared with MRI alone (DCE plus DWI). This indicated that

the DBT and MRI are complementary, their combination can

significantly improve the predictive capabilities. While, our

results were inconsistent with a previous report that showed

no improvement in the diagnostic sensitivity by combing DM,
DBT, DCE, and ultrasound (60). Since they involved ultrasound,

direct comparisons between our study and their work

was impossible.

In the clinical practice, although integrating MRI with X-rays

allows the radiologists to give judgments more easily, the

diagnosis still relies on subjective experiences. We selected a
total of seven quantitative features as the most important

predictors, three from DBT, two from DCE, and two from

DWI. There were one original and six transformed features.

The developed combined Rad score integrating these features

significantly improved the diagnostic performance compared

with any modality alone. The Original_glcm_ClusterShade

feature measures the skewness and the uniformity of the gray
level co-occurrence matrix within the tumor. A higher value of

this feature implies a greater asymmetry about the mean and a

greater heterogeneity of the lesion. We found that this feature

was bigger in the malignant lesions than in the benign lesions,

which suggests that a tumor with more asymmetry and

complexity in the tumor texture tends to be malignant. Among
the six transformed features, one belonged to the first-order and

five belonged to the textural feature class. The first-order feature

describes the distribution of voxel intensities in the image region.

While, the textural feature quantifies the complexity of a tumor

and the thickness of the texture. Our findings suggest that the

tumor heterogeneity may be closely related to breast cancer,

since textural features in the medical image often reflect tumor
heterogeneities. The results were partially in line with previous

studies that also highlighted the correlations between the textural

features and breast cancer (61, 62). Our findings may explain that

the proposed combined Rad score can significantly improve the

diagnostic performance with regard to AUC and sensitivity thanT
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FIGURE 3 | Showed results of the decision curve analysis for each model.

The nomogram exhibited greater net benefit compared with the combined

Rad score or the clinical model. When the threshold probability of the patient

was between 0.44 and 0.68, or over 0.78, greater benefit can be obtained by

using the nomogram, indicating good potential in clinical applications.
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visual assessments, since most of the identified features (6 of 7)

were derived from the transformed images that were generated

by filtering the original images with various filters, and, thus, can

hardly be understood by human.

A clinical model was built integrating age and menstruation

status, and showed a lower AUC, sensitivity, and specificity than
the combined Rad score. The nomogram incorporating the

combined Rad score with the age and menstruation status

achieved the best overall diagnostic performance compared

with the combined Rad score, clinical model, and BI-RADS

assessment. Decision curves demonstrated a better clinical

usefulness of the nomogram with more net benefits across the
majority of the range of threshold probabilities. Therefore, we

suggest that our nomogram may be considered as an effective

tool that can assist in decision making for the diagnosis of breast

cancer. To use our nomogram, radiologists need to manually

segment lesions on the DBT and MRI images for each patient,

then calculate the probability of being benign or malignant. After
that, clinicians can incorporate the nomogram-predicted

probabilities with other clinical information to give a

comprehensive decision on further examinations and treatments.

This study has limitations. First, this retrospective study had a

relatively small sample size, which may cause inherent bias.

Second, all data were obtained from a single hospital. Further

multi-center trials are warranted to confirm the present findings.
Third, our radiomic methods rely on manual segmentations of

the ROIs, which were subjective and time-consuming. Future

studies are needed to explore deep learning-based automatic

segmentation methods on breast data.

CONCLUSIONS

Our results showed that the DBT performed similar to DCE and

DWI in terms of AUC and sensitivity, but better in specificity for

detecting malignant lesions. The DBT plus DM can provide a

lower AUC and sensitivity, but a higher specificity compared
with DCE plus DWI. The proposed nomogram achieved the best

diagnostic performance, and may help clinicians make precise

decisions regarding treatments.
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