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Radiomic features and multilayer 
perceptron network classifier: a 
robust MRI classification strategy 
for distinguishing glioblastoma 
from primary central nervous 
system lymphoma
Jihye Yun1, Ji Eun Park  2, Hyunna Lee3, Sungwon Ham1, Namkug Kim  1,2 & Ho Sung Kim2

We aimed to establish a high-performing and robust classification strategy, using magnetic resonance 
imaging (MRI), along with combinations of feature extraction and selection in human and machine 
learning using radiomics or deep features by employing a small dataset. Using diffusion and contrast-
enhanced T1-weighted MR images obtained from patients with glioblastomas and primary central 
nervous system lymphomas, classification task was assigned to a combination of radiomic features and 
(1) supervised machine learning after feature selection or (2) multilayer perceptron (MLP) network; or 
MR image input without radiomic feature extraction to (3) two neuro-radiologists or (4) an end-to-end 
convolutional neural network (CNN). The results showed similar high performance in generalized linear 
model (GLM) classifier and MLP using radiomics features in the internal validation set, but MLP network 
remained robust in the external validation set obtained using different MRI protocols. CNN showed the 
lowest performance in both validation sets. Our results reveal that a combination of radiomic features 
and MLP network classifier serves a high-performing and generalizable model for classification task for 
a small dataset with heterogeneous MRI protocols.

Distinguishing primary central nervous system lymphoma (PCNSL) from glioblastoma is an important task in 
neuro-oncology because treatment options are vastly di�erent for the two diseases1,2. In this regard, the develop-
ment of an imaging-based classi�cation system would be bene�cial, which will provide the desired improvements 
in diagnostic accuracy, by utilizing imaging-based features, such as histograms, texture features, and transformed 
features. �is radiomic approach converts sparse magnetic resonance imaging (MRI) data into big data by gen-
erating high-dimensional imaging phenotypes from the given imaging data in a voxel-wise model3,4. Combined 
with machine learning classi�ers, the radiomics approach has improved diagnostic performance for histologic 
grading, predicting molecular markers, and improving diagnosis using MRI data5–9.

On the other hand, recently introduced deep neural networks, especially convolutional neural networks 
(CNNs), have improved classi�cation performance in various medical applications, including the diagnosis of 
tuberculosis, diabetic retinopathy, and skin cancers using chest X-ray scans10, fundal photographs11, and digital 
images12, respectively. Deep features can be extracted from the pre-trained CNN13, thereby allowing for the mod-
eling of high-level abstractions from data and automatic feature discovery without using a pre-de�ned feature 
selection method. Compared to deep features obtained from CNN, traditional radiomic features are handcra�ed 
and pre-designed13 and reguire further steps for selection14.
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Nevertheless, a shortcoming of deep learning is that a large amount of data is needed to minimize over�tting 
and improve learning15. Big data may be feasible with X-rays or photographs, but it is di�cult to achieve with 
brain tumor MRI data. �e low incidence �gures for PCNSL (0.47 cases per 100,000 person-years16) and glioblas-
toma (2.2 to 3.7 cases per 100,000 person-years17) make it practically challenging to obtain the hundreds to thou-
sands of MRI images required for deep learning. �us, a better classi�cation strategy is needed for deep learning 
involving MRI data, with di�erent combinations of data input, feature extraction, and classi�ers.

In view of the above issues, we aimed to establish a high-performing classi�cation strategy using a small MRI 
dataset. �e classi�cation task can be greatly a�ected by di�erent feature extraction (handcra�ed vs. deep fea-
tures) and classi�cation (support vector machine, generalized linear model, random forest, multilayer perceptron 
(MLP) network, and CNN) methods, but there are few published studies comparing classi�cation strategies that 
vary based on these methods. Also, classi�cation system performance for MRI data may vary by imaging protocol 
because machine learning is �ne-tuned with the training dataset. �e purpose of this study, therefore, was to �nd 
a high-performing and robust classi�cation strategy for MRI using di�erent combinations of feature extraction, 
feature selection, and classi�ers from human readers, supervised learning, and deep learning with regard to a 
neuro-oncologic diagnosis task involving a small dataset.

Results
�e overall patient demographics and image protocols of the training and validation sets are listed in Table 1. 
Between training and internal validation and between training and external validation set, there was no signi�-
cant di�erence in proportion of glioblastoma and PCNSL (chi-square test, P = 0.948 and P = 0.400, respectively), 
proportion of female patients (chi-square test, P = 0.151 and P = 0.103, respectively), and age (independent sam-
ples t-test, P = 0.651 and P = 0.323, respectively).

Optimizing Metric 1, 2, and 4 using Data Training and Internal Validation. �e study design 
is demonstrated in Fig. 1. Metric 1 is machine learning classifier for radiomics features; metric 2 is deep 
learning-based classi�cation of multilayer perceptron network for radiomics features; metric 3 is assessment by 
two neuroradiologists; metric 4 is convolutional neural network (CNN) without feature extraction.

Figure 2 demonstrates the area under the receiver operating characteristic curves (AUCs) and stability in met-
ric 1 using di�erent combinations of machine learning algorithms, feature selection, and classi�ers by employ-
ing radiomic features from both contrast-enhanced T1-weighted (CE-T1W) and apparent di�usion coe�cient 
(ADC) images. Among the nine di�erent combinations, the combination of backward feature elimination and 
generalized linear model (GLM) boosting showed the best diagnostic performance in the training set, which 
had a mean AUC of 0.945 (95% CI: 0.916–1); sensitivity, 96.3%; speci�city, 92.3%; and accuracy, 94.3%. �e 
stability of the best combination was 3.9%. �e results using nine di�erent combinations of feature selection and 

Group
Dataset 
origin

No. of 
glioblastoma

No. of 
PCNSL Age (y)

Female 
(%) MR

TR/TE (ms),  
CE-T1WI

Slice thickness 
(mm), CE-T1WI TR/TE (ms), DWI

Slice thickness 
(mm), DWI

Training set AMC 73 50 63.0 ± 11.7 35.9 3 T 9.0–10.1/4.4–4.8 0.5 3000–4000/56–61.7 4 mm

Internal validation set AMC 18 12 58.8 ± 13.0 50.0 3 T 9.0–10.1/4.4–4.8 0.5 3000–4000/56–61.7 4 mm

External validation set SMC 28 14 56.3 ± 10.6 50.0 3 T 8.6–10.4/3.5–4.7 1 6900–12,000/55–81 3–5 mm

Table 1. Demographics of the Patients and Protocols in the Image Datasets. Abbreviations: Data are expressed 
as mean ± standard deviation for age and range for image protocols. PCNSL = primary central nervous system 
lymphoma, TR = repetition time, TE = echo time, CE-T1WI = contrast-enhanced T1 weighted imaging, 
DWI = di�usion weighted imaging, AMC = Asan Medical Center, Seoul, Korea, SMC = Samsung Medical 
Center, Seoul, Korea.

Figure 1. Study design. Metric 1: extraction of radiomic features, followed by machine learning of support 
vector machine (SVM), generalized linear model (GLM), and random forest (RF); Metric 2: extraction of 
radiomic features, followed by deep learning-based classi�cation of multilayer perceptron network; Metric 3: 
assessment by 2 neuroradiologists; Metric 4: end-to-end classi�er using convolutional neural network (CNN) 
without feature extraction.
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classi�cation methods are shown in the Supplementary Table 3. When metric 1 was tested with each CE-T1W or 
ADC image, the mean AUCs ranged from 0.834 to 0.924 among the CE-T1W images, and the best performance 
was achieved with correlation-based feature selection (CFS) and radial-basis support vector machine (SVM). For 
ADC maps, the mean AUCs ranged from 0.827 to 0.910, and the best performance was obtained with CFS and 
regularized RF. �e selected features from the best combination are shown in the Supplementary Table 4. �e 
selected algorithm in metric 1 was further applied to internal and external validations.

Metric 2 was optimized with 100-10 network architecture using both CE-T1W and ADC images, with an AUC 
of 0.991 (95% CI: 0.987–0.994) in the internal validation set. Its performance decreased with deeper networks, 
especially when using both CE-T1W and ADC images and when using ADC images only. Table 2 shows the opti-
mization of classi�cation the using MLP network (metric 2) and CNN (metric 4) by comparing the diagnostic 
performance in the internal validation set.

In metric 4, the best performing model, diagnostic performance was higher on using ADC images alone 
(AUC, 0.879; 95% CI: 0.856–0.902) as compared with that achieved on using CE-T1W images (AUC, 0.819; 95% 
CI: 0.788–0.851) and both image sets (AUC, 0.794; 95% CI: 0.772–0.817). Figure 3 demonstrates the di�erences 
of metric 4 in the internal validation set.

�e simple logistic regression classi�er provided a diagnostic performance of AUC 0.939 when both CE-T1W 
and ADC images were used in the internal validation set, which was lower than that achieved using the MLP 
network. �e diagnostic performance achieved by using only CE-T1W or ADC images was AUC 0.867 and AUC 
0.875, respectively.

Diagnostic performance in the external validation set. Human readers did not need training from 
data, and the diagnostic performance was directly calculated in the validation sets. In the internal validation, 
human readers showed AUCs of 0.833 and 0.875 (95% CI: 0.653–0.940 and 0.703–0.967), with sensitivities of 
83.3% and 75.0%, speci�cities of 83.3% and 100%, and accuracies of 83.3% and 90.0%, respectively. In the external 

Figure 2. Optimization of metric 1 in the training set using contrast-enhanced T1-weighted (CE-T1WI) 
and ADC images. (A) Heatmap depicting the diagnostic performance (area-under-the receiver operating 
characteristics curve, AUCs) of 3 feature selection (in rows) and 3 classi�cation (in columns) methods in the 
training set. Color scale: expressed from orange (AUC, 0.60) to red (AUC, 1.00). (B) Stability of the AUCs using 
10-fold cross-validation in the training set. Color scale: expressed from sky blue (stability, 3%) to dark blue 
(stability, 6.5%).

Imaging data CE-T1WI + ADC CE-T1WI ADC

MLP network AUC (95% CI)

100-10 0.991 (0.987–0.994) 0.965 (0.959–0.972) 0.969 (0.960–0.978)

500-100-10 0.990 (0.987–0.993) 0.965 (0.960–0.971) 0.968 (0.956–0.979)

500-100-50-10 0.989 (0.985–0.993) 0.956 (0.949–0.962) 0.964 (0.953–0.975)

500-250-100-50-10 0.988 (0.982–0.995) 0.968 (0.964–0.982) 0.965 (0.952–0.977)

750-500-250-100-50-10 0.986 (0.978–0.993) 0.971 (0.967–0.975) 0.960 (0.951–0.969)

CNN Accuracy (Sensitivity/Speci�city)

Inception v-3 80.0 (50.0/100) 76.7 (41.6/100) 86.7 (83.3/88.9)

Table 2. Optimization of the best classi�er in multilayer perceptron network (metric 2) and CNN (metric 4) by 
comparing diagnostic performance in the internal validation set. Abbreviations: MLP = multilayer perceptron, 
CNN = convolutional neural network, CE-T1WI = contrast-enhanced T1 weighted imaging, DWI = di�usion 
weighted imaging, AUC = area under the receiver operating characteristic curve.
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validation set, human readers showed AUCs of 0.913 and 0.930 (95% CI: 0.808–0.971 and 0.831–0.981), with 
sensitivities of 86.2% and 89.7%, speci�cities of 96.4%, and accuracies of 91.2 and 93.0%.

Table 3 summarizes the diagnostic performance in the training and validation sets. �e decrease in the diag-
nostic performance of metric 4 was the most substantial, from an AUC of 0.879 (95% CI: 0.856–0.902) in the 
internal validation to 0.486 (95% CI: 0.468–0.503) in the external validation set. �e diagnostic performance 
of metric 1 also reduced in the external validation, from an AUC of 0.931 (95% CI: 0.891–0.962) in the internal 
validation to an AUC of 0.811 (95% CI: 0.795–0.835) in the external validation. Metric 2 remained robust in the 
external validation, with an AUC of 0.947 (95% CI: 0.937–0.956), a sensitivity of 92.9%, a speci�city of 82.1%, and 
an accuracy of 85.7%. �e diagnostic performance of metric 2 was the highest in the external validation, followed 
by that of human readers (metric 3). Figure 4 shows the AUCs of metric 2 in the validation sets.

Post-hoc analysis for the impact of CNN-based deep features on radiomics features. Comparison  
between the diagnostic performance of radiomic features and that of CNN-based deep features combined with 
radiomic features is shown in Supplementary Table S5. In the internal validation, radiomic features involving the 
use of both CE-T1WI and ADC images yielded an AUC of 0.9907, but the AUC dropped to 0.4722 when deep 
features were added. Similar �ndings were observed in the external validation, in which radiomic features yielded 
an AUC of 0.9260 which decreased to 0.7895 when deep features were added.

Figure 3. �e di�erence of receiver operating characteristic curve according to image sets in the convolutional 
neural network (CNN) classi�er (metric 4). �e CNN showed the best performance with apparent di�usion 
coe�cient (ADC) images, compared with the performance achieved when a combination of contrast-enhanced 
T1-weighted (CE-T1WI) and ADC images were used or when CE-T1WI images alone were used.
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Discussion
In this MRI-based image classi�cation task, a deep learning-based MLP network classi�er with radiomic features 
showed the highest performance in di�erentiating PCNSL from glioblastoma. Combination of backward feature 
elimination and GLM classi�er using radiomic features showed a comparable performance in the internal vali-
dation set, but the performance dropped signi�cantly in the external validation set with di�erent MRI protocols. 
Human readers showed slightly lower diagnostic performance than machine or deep learning, but performance 
remained robust across di�erent datasets. �e CNN trained with 123 MR image sets without feature extraction 
showed the worst performance in both validation sets. Our results demonstrated that a MLP network classi�er, 

Metric Images

Training set Internal validation set External validation set

AUC (95% CI) Sens (%) Spec (%) AUC (95% CI) Sens (%) Spec (%) AUC (95% CI) Sens (%) Spec (%)

1
Backward feature 
elimination with GLM 
boosting classi�er

Radiomics 
features

0.943 (0.927–0.978) 96.3 92.3 0.931 (0.914–0.941) 98.8 92.3 0.811 (0.795–0.835) 85.5 78.9

2
MLP network 
classi�er (100-10)

Radiomics 
features

0.994 (0.994–0.995) 100 100 0.991 (0.987–0.994) 100 100 0.947 (0.937–0.956) 92.9 82.1

3 Human readers Images
0.825–0.908 
(0.755–0.949)

69.4–83.9 95.6–97.8
0.833–0.875 
(0.653–0.940)

75.0–83.3 83.3–100
0.913–0.932 
(0.808–0.981)

86.2–89.7 96.4–96.4

4
CNN based end-to-
end classi�er

Images 0.973 (0.966–0.980) 100 94.51 0.879 (0.856–0.902) 83.3 83.3 0.486 (0.468–0.503) 100 35.7

Table 3. Validation Datasets Showing the Area Under the Curve, Sensitivity, and Speci�city of the Classi�cation 

Metrics to Distinguish Primary Central Nervous System Lymphoma and Glioblastoma, With Reference to 

a Histopathology Finding. Abbreviations: GLM = Generalized linear model, MLP = multilayer perceptron, 

CNN = convolutional neural network, AUC = area under the receiver operating characteristic curve, 

Sens = Sensitivity, Spec = Speci�city.

Figure 4. �e diagnostic performance of metric 2 in the internal and external validation sets. �e area under 
the receiver operating characteristic curve (AUC) remained robust in the external validation set.

https://doi.org/10.1038/s41598-019-42276-w


6SCIENTIFIC REPORTS |          (2019) 9:5746  | https://doi.org/10.1038/s41598-019-42276-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

combined with radiomic features, is a useful tool for MRI data, with improved diagnostic performance and avoid-
ance of over�tting across the di�erent protocols.

�e major di�erence between metrics 1, 2, and 4 was the feature extraction strategy—whether features were 
extracted manually (radiomic features in metrics 1 and 2) or automatically learned by the system (metric 4). A 
CNN is an end-to-end deep learning algorithm, where the cascades of convolution-pooling layers mimic the 
extraction of visual features and the fully connected layers are incorporated to integrate all the feature responses 
and provide the �nal results15. �us, deep learning extracts high-level features directly from the data. However, 
CNNs are intrinsically data hungry and susceptible to over�tting18; they require many data samples for model 
training because millions of weight parameters are needed to be estimated within the network. A previous study 
has suggested that at least 100 cases per class are needed to provide a reasonable outcome19. �e poor perfor-
mance of CNN in our study is in keeping with the limitations associated with extracting deep features using a 
small dataset, even with data augmentation and use of a pre-trained network. �e results of our study emphasize 
that MRI data are vastly di�erent from 2D single-plane imaging data of digital photos, which are commonly used 
in CNN image-based classi�cation.

On the other hand, radiomics enables the conversion of MRI images into high-dimensional feature spaces 
that allow an improved performance in PCNSL and glioblastoma diagnoses. �ree aspects are to be established in 
radiomics modeling: feature selection, modeling, and validation20. An e�ective feature selection is a crucial step20 
because radiomics features are multiple collinear and correlated predictors that could produce unstable estimates 
and might over�t predictions14. Additionally, performance is preferably assessed with a true validation set, both 
temporally and geographically, and problems in the model �tting stage will re�ect as poor performance in the val-
idation stage. In our study, combination of backward elimination and GLM classi�er (metric 1) and MLP network 
(metric 3) showed similarly high performances in internal validation sets. However, the metric 1 showed reduced 
diagnostic performance in the external validation, which can be explained by over�tting the training MRI data, 
owing to the use of an overly simpli�ed feature selection method.

Meanwhile, the MLP network (metric 2) applied to radiomic features provided the best performance and 
remained robust in both validating sets across di�erent MR imaging protocols. �e MLP network models the 
computational units of multiple layers by imitating signal transmission, and the layers of deep neural architecture 
overcome the limitation of local minimum optimization19. Also, an ensemble model that we employed using 
10-fold cross-validation methods enabled us to overcome over�tting21–23 and to classify more complex and non-
linear relationships by adding more hidden layers to the network architecture between the input and output 
layers. �e rationale behind application of MLP was that it has hidden layers with the capability of producing a 
higher level and more abstracted feature selection algorithm. MLP-based feature selection may overcome over�t-
ting of radiomics features trained and selected from the same institute, which was shown with metric 1, and may 
be prone to more e�ciently adopt and select signi�cant radiomics features from di�erent MRI acquisitions in the 
external validation set. �is approach is di�erent from that for a CNN, in which a model learns from data with 
deep architecture in an unsupervised manner and generates features from raw data. �ough CNNs avoid com-
plex feature engineering or delicate feature handcra�ing, as shown in our study, they may not e�ciently extract 
features from small MRI datasets and classify independent data with heterogeneous MRI acquisition protocols. 
Based on our results, we recommend the combination of radiomic features and MLP network classi�cation as a 
suitable analysis strategy when there are limited MRI data.

A previous study has showed that extraction of deep learning information from MR images will improve diag-
nostic e�cacy than that associated with the radiomics model24, but this was tested using the same imaging pro-
tocol. Based on our results, compared to the radiomic features alone, addition of CNN-based deep features does 
not improve diagnostic performance. �is is probably because the extracted features from radiomic analysis and 
CNN algorithm have di�erent dimensions, and the concatenating features did not improve model performance.

Of note, human performance showed lower diagnostic performance in the internal validation but emerged 
as the best performer (metric 2) in the external validation. In learning, humans take general principles and apply 
theory to new data18, while machines learn directly from given data. �e neuroradiologists in our study did not 
need to learn from the training data, but they applied their knowledge-based rules in both validation sets. A 
discrepancy between the two validation sets may result from the inclusion of atypical PCNSL cases25, showing 
necrosis and hemorrhage in the internal validation set, which resulted in reduced diagnostic performance of 
human readers. Meanwhile, quantitative imaging features from radiomic feature extraction improved classi�ca-
tion in both validation sets.

�e training and validation data used here was used in our previous work26 comparing several ML mod-
els. �is study di�ers from previous work by �rst applying MLP network classi�er and CNN based end-to-end 
classi�er to radiomics in order to alleviate over�tting issue from the overly simpli�ed feature selection method. 
Although previous study showed high diagnostic performance of AUC 0.984 in the internal and AUC 0.944 in 
the external validation set, the study utilized larger number of radiomics features (n = 1618) compared to the 
current study (n = 936). Also, applying multiple di�erent ML combinations of feature selection and classi�ers is 
extensive work and may not be suitable to explain complex and nonlinear relationships. In this study, the MLP 
network classi�er showed robust across di�erent protocols and centers, showed diagnostic performance of AUC 
0.991 in the internal validation set and AUC 0.947 in the external validation set. �is is further supported that the 
sensitivity and speci�city of the external validation set (85.7% and 75.0%, respectively) was lower in the previous 
study than in the current study (92.9% and 82.1%, respectively).

Our study has several limitations. First, it is conducted with only a small amount of data, especially in the 
validation set. Second, though we used a modi�ed network from pre-trained Inception-v3, CNN performance 
did not reach to metric 1 or metric 2. �is may result from Inception-v3 being optimized for 2D images, and not 
directly from the MRI data. More suitable and optimized networks can further improve CNN model perfor-
mance. �ird, combination of CNN and radiomics features were based on lower dimension (2D slice), and this 
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may have lowered the diagnostic performance of combined approach compared to using radiomics features only. 
In future work, feature extraction using 3D CNN will be more desirable, which can simultaneously extract both 
spatial and multimodal information of multimodal MRI data27. Fourth, radiomic feature extraction is inherently 
time-consuming and subject to variations in segmentation and imaging sequences, and the best performer of 
radiomic features and MLP network classi�ers in this study may not lead us to identify a clinically useful tool. 
Nevertheless, a comparison of the performance between human learning and various machine learning may 
give insights on how learning systems can be improved. Finally, atypical PCNSL cases may consist of di�erent 
HLA–typed PCNSL; correlation of molecular markers to imaging phenotypes will improve the biologic relevance 
of the current research.

In conclusion, a combination of radiomic features and MLP network classi�er serves as a high-performing 
and reliable model for a classi�cation task and is superior to support vector machine, generalized linear model, 
random forest, and CNN for small datasets with heterogeneous MRI protocols.

Methods
Image datasets. We collected MR image sets from patients who were pathologically con�rmed to have 
PCNSL or glioblastoma by surgical resection or biopsy. From the electronic database of our institution, 153 con-
trast-enhanced T1-weighted (CE-T1W) and di�usion-weighted (DW) MR image sets were collected for each 
patient. �ese types of imaging data were selected because both are sequences in standardized brain tumor pro-
tocols for clinical trials28 and both are frequently used as diagnostic tools in conventional1,29 and advanced30,31 
imaging studies to distinguish two entities. Ninety-one patients had glioblastoma, and 62 patients had PCNSL. 
�e imaging data were randomized into a training set (123 MR image sets, 50 PCNSLs, and 73 glioblastomas) and 
an internal validation set (30 MR image sets, 12 PCNSLs, and 18 glioblastomas). Only the training set was used 
in model construction.

An external validation set with 42 MR image sets (14 PCNSLs and 28 glioblastomas) was also collected, 
from another tertiary hospital, to test the e�ect of di�erent acquisition protocols on model performance. �e 
institutional review board of Asan Medical Center approved this retrospective study, and the requirement for 
informed consent was waived for both centers. �e imaging data were de-identi�ed in accordance with the Health 
Insurance Portability and Accountability Act privacy rule.

MR Image Preprocessing. MR images were acquired using 3T scanners at both centers. CE-T1W and 
DW MR images were collected for image analysis. In our hospital, the CE-T1W images were obtained at a 
high-resolution three-dimensional (3D) volume, using a gradient-echo T1-weighted (T1W) sequence with 
the following parameters: repetition time (TR)/echo time (TE), 9.8/4.6 ms; �ip angle, 10°; �eld of view (FOV), 
256 mm; matrix, 512 × 512; and slice thickness, 1 mm with no gap. DW image parameters were as follows: TR/TE, 
3000/56 ms; di�usion gradient encoding, b = 0, 1000 s/mm2; FOV, 25 cm; matrix, 256 × 256; and slice thickness/gap,  
5 mm/2 mm.

For the external validation set, CE-T1W images were obtained using a gradient-echo T1W sequence: TR/TE, 
7.6/3.7 ms; �ip angle, 10°; FOV, 24 mm; matrix, 512 × 512; and slice thickness, 1.2 mm with no gap. DW image 
parameters were as follows: TR/TE, 3000/46.2–82.2 ms; di�usion gradient encoding, b = 0, 1000 s/mm2; FOV, 
24 cm; matrix, 128 × 128; and slice thickness/gap, 5/2 mm. �e detailed parameters for imaging data are given in 
Table 1.

Preprocessing of MR imaging data. Signal intensity normalization was applied for CE-T1W images 
using the ANTsR32 and WhiteStripe packages33,34 in R version 3.3.3 (R Core Team, Vienna, Austria). For DW 
images, the ADC map was calculated using a two-point estimate of signal decay. ADC outliers ± 3 standard devi-
ations from the mean were removed. �en, CE-T1W and ADC images were co-registered using SPM so�ware 
(www.�l.ion.ucl.ac.uk/spm/), using a�ne transformation with normalized mutual information as a cost func-
tion35, with 12 degrees of freedom and tri-linear interpolation. CE-T1W and ADC images were resampled into a 
uniform voxel size of 1 × 1 × 1 mm as the input data. �ese images became an input for metric 3 and 4.

Tumor segmentation and radiomic feature extraction. 3D regions-of-interest (ROIs) for 
contrast-enhanced portions were semi-automatically identi�ed by a neuroradiologist (J.Y.K., with 2 years of 
experience) on CE-T1W images using a segmentation threshold and a region-growing algorithm in the Medical 
Imaging Interaction Toolkit (MITK) software platform (www.mitk.org, German Cancer Research Center, 
Heidelberg, Germany)32. An experienced neuroradiologist (H.S.K., with 18 years of experience) manually edited 
the ROIs.

From the segmented mask, 936 total radiomic features were extracted using Matlab R2015a (MathWorks 
Inc., Natick, MA). �e features included 17 �rst-order features, 87 texture features, and 832 wavelet features. 
�e �rst-order features were derived from the intensity histograms using �rst-order statistics, including inten-
sity range, energy, entropy, kurtosis, maximum, mean, median, uniformity, and variance. Texture features were 
obtained from a gray-level co-occurrence matrix (GLCM) and a gray-level run-length matrix (GLRLM)36 
using the segmented mask in 13 directions of a 3D space. For GLCM analyses, texture features were computed 
for varying distances of 1, 2, and 3 voxels in 13 directions. �en, wavelet transformation was applied with a 
single-level directional discrete wavelet transformation of a high-pass and a low-pass �lter37. In total, eight 
wavelet-decomposition images were generated from each MRI sequence input: LLL, HLL, LHL, HHL, LLH, HLH, 
LHH, HHH images, where ‘L’ means ‘low-pass �lter’ and ‘H’ means ‘high-pass �lter’. �e �rst-order features 
and texture features were then applied to the wavelet-transformed images (17 �rst-order features +87 texture 
features) multiplied by 8 images, yielding 832 wavelet features. All radiomic features were z transformed before 
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applying classi�cation metrics. �e details of the radiomic feature extraction are described in the Supplementary 
Materials. �e radiomic features become inputs for metrics 1 and 2.

Classification metrics. Four di�erent classi�cation metrics were applied using radiomic features or pre-
processed MRI data. Metrics 1 and 2 used radiomic features, and feature selection and classi�cation were opti-
mized with SVM, GLM, or random forest (metric 1) or multilayer perceptron (MLP) network (metric 2). Metrics 
3 and 4 used preprocessed MR images, and classi�cation was performed by human readers (metric 3) or an 
end-to-end CNN (metric 4).

Metric 1. As many extracted features may be noise, or highly correlated with each other, feature reduction or 
selection is required to increase the prediction accuracy and minimize computational costs38. Supervised learning 
algorithms were implemented for feature selection and classi�cation methods using R. �ree feature selection 
methods were used in the analysis: minimum redundancy maximum relevance (mRMR), correlation-based fea-
ture selection (CFS), and backward elimination. �ree di�erent classi�ers were used: radial-basis support vector 
machine39, the boosted generalized linear mixed model40, and the regularized random forest (Supplementary 
Materials). �e algorithms were selected based on their high performance and readiness for application9,41. Using 
three feature selection methods and three classi�ers, nine di�erent models were computed and compared to 
determine the best combination for diagnosing PCNSL from glioblastoma in the training set. �e models were 
developed separately for each of the CE-T1W and ADC images as well as for the combined CE-T1W and ADC 
images. Classi�ers were trained using 10-repeat iterations and 10-fold cross-validations of the training set, which 
allows repetition of experiments for each model up to 100 times. �e classi�cation performance was evaluated in 
training set as well as in both validation sets.

Metric 2. A MLP network allows for modeling of high-level abstractions from data and automatic discov-
ery of features. In total, four MLP networks were constructed including 100-10, 500-100-10, 500-100-50-10, 
and 500-250-100-50-20. Before training the constructed MLP networks, all datasets were standardized to make 
training faster and minimize the probability of getting stuck in local optima. All four MLP networks were trained 
by minimizing training error (namely, the cross-entropy error between the inferred label and the true label) by 
stochastic gradient descent (SGD), and the hyper-parameters were batch size 32, momentum 0.25, and learning 
rate 10−3 without weight decay. Since glioblastoma had a higher number of data points than PCNSL and this class 
imbalance can have a signi�cant detrimental e�ect on both convergence during the training phase and gener-
alization of a model on the test set, we added class weights (1.467 for PCNSL) to the loss function. Accuracies 
(including sensitivities and speci�cities) were evaluated by ensembles of the 10 trained models that were obtained 
during the 10-fold cross-validation of training sets. Instead of selecting a single classi�er, ensemble learning 
methods train several baseline models and use some rules to combine them to make better decisions21–23. As base-
line models, we selected 10 trained models obtained via 10-fold cross-validation, and then combined them with 
majority voting. Further, to measure activation functions and optimization methods of MLP in classi�cation, a 
simple logistic regression is applied for comparing the classi�cation performance between the validation sets. �e 
cross-validation methods were applied in a manner similar to that applied in the MLP network.

Metric 3. Two radiologists (one was a senior with 2 years of subspecialty training in neuroradiology and 
the other was a one-fourth year resident) were recruited to test human performance. MR image sets including 
CE-T1W and DW images and ADC maps were allocated to a separate workstation a�er data anonymization and 
randomization. �ese image sets were provided to include essential sequences and make proper comparisons 
with other metrics. �e three aforementioned image sets were presented at the same time, and the readers were 
assigned all data sets at once to prevent learning e�ect and recall bias. Validation data sets (for 30 internal and 
42 external validation sets, respectively) were assigned in a �exible session for 1 week, and readers were asked to 
rate their level of con�dence in their diagnoses using one of the following labels: “de�nitely PCNSL,” “probably 
PCNSL,” “probably glioblastoma,” or “de�nitely glioblastoma.”

Metric 4. We employed CNN with an end-to-end approach that integrates an automatic feature extraction 
and a discriminative classi�er into one model. To overcome the small number of data points, we employed 
Inception-v3 of a 2-dimensional (2D) image-based CNN and built bigger datasets by converting 3D MR images to 
2D images. �e training set of 123 MR image sets (50 PCNSLs and 73 glioblastomas) was converted to 4,714 slices 
(1,674 PCNSL slices and 3,040 glioblastomas slices). In addition, transfer learning was used, and a pre-trained 
Inception-v3 model was �ne-tuned to perform classi�cation of our MR images, thereby improving the training 
speed and quality. �e Inception-v3 model was pre-trained on the ImageNet (http://www.image-net.org/) dataset 
comprising 1.2 million color images organized into 1,000 categories. We converted the selected 2D image slices 
into color images and resized them to Inception-v3 input size (299 × 299 mm). For combining CE-T1W images 
and ADC maps together, we encoded the CE-T1W images for the red and green channels and ADC map for the 
blue channel. Because our trained CNN assumed that the tumor regions were segmented, internal and external 
validations were also performed with the slices overlapping with tumors. Slices for each patient were classi�ed by 
our trained CNN, and then the �nal decision was performed by majority voting. In the same manner of the neural 
net algorithm (metric 2), the accuracy of this end-to-end approach was evaluated by the ensembles of 10 trained 
models, which were obtained via 10-fold cross-validation of the training sets. Given the training dataset, metric 
4 was learned by minimizing the training error (namely, the cross-entropy error) between the inferred label and 
the true label by SGD. �e hyper-parameters were batch size 32, class weight 1:1.791 between glioblastoma and 
PCNSL, and learning rate 10−4 without weight decay. Each baseline model for the ensembles was trained until 
600 epochs, and then the optimal models were selected with the best performance on the validation sets. From 
the trained CNN, 1024 deep features of the last fully connected layer were extracted.
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Assessment of the impact of CNN-based deep features on the radiomic features. In post-hoc 
analysis, the impact of the deep features to the radiomic features was assessed to observe the impact of raw MRI 
images as imaging features. �e 1024 deep features were extracted from the last fully connected layer of CNN and 
they concatenated with radiomic features. Random forest was used as the classi�er, and the diagnostic perfor-
mance of a model using radiomic features alone was compared with that of combined radiomics and CNN-based 
deep features applied with random forest classi�er. Since the radiomics features and CNN-based deep features 
were extracted from the di�erent dimensionality (3D-based radiomics features vs. 2D-CNN-based deep features), 
two-type features were combined based on lower dimension (2D slice), and diagnostic performances were eval-
uated by per-patient decision. Grid search was performed to �nd optimal hyperparameters for random forest 
classi�er using sklearn in Python (using GridSearchCV library).

Statistical analysis. Di�erences in patients between training and internal validation set and between train-
ing and external validation set were evaluated using independent samples t-tests and Chi-square test. From a total 
of 195 MR image sets, 123 sets were trained for distinguishing PCNSL from glioblastoma for metrics 1, 2, and 4; 
the performance of each metric was evaluated using 30 MR image sets in the internal validation and 42 sets in the 
external validation. Each metric was developed and trained in the training set and its diagnostic performance was 
tested in both the internal and external validation sets. AUCs were used to determine diagnostic performance, 
with optimal thresholds of the imaging parameters determined by maximizing the sum of the sensitivity and (1 − 
speci�city) (the Youden index) values that were calculated to di�erentiate between the two entities. Two-by-two 
contingency tables were created to determine accuracy, sensitivity, and speci�city.

In metrics 1 and 2, we further calculated the stability of the subsampled cohort in the training set (size n/10) 
using relative standard deviation (RSD)41. RSD was de�ned as a percentage as per the following mathematical for-
mula: (standard deviation of AUC/mean of AUC) × 100. RSD was used to determine the robustness and accuracy 
of a model. P values of < 0.05 were considered statistically signi�cant.

Data Availability
�e datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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