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Abstract

Background: To evaluate the diagnostic performance of radiomic signatures extracted from contrast-enhanced

magnetic resonance imaging (CE-MRI) for the assessment of breast cancer receptor status and molecular subtypes.

Methods: One hundred and forty-three patients with biopsy-proven breast cancer who underwent CE-MRI at 3 T

were included in this IRB-approved HIPAA-compliant retrospective study. The training dataset comprised 91 patients

(luminal A, n = 49; luminal B, n = 8; HER2-enriched, n = 11; triple negative, n = 23), while the validation dataset

comprised 52 patients from a second institution (luminal A, n = 17; luminal B, n = 17; triple negative, n = 18). Radiomic

analysis of manually segmented tumors included calculation of features derived from the first-order histogram (HIS),

co-occurrence matrix (COM), run-length matrix (RLM), absolute gradient (GRA), autoregressive model (ARM), discrete

Haar wavelet transform (WAV), and lesion geometry (GEO). Fisher, probability of error and average correlation (POE +

ACC), and mutual information coefficients were used for feature selection. Linear discriminant analysis followed by k-

nearest neighbor classification (with leave-one-out cross-validation) was used for pairwise radiomic-based separation of

receptor status and molecular subtypes. Histopathology served as the standard of reference.

Results: In the training dataset, radiomic signatures yielded the following accuracies > 80%: luminal B vs. luminal A,

84.2% (mainly based on COM features); luminal B vs. triple negative, 83.9% (mainly based on GEO features); luminal B

vs. all others, 89% (mainly based on COM features); and HER2-enriched vs. all others, 81.3% (mainly based on COM

features). Radiomic signatures were successfully validated in the separate validation dataset for luminal A vs. luminal B

(79.4%) and luminal B vs. triple negative (77.1%).

Conclusions: In this preliminary study, radiomic signatures with CE-MRI enable the assessment of breast cancer receptor

status and molecular subtypes with high diagnostic accuracy. These results need to be confirmed in future larger studies.
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Background
Breast cancer is a heterogeneous disease with varying clin-

ical presentations, subtypes, and treatment responses [1–

7]. Although traditional prognostic and predictive factors

such as tumor size, grade, histopathologic type, and im-

munohistochemical receptor status are well established, it

has become evident that these traditional classifications

cannot fully capture the heterogeneity of breast cancer so

that the classical approach of stratifying patients into

treatment groups based on phenotypic biomarkers may be

insufficient in some patients. In this era of precision medi-

cine, treatments are selected based on genetic tumor char-

acteristics. In breast cancer, gene expression profiling has

revealed four main intrinsic molecular subtypes that show

pervasive differences in their gene expression patterns:

luminal A, luminal B, human epidermal growth factor

receptor 2 (HER2)-enriched, and triple negative [8–10].

These intrinsic molecular subtypes have different pheno-

typic presentations, prognosis, treatment responses, and

recurrence-free and disease-specific survival leading to

molecular subtype-based recommendations for systemic

therapy [1–3, 11, 12].

Assessment of molecular subtypes is currently based on

either gene expression profiling or immunohistochemical

(IHC) surrogates from invasive tissue sampling [10, 13,

14]. It must be noted that this approach has limitations. A

single biopsy of a potentially heterogenous tumor can cap-

ture only a snapshot of the tumor tissue that is subject to

selection bias and may not be completely representative of

the genetic, epigenetic, and/or phenotypic alterations of

the entire tumor. In addition, cancer biology is subject to

change over time as well with treatment from a stem-like,

therapy-resistant and a differentiated drug-sensitive

phenotype in a process linked to epithelial-mesenchymal

transition [15]. Therefore, there is a strong argument for

the development of alternative means to derive tumor

characteristics that are prognostic indicators, i.e., receptor

status and molecular subtypes, from the tumor in its entir-

ety and to spatio-longitudinal monitor tumor biology

changes during treatment. This is a unique opportunity

for medical imaging, and in this context, contrast-en-

hanced magnetic resonance imaging (CE-MRI) coupled

with radiomic analyses has yielded initial encouraging re-

sults. Prior studies have investigated radiomic signatures

in the breast, but the generalization of these results is

limited due to utilization of different MRI protocols and

scanners [11, 16–18], results may be suboptimal due to

inclusion of only a few radiomic features [11, 17–20], and

only certain subgroups of breast cancers have been inves-

tigated [21].

We hypothesized that through the extraction of radio-

mic signatures from standardized CE-MRI data, an accur-

ate assessment of molecular subtypes and receptor status

of breast cancers will be provided. Thus, the aim of our

study was to evaluate the diagnostic performance of CE-

MRI coupled with radiomic analysis for the differentiation

of breast cancers of different receptor status and molecu-

lar subtype.

Methods

This retrospective study was compliant with Health In-

surance Portability and Accountability Act guidelines

and approved by the Institutional Review Board with a

waiver of written informed consent.

Patients

A prospectively populated research database was searched

for patients who underwent state-of-the-art multipara-

metric MRI of the breast at our institution between

January 2011 and January 2013 and who fulfilled the

following inclusion criteria: histopathologically verified

breast cancer, lesions ≥ 1 cm on CE-MRI to reduce the

influence of partial volume effect on texture analysis

[22]; 18 years or older; not pregnant; and not breast-

feeding. One hundred and seventeen consecutive patients

matched our search criteria. These patients underwent

MRI for pre-treatment staging of their biopsy-proven

breast cancer. Twenty-six were excluded for pathology

results demonstrating types of cancer other than invasive

ductal carcinoma or invasive lobular carcinoma, prior

treatment, and poor image quality. Thus, 91 patients were

included in the study.

MR imaging

All patients were examined with a 3 T system (Discovery

MR750; GE Healthcare, Milwaukee, WI) with the body

coil as the transmitter and a dedicated phased-array breast

coil as the receiver. All patients underwent a state-of-the-

art MRI protocol [23] including T2-weighted imaging, dif-

fusion-weighted imaging, and CE-MRI. CE-MRI data was

used for radiomic analysis.

CE-MRI (3D T1-weighted gradient echo VIBRANT

sequence; TR/TE 4.3/2.1 ms; flip angle 10o; matrix size

320 × 192; FOV 30 cm; voxel size 1.8–2 mm3) with and

without fat suppression. CE-MRI images were acquired

before and at three points at 60-s intervals after the

injection of a standard dose (0.1 mmol/kg body weight)

of gadopentetate dimeglumine (Magnevist; Bayer Health-

Care, Hanover, NJ, USA). Additional axial CE-MRI images

(voxel size 0.7 mm3, acquisition time 1.5min) were also

collected. Contrast agent was injected in an antecubital

vein as a bolus using a power injector at 4m/s, followed

by a saline flush. Parallel imaging using the array spatial

sensitivity encoding technique (ASSET) was applied

during the acquisition of DW and CE-MR images. The

details of the full MRI sequence protocol are provided

in Additional file 1.
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Radiomic analysis

For radiomic analysis, the first post-contrast T1-weighted

sequence was used. T1 was chosen over T2 and T3 for

radiomic analysis, as at this time point, malignant lesions

show peak enhancement, and tumor heterogeneity/subtle

lesion morphologic features are best discernable on visual

assessment. A semi-automatic approach for feature extrac-

tion was chosen, using the publicly available software pack-

age MaZda 4.6 (http://www.eletel.p.lodz.pl/programy/

mazda/), which was developed within the COST (European

Cooperation in The Field of Scientific and Technical

Research) projects B11 and B21. In all patients, the slice

with the largest transaxial lesion diameter on CE-MRI

was chosen and two radiologists with 13 and 4 years of

experience in consensus drew a single two-dimensional

region of interest around the whole tumor (Fig. 1).

Adequate distance was kept from the surrounding anatomic

structures and biopsy markers. Gray-level normalization of

each region of interest was performed, limiting the dynam-

ics to μ ± 3σ (μ, gray-level mean; σ, gray-level standard devi-

ation) in order to reduce the influence of contrast and

brightness variations which might otherwise affect radiomic

feature quantification [24]. Radiomic analysis of the manu-

ally segmented lesions included calculation of features

derived from first-order histogram (HIS), co-occurrence

matrix (COM), run-length matrix (RLM), absolute gradient

(GRA), autoregressive model (ARM), discrete Haar wavelet

transform (WAV), and lesion geometry (GEO) (Fig. 2) [25–

27]. All features that MaZda was capable of calculating

were included. The numbers of calculated features per

feature class are as follows: HIS, n = 9; COM, n = 220;

RLM, n = 20; GRA, n = 5; ARM, n = 5; WAV, n = 20; GEO,

n = 73 (total number of features per lesion, n = 352). The

full list of radiomic features used in this study (including

their abbreviations) can be accessed at http://www.eletel.p.

lodz.pl/programy/mazda/download/FeaturerList.pdf. For in-

stance, COM features are based on pairs of pixels/voxels

and, hence, provide information on lesion heterogeneity.

RLM parameters are calculated for four directions and rep-

resent the number of times there is a run of pixels having a

certain gray level. Meanwhile, ARM is based on a local

interaction between pixels, where the intensity of one pixel

is assumed to be a weighted sum of neighboring intensities.

In contrast to all other feature groups, HIS features repre-

sent statistical descriptors of lesion signal intensities. The

total time for image post-processing including lesion seg-

mentation and radiomic analysis was approximately 2–3

min per lesion.

Statistical analysis

Feature selection is a method to reduce the large number

of features obtained to the most relevant parameter set and

is based on the choice of certain features according to

given mathematical criteria. In this study, Fisher (ratio of

between-class to within-class variance), minimization of

probability of classification error and average correlation

(POE +ACC), and mutual information coefficients were

used for feature selection. Fisher did not take correlation

between features into account, while the other two selec-

tion methods—POE +ACC and mutual information coeffi-

cients—however, did consider the interrelationships

between features and aimed at reducing data redundancy.

Feature selection was performed once across the entire

training set, prior to linear discriminant analysis (LDA)

and cross-validation. LDA was performed separately for

each comparison to reduce the number of features used to

distinguish between two subtypes/receptor status. LDA

followed by k-nearest neighbor classification (with leave-

one-out cross-validation) was used for pairwise radiomic-

based separation of subtypes/receptor status, i.e., the model

was trained with the use of all patients (n) − 1, excluding

information from the held-out patient, and tested on the

remaining patient. The training-testing process was then

repeated n times, with n depending on the number of sam-

ples included in each comparison (e.g., luminal A vs.

luminal B). LDA produces new feature vectors, which are

Fig. 1 Manual region of interest placement for radiomic analysis in a 56-year-old patient with a HER2-enriched invasive ductal carcinoma in the right breast
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called “most discriminating features” (MDF) and are opti-

mized for maximum between-class scatter and minimum

within-class scatter [28]. For a given dataset, the number of

retained MDFs is equal to the number of eigenvalues

exceeding 97% of the sum of all of them. The relevant

equations can be accessed in the MaZda documentation

on page 58, which can be accessed at http://www.eletel.p.lodz.

pl/programy/mazda/download/mazda_manual.pdf. Since LDA

is prone to overfitting due to “data piling,” where the feature

space is large relative to the number of samples (URL: https://

www.optimization-online.org/DB_FILE/2002/07/513.pdf), the

number of features for each pairwise classification was

dependent on the number of samples: we used one feature

for every ten samples. This strategy—feature selection

followed by feature reduction—was used to reduce the

dimensionality of texture feature information as much as

possible, as previously recommended [27]. The k-nearest

neighbor classifier assigns a point in data space to a class

to which its k-nearest neighbors belong [29]. Based on the

MDF, the k-nearest neighbor classifier is used to measure

the percentage of misclassified data vectors by comparing

them with the true class affiliations.

For visualization of radiomic differences between breast

lesions with different receptor status, feature maps were

constructed which represent the distributions of single

radiomic features within each image [27]. These feature

maps were used solely for illustrative purposes.

External validation cohort

To validate part of our results, some of the experiments

were repeated using data from a second institution (ap-

proved by the local Institutional Review Board with a

waiver of written informed consent). A research database

was searched for patients who underwent state-of-the-

art multiparametric MRI of the breast between January

and September 2014 and who met the same inclusion

criteria as described above. Fifty-two patients were in-

cluded in the validation cohort. MR imaging parameters

used for the validation cohort have been described previ-

ously [30]. Lesions were segmented using MaZda, and

the same feature sets as selected before were applied to

differentiate between molecular subtypes/receptor status.

For validation, only those pairwise comparisons that

yielded an accuracy of at least 80% were chosen.

Histopathology

The tumor sampling results were reviewed for tumor hist-

ology, tumor and nuclear grade, and IHC status. A central

review by reference pathologists for breast cancer is the

standard in our institution. Evaluation of the IHC status

included estrogen receptor, progesterone receptor, and

HER2. Estrogen receptor or progesterone receptor-posi-

tive tumors (> 1% staining) were classified as hormone

receptor positive. In all patients, the final histolopathologi-

cal analysis from surgical tumor specimen was used as the

Fig. 2 Original CE-MRI images and corresponding color-coded sum entropy feature map as overlay of the tumor area of triple-negative (TN) and

HER2-enriched (HER2) breast cancer. TN shows a clearly lower sum entropy than HER2
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reference standard. Tumor subtypes were classified as

luminal A for hormone receptor positive and HER2 nega-

tive, luminal B for hormone receptor positive and HER2

positive, HER2-enriched for hormone receptor negative

and HER2 positive, and triple negative for hormone recep-

tor and HER2 negative [1, 11, 31]. Patients with equivocal

HER2 status were evaluated using fluorescence in situ

hybridization to detect gene amplification.

Results
Mean lesion size of the 91 treatment-naïve, biopsy-

proven breast cancers in 91 patients (mean age, 48 ± 9.7

years, range, 27–68 years) was 3.5 ± 2.3 cm (range, 1–

16.6 cm). There were 70 mass lesions and 21 non-mass

enhancing lesions. Hormone receptor positivity was ob-

served in 57 patients (62.6%). Forty-nine breast cancers

were luminal A (53.8%), eight were luminal B (8.8%), 11

were HER2-enriched (12.1%), and 23 were triple negative

(25.3%).

Results of group-wise radiomic-based classifications

including numbers of features are listed in Tables 1 and 2.

Detailed results of all radiomic feature-based cancer classi-

fications including all selection algorithms and respective

MDFs are given in Additional file 1: Table S1. With the

exception of HER2-enriched vs. luminal A (MDF = 2), the

previously selected texture features were reduced to a

single MDF. Selected feature sets for classifications with

accuracies > 80% are given in Table 3, while feature sets

for all pairwise classifications and selection algorithms are

provided in Additional file 2: Table S2. Classification

accuracies ≥ 80% were considered as clinically relevant

and were achieved for molecular subtypes and receptor

status as listed below.

Molecular breast cancer subtypes

Best results in terms of accuracies were achieved for the

differentiation of luminal B cancers from other groups:

luminal B vs. luminal A, 84.2% (mainly based on COM

features selected by mutual information coefficients); lu-

minal B vs. triple negative, 83.9% (mainly based on GEO

features selected by Fisher coefficients); and luminal B

vs. all others, 89% (mainly based on COM features se-

lected by POE + ACC). In summary, luminal B cancers

seemed to carry distinct radiomic signatures that enable

their separation from breast cancers with other features

(Tables 1 and 3).

The separation of HER2-enriched cancers was success-

ful, with the following accuracy: HER2-enriched vs. all

others, 81.3% (mainly based on COM features selected

by mutual information coefficients) (Tables 1 and 3). In

summary, HER2-enriched cancers showed radiomic sig-

natures that enable their separation from other breast

cancers.

Receptor status

With regard to cancer hormone receptor status, pairwise

discrimination of hormone receptor-positive tumors

from other groups yielded accuracies that were below

80% (see Table 2).

External validation cohort

Of the 52 treatment-naïve, biopsy-proven breast cancers

included from a second institution to validate our results,

17 were luminal A, 17 luminal B, and 18 triple negative.

This allowed us to repeat some of the experiments that

had yielded satisfactory results with accuracies above 80%

when using our own data. Validation of these feature sets

provided satisfactory results, with accuracies of 79.4% for

luminal A vs. luminal B (original training dataset, 82.5%)

and 77.1% for luminal B vs. triple negative (training data-

set, 83.9%). Detailed results for group-wise classifications

using the validation dataset can be found in Table 4, while

rates of misclassified cases for pairwise comparisons

(training and validation dataset) are displayed in Table 5.

Discussion

In this study, we evaluated the diagnostic performance of

CE-MRI coupled with radiomic analysis for the non-inva-

sive differentiation of breast cancers with different

receptor status and molecular subtypes. We hypothesized

Table 1 Results of group-wise radiomic feature-based cancer classifications for molecular breast cancer subtypes (training dataset)

Luminal A Luminal B HER2-enriched TN All others

Luminal A – 84.2%

(MI; 6)
76.7%
(POE; 6)

69.4%
(POE; 7)

60.4%
(MI; 9)

Luminal B 84.2%

(MI; 6)
– 73.7%

(Fisher; 2)
83.9%

(Fisher; 3)
89%

(POE; 9)

HER2-enriched 76.7%
(POE; 6)

73.7%
(Fisher; 2)

– 73.5%
(POE; 3)

81.3%

(MI; 9)

TN 69.4%
(POE; 7)

83.9%

(Fisher; 3)
73.5%
(POE; 3)

– 73.6%
(MI; 9)

All others 60.4%
(MI; 9)

89%

(POE; 9)
81.3%

(MI; 9)
73.6%
(MI; 9)

–

HER2 human epidermal growth factor receptor 2, MI mutual information, POE probability of error and average correlation, TN triple negative. The feature selection

algorithm and number of features used for classification are given in parentheses
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that microstructural differences between breast cancers of

different receptor status, and hence molecular subtypes,

would lead to different, larger-scale gray-level patterns in

CE-MR images which can be assessed quantitatively by

radiomic analysis. Our results demonstrate that radiomic

features derived from CE-MRI data enable the determin-

ation of receptor status and molecular subtypes with a high

accuracy. CE-MRI radiomic signatures may therefore pro-

vide valuable prognostic indicators based on the entire

tumor and thus may be used to monitor spatio-longitu-

dinal tumor biology changes during treatment.

In our study, the best results were achieved for the dif-

ferentiation of luminal A vs. luminal B (accuracy 84.2%),

luminal B vs. triple negative (83.9%), luminal B vs. all

others (89%), and HER2-enriched vs. all other cancers

(81.3%). In these four pairwise comparisons, especially

COM and GEO features seemed to be of importance,

which highlight the relevance of structural heterogeneity

on the one hand and lesion shape on the other hand.

External validation of part of our results yielded satisfac-

tory results for the differentiation of luminal A vs. luminal

B (79.4%) and luminal B vs. triple negative (77.1%). Our

results indicate that, since tumor biology may change in

course of treatment, radiomic features may possibly be

able to capture these changes noninvasively, provided that

our results are verified in future studies that use larger

datasets and a prospective design.

Li et al. achieved excellent results for radiomic-based

separation between estrogen receptor-positive and estro-

gen receptor-negative cancers with an area under the

curve of 0.89 [17]. Given the fact that in clinical decision-

making, a distinction of positivity of estrogen receptor and

progesterone receptor is not relevant, we considered

either estrogen receptor or progesterone receptor positiv-

ity as hormone receptor positive and did not analyze these

receptors separately. In our study, in contrast to the differ-

entiation of luminal A/B cancers, the differentiation of

hormone receptor-positive and hormone receptor-nega-

tive cancers had limited success with an accuracy of

68.1%. However, we showed excellent results for the

differentiation of luminal B vs. all other subtypes (89%)

and luminal A vs. B cancers (84.2%). In addition to being

hormone receptor positive, luminal B cancers are also

characterized by other biologic features such as higher

Table 2 Results of group-wise radiomic feature-based cancer classifications for hormone receptor status (training dataset)

HR positive HER2 positive HR negative HER2 negative Her2-enriched TN All others

HR positive – – 67%
(POE; 9)

– 79.4% (Fisher; 7) 71.3%
(Fisher; 8)

67%
(POE; 9)

HER2 positive – – – 73.6%
(Fisher; 9)

– 59.5%
(Fisher; 4)

73.6%
(Fisher; 9)

HR negative 67%
(POE; 9)

– – – – – 67%
(POE; 9)

HER2 negative – 73.6%
(Fisher; 9)

– – – – 73.6%
(Fisher; 9)

HER2-enriched 79.4%
(Fisher; 7)

– – – – – –

TN 71.3%
(Fisher; 8)

59.5%
(Fisher; 4)

– – – – –

All others 67%
(POE; 9)

73.6%
(Fisher; 9)

67%
(POE; 9)

73.6%
(Fisher; 9)

– – –

HER2 human epidermal growth factor receptor 2, HR hormone receptor, MI mutual information, POE probability of error and average correlation, TN triple

negative. The feature selection algorithm and number of features used for classification are given in parentheses

Table 3 Selected feature sets for pairwise classifications with accuracies ≥ 80%

Luminal A vs. luminal B
(MI)

Luminal B vs. TN
(Fisher)

Luminal B vs. all others
(POE)

HER2-enriched vs. all others
(MI)

S(3,3)SumAverg
S(2,2)SumEntrp
S(5,-5)DifEntrp
45dgr_LngREmph
S(2,-2)SumAverg
S(0,1)Contrast

GeoW7
Variance
GeoW9

S(5,5)InvDfMom
Teta1
S(1,1)SumOfSqs
S(1,-1)SumOfSqs
S(2,2)SumAverg
GrKurtosis
Teta4
S(1,0)SumOfSqs
S(4,4)InvDfMom

S(0,1)InvDfMom
S(5,5)SumAverg
S(1,1)Contrast
S(2,-2)Contrast
GeoE12
Vertl_ShrtREmp
S(2,-2)DifEntrp
S(0,2)Entropy
S(4,-4)SumEntrp

HER2 human epidermal growth factor receptor 2, HR hormone receptor, MI mutual information, POE probability of error and average correlation, TN

triple negative
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proliferation rates and/or HER2 positivity, and it seems

that this can be captured through distinctive radiomic fea-

tures. All hormone receptor-positive cancers are treated

with endocrine therapy alone or with chemotherapy, while

luminal B cancers in contrast to luminal A cancers derive

benefit from additional cytotoxic and targeted treatment.

In this context, the ability to identify and non-invasively

spatio-longitudinally monitor these breast cancers during

treatment is particularly relevant.

In this study, we used a combination of multiple radio-

mic features derived from different categories (e.g.,

COM, RLM, and ARM), all of which capture different

aspects of image texture and thus might have contrib-

uted to the excellent results. This approach differs from

the majority of prior MRI radiomic studies in the field of

breast cancer, in which typically very few and often

COM-based radiomic features are calculated [18–20, 32].

Sutton et al. achieved accuracies of up to 89.2% for the dif-

ferentiation of molecular subtypes but used a combination

of pathology-derived features and COM radiomic features

[32]. In this study, we intentionally chose to rely solely on

radiomic features from CE-MRI and to dispense with

features derived from invasive tissue sampling. Holli-Hele-

nius aimed to differentiate between luminal A and B sub-

types in a small collective of 27 patients, using COM

features for radiomic analysis [33]. With areas under the

curve of 0.83–0.88, these results were very similar to those

in our own study (84.2% accuracy); in accordance to

Holli-Helenius, COM features were of importance for the

differentiation between those two groups. Notably, the re-

sults of Holli-Helenius mainly relied on features extracted

from pre-contrast MR images, which were not included in

our study. Nevertheless, our results generally confirm that

luminal A and B cancers can be differentiated by MRI-

based radiomic features with a high level of confidence.

Wang et al. developed a model to exclusively distin-

guish triple-negative cancer from other subtypes and

achieved an area under the curve of 0.88 using COM

features extracted from both the tumor and healthy

breast parenchyma [21]. These results agree with our

findings where we demonstrated a differentiation of

triple negative from luminal B with an accuracy of 83.9%

when employing radiomic features from the tumor itself

but not from the healthy breast tissue. The good differ-

entiation between triple-negative and luminal B cancers

may be explained by the fact that the geometric features

(Table 3) used for this task capture the typically round/

circumscribed shape of triple negative and the irregular/

spiculated shape of luminal B cancers. In addition, Fan

et al. aimed to develop a model to distinguish between

Table 4 Results of group-wise radiomic feature-based cancer classifications (validation dataset)

Luminal A Luminal B TN All others

Luminal A – F, 79.4% (training, 82.5%)
MI, 52.9% (training, 84.2%)

– –

Luminal B F, 79.4% (training, 82.5%)
MI, 52.9% (training, 84.2%)

– F, 77.1% (training, 83.9%) F, 57.7% (training, 84.6%)
POE, 51.9% (training, 89%)
MI, 75% (training, 85.7%)

TN – F, 77.1% (training, 83.9%) – –

All others – F, 57.7% (training, 84.6%)
POE, 51.9% (training, 89%)
MI, 75% (training, 85.7%)

– –

F Fisher, MI mutual information, POE probability of error and average correlation, TN triple negative

Table 5 Rates of misclassified cases for pairwise comparisons (training and validation dataset)

Luminal A (n = 66) Luminal B (n = 25) TN (n = 41) All others (n = 118)

Luminal A (n = 66) – Lum A vs. B:
F, 9/8 (13.6/30.8%)
MI, 12/13 (18.2/52%)

– –

Luminal B (n = 25) Lum A vs. B:
F, 9/8 (13.6/30.8%)
MI, 12/13 (18.2/52%)

– Lum B vs. TN:
F, 8/8 (32/19.5%)

Lum B vs. others:
F, 17/19 (68/16.1%)
POE, 17/18 (68/15.3%)
MI, 12/14 (48/11.9%)

TN (n = 41) – Lum B vs. TN:
F, 8/8 (32/19.5%)

– –

All others (n = 118) – Lum B vs. others:
F, 17/19 (68/16.1%)
POE, 17/18 (68/15.3%)
MI, 12/14 (48/11.9%)

– –

F Fisher, MI mutual information, POE probability of error and average correlation, TN triple negative
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molecular breast cancer subtypes based on CE-MRI data

of the tumor and healthy breast parenchyma [19]. They

used COM and GEO radiomic features, dynamic enhance-

ment features, and clinical parameters and achieved good

to excellent discrimination of luminal A, luminal B,

HER2-enriched, and triple-negative cancers from all other

tumors. Subtype discrimination in this study was partially

less successful than our study (e.g., for luminal B cancers)

even though we did not incorporate clinical parameters,

and in part more successful (e.g., for triple-negative can-

cers). While it must be noted that Fan et al. used a train-

ing and a validation dataset—a strategy which, especially

in combination with artificial neural networks, is prefera-

ble when datasets are sufficiently large—they did not use

the same set of radiomic features in the two datasets; thus,

no true validation of their model was performed.

External validation of part of our results yielded satisfac-

tory results for the differentiation of luminal A vs. luminal

B (79.4%) and luminal B vs. triple negative (77.1%). These

results might be attributed to the feature sets produced by

Fisher coefficients in these two comparisons, because they

contained only GEO features for luminal A vs. luminal B

and two GEO features and one HIS feature for luminal B

vs. triple negative (see Additional file 2: Table S2). Unlike

texture features, GEO and HIS feature should not be sen-

sitive to MR image acquisition parameters. As expected,

due to technical differences (TR/TE, scanner model and

vendor, etc.) between training and validation datasets,

some of the other results were poor, indicating a partial

lack of generalizability to a wider clinical setting. Notably,

some were instances where class imbalance led to seem-

ingly good results despite a lack of separability, for in-

stance the differentiation of luminal B vs. all others (75%).

In contrast to prior CE-MRI radiomic studies that used

heterogeneous image datasets in terms of acquisition

parameters [11, 16–18], the MRI protocol in this study

was homogeneous, which might have contributed to the

excellent results. Grimm et al. evaluated associations of

molecular breast cancer subtypes with imaging character-

istics that included morphologic, radiomic, and dynamic

enhancement features using a semi-automatic approach

for lesion segmentation (i.e., a fuzzy C-Means clustering

algorithm [16]. They found that enhancement characteris-

tics and morphological features were superior to radiomic

features. However, in their study, there was a high level of

heterogeneity in terms of scanning equipment and pulse

sequence protocols. In particular, matrix size, which,

through its association with spatial resolution (and thus,

pixel/voxel size), has been shown to have a major impact

on feature calculations [34] and thus could be responsible

for the divergent results. Similar MRI acquisition protocol

heterogeneities may also have contributed to the disap-

pointing performance of radiomic features in the study by

Mazurowski et al. that investigated associations of

molecular subtypes and semi-automatically extracted CE-

MRI data, including COM and GEO features [11]. In con-

trast to prior publications that investigated molecular sub-

typing with radiomic analysis, a novelty and strength of the

present study is our assessment of a wealth of radiomic

features derived from a homogeneous state-of-the-art MRI

protocol. These prior divergent results highlight the neces-

sity for rigorous standardization across institutions, ven-

dors, and platforms to fully explore the potential of MRI

radiomics in breast cancer, especially when sample sizes are

limited. On the other hand, in truly large datasets (“big

data”) in which a sufficiently large number of cases for each

protocol variation is available, protocol heterogeneity could

present an advantage with regard to generalizability.

We acknowledge the limitations of the present study. In

this study, molecular subtypes were derived not from for-

mal genetic testing but from IHC surrogates. It has to be

acknowledged that there is variable agreement between

classifications via these surrogates and formal genetic test-

ing (41–100%). However, in clinical practice, molecular

subtypes and subsequent clinical decision-making are

most often based on IHC surrogates. Like the vast major-

ity of previous radiomic studies, the conclusions that can

be drawn from this study are somewhat limited due to its

retrospective nature and the unequal distribution of mo-

lecular subtypes. Another drawback is (in comparison to

luminal breast cancers) the smaller number of HER2-

enriched and triple-negative cancers in our patient collect-

ive (Fig. 3); however, this reflects the normal distribution

of molecular subtypes of breast cancer in a patient popula-

tion. Due to this limitation, we decided not to divide our

original study population into a training dataset and a

validation dataset. Instead, we used a k-nearest neighbor

classifier with leave-one-out cross-validation, a technique

that does not require two separate datasets and has been

used in numerous studies in the field [22, 35, 36], for all

pairwise comparisons, even though n-fold cross-validation

may have produced better results in the larger samples. It

has to be acknowledged that as each training set used in

leave-one-out cross-validation only differs by one sample,

the models tend to be more highly correlated and less

variability is encountered when training the model. Thus,

there is a possibility of underestimating the error via

leave-one-out cross-validation. As the dataset is relatively

small (especially for some subgroups such as HER2-

enriched and luminal B cancers), there is the possibility

that some of our findings could be the product of overfit-

ting. Nevertheless, we aimed to decrease the risk of over-

fitting by reducing the dimensionality of feature space to

10% of the samples out of the original ten features

provided by MaZda (e.g., five features for 50 samples).

Validation of the promising results of this initial study

with larger patient numbers is currently ongoing. We ac-

knowledge that the mean size of breast cancers included
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in this study was relatively large, which could explain the

high number of triple-negative cancers. However, this

would be the target population for neoadjuvant treatment

where radiomic analysis may be used to monitor spatio-

longitudinal tumor biology changes during treatment and

thereby identify a treatment-resistant phenotype. Unlike

techniques such as 18F-fluoroestradiol positron emis-

sion tomography, which directly visualizes functional

estrogen receptors, radiomics cannot directly capture

receptor density. However, estrogen/progesterone recep-

tor responsiveness “fuels” certain growth patterns, which

may be captured by radiomic signatures. GEO features are

influenced by tumor size to some degree; however, the tex-

ture feature classes that reflect homogeneity/heterogeneity

of the lesions should not be significantly influenced by

tumor size. For instance, COM features are calculated with

a maximum interpixel distance of n = 5; since in-plane

resolution was approximately 1.26mm, feature calculation

would not have been affected in tumors of 1 cm or larger.

We acknowledge that a comparative analysis of images and

corresponding cross-sectional histological stains would be

of special interest. However, a confident co-registration is

challenging, and for tumors treated with neoadjuvant

chemotherapy, treatment-naïve tumor specimens are not

available. Breast cancers were delineated manually and on

the slice with the largest lesion diameter only. The combin-

ation of CE-MRI with diffusion-weighted imaging data

might further improve the results of radiomic analysis, as

different aspects of tumor biology could be captured, i.e.,

heterogeneity in terms of perfusion on the one hand and

diffusivity/cell density on the other hand. In addition, the

integration of radiomic features from healthy breast paren-

chyma might also be of great interest [21].

Conclusion
In conclusion, radiomic signatures with CE-MRI may

enable the assessment of breast cancer receptor status

and molecular subtypes. Our initial results indicate that

CE-MRI radiomic signatures may have the potential to

provide prognostic indicators derived from the tumor

in its entirety; theoretically, this information could be

used to monitor spatio-longitudinal tumor biology

changes during treatment. However, larger prospective

studies and efforts in data and protocol standardization

are warranted to validate these findings before defini-

tive conclusions with regard to the value of CE-MRI

radiomic features for distinguishing between breast

cancer receptor status and molecular subtypes can be

drawn.

Fig. 3 Top: contrast-enhanced fat-saturated T1-weighted image of a 50-year-old patient with a HER2-enriched cancer in the left breast. Bottom:

contrast-enhanced T1-weighted image of a 59-year-old patient with a triple-negative cancer in the right breast. Both lesions are irregularly

shaped and margined, with heterogeneous contrast enhancement and central necrosis. Radiomic signatures derived from contrast-enhanced MRI

(CE-MRI) accurately differentiated HER2-enriched from triple-negative breast cancer with an overall accuracy of 73.5% in our patient collective
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Additional files

Additional file 1: Table S1. Detailed results of group-wise radiomic

feature-based cancer classifications for molecular breast cancer subtypes /

receptor status (training dataset). The number of features used for classification

(one feature per every ten sample) is written above the accuracies. The feature

selection algorithm and number of most discriminating features are given in

parentheses. (DOCX 24 kb)

Additional file 2: Table S2. Selected features sets for all pairwise

classifications (training dataset). Values isn parentheses represent coordinates:

information about direction and interpixel distance for pixel pairs. The full list

of features and their abbreviations can be accessed at http://www.eletel.p.

lodz.pl/programy/mazda/download/FeaturerList.pdf (DOCX 26 kb)

Abbreviations

ARM: Autoregressive model; COM: Co-occurrence matrix; CE-MRI: Dynamic

contrast-enhanced magnetic resonance imaging; GEO: Lesion geometry;

GRA: Absolute gradient; HER2: Human epidermal growth factor receptor 2;

HIS: First-order histogram; IHC: Immunohistochemical; LDA: Linear

discriminant analysis; MDF: Most discriminating feature; POE +

ACC: Probability of error and average correlation; RLM: Run-length matrix;

WAV: Discrete Haar wavelet transform
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