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Abstract

Radiomics utilizes high-dimensional imaging data to discover the association with diagnostic, prognostic, predictive endpoint or

radiogenomics. It is an emerging field of study that potentially depicts the intratumoral heterogeneity from quantitative and

classified high-throughput data. The radiomics approach has an analytic pipeline where the imaging features are extracted,

processed and analyzed. At this point, special data handling is essential because it faces issues of a high-dimensional biomarker

compared to a single biomarker approach. This article describes the potential role of radiomics in oncologic studies, the basic

analytic pipeline and special data handling with high-dimensional data to facilitate the radiomics approach as a tool for person-

alized medicine in oncology.

Keywords Radiomics . High-dimensional . Imaging .Modeling . Neuro-oncology .Magnetic resonance

Introduction

Radiomics is an emerging field of study in which that

quantitative, high-throughput data are extracted, processed

and analyzed to discover the associations with meaningful

information. The meaningful, relevant information is di-

rected to pathologic or genomic data or to various clinical

endpoints. The suffix -omics originally described a collec-

tive characterization and quantification of pools of biologic

information, such as genomics, proteomics or metabolo-

mics. The -omics concept in radiomics readily applies as

radiomics utilizes millions of voxels from multi-section

tomographic or volumetric imaging data from a single pa-

tient, which may comprehensively represent biologic infor-

mation regarding a disease.

This collective data mining in radiomics has two distinctive

benefits compared to the traditional radiologic data mining.

First, a radiomics approach provides semiautomatic or

automatic extraction of radiologic features and can provide

robust information compared to subjective reading by readers

or qualitative analysis. Second, high-dimensional radiomic

data provide insight into intra-regional heterogeneity by iden-

tifying sub-regions and reflecting the spatial complexity of a

disease. Therefore, radiomics is an especially promising tool

for personalized medicine in oncology, which requires a clear

understanding of tumoral heterogeneity in individual patients.

Recent advances in image processing and the availabil-

ity of digital imaging data expand the boundaries of the

radiomic approach beyond a research tool, and currently

a number of studies test the important medical hypothesis

of diagnosis, assessment of prognosis and prediction of

treatment response. In this rapidly developing field of

study, the goal of this article is to introduce the basics of

radiomics workflow and practical considerations in data

analysis to researchers who are about to engage high-

dimensional data mining. Several review papers in this

field are currently available, and each has its own strength

and focus. This review highlights the potential role of the

radiomics approach in oncologic imaging, basic radiomics

workflow, illustrating examples of the promise in neuro-

oncology research, and future consideration as a new im-

aging biomarker in oncology in conjunction with the
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imaging biomarker roadmap for cancer studies. Most of

our examples are from neuro-oncologic articles, although

these are representative of illustrative examples of the

promise in general oncology research.

Radiomics Pipeline

The workflow in the radiomics is summarized in Fig. 1.

Followed by imaging acquisition, pre-processing includ-

ing registration and signal intensity normalization is per-

formed for each imaging datum. Radiomics features are

extracted using low- and high-order statistics by compu-

tational methods. To reduce false positives from high-

dimensional radiomics data, feature selection and dimen-

sion reduction are followed. Choosing a statistical model

for radiomics to find associations with patient data greatly

depends on the outcomes. A binary classification method

will be used if it is a binary endpoint; survival modeling

such as Cox proportional hazards regression will be used

if it is a time-to-event outcome; multiple comparisons will

be used if there are genomic data with multiple outcomes.

This statistical model encompasses considerations of

generalizability that create a model in a given data set as

a training set and needs another data set to test the model,

i.e., a so-called ‘validation’ or ‘test’ set.

Steps in the Radiomics Pipeline and Practical
Considerations

Imaging Acquisition and Preprocessing

Any digitalized imaging data are utilized in radiomics and

include simple radiographs, computed tomography, magnetic

resonance imaging and positron emission tomography (PET).

Although radiomics is regarded as a ‘post-processing’ com-

putational analytic method, it is not. Acquisition of raw data is

as important as other imaging biomarkers because both spatial

resolution (voxel size) and gray-level resolution (contrast) can

affect the calculation of radiomics features, which are deter-

mined by imaging acquisition techniques and parameters.

Previous CTstudies showed that different imaging acquisition

parameters change the radiologic features [1, 2]. Therefore,

standardization of image acquisition is essential to maintain

the integrity of the radiomics analysis. However, in actual

Fig. 1 The radiomics pipeline.

Part I includes image acquisition,

registration and segmentation.

Signal intensity normalization is

conducted for conventional MR

imaging with signal intensity of

arbitrary units. Part II includes

feature extraction. Part III

includes modeling according to

the outcomes, with special

consideration for high-

dimensional data
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clinical practice, acquisitions and scanning protocols vary

among patients and medical institutions.

Preprocessing of imaging data is, therefore, performed

to standardize heterogeneous imaging data before feature

extraction. A solution for heterogeneous ‘spatial resolu-

tion’ is resampling voxels into isotropic pixels or voxels

after co-registration of multi-spectral imaging or different

sequences in the same imaging modality. A solution for

heterogeneous ‘contrast’ is intensity normalization. In

MRI, the two most routinely centered modalities in glio-

ma are fluid-attenuated inversion recovery (FLAIR) and

T1-post contrast enhancement sequences. Signal intensity

normalization was used to reduce variance in the T1-

based signal intensity of the brain. This preserves ranks

among tissues and matches the intensity of tissues without

disturbing the natural balance of tissue intensities [3].

Statistical packages, such as the hybrid white-stripe meth-

od [4] for intensity normalization using the ANTsR and

WhiteStripe packages [3, 5] in R, are readily available for

this method.

Consideration of standardized imaging acquisition and pre-

processing is used for the reproducibility of radiomics fea-

tures. A homogeneous imaging protocol strengthens standard-

ization of imaging, although it degrades the generalizability of

the radiomics features, which will be discussed later in this

article.

Defining the Region of Interest

Segmentation of the region-of-interest (ROI) is often per-

formed semi-automatically, first by computer-aided or

software-based edge detection followed by manual

curation. User-friendly software programs aid this proce-

dure: 3D-Slicer (http://www.slicer.org) [6], (MITK, www.

mitk.org German Cancer Research Center, Heidelberg,

Germany) [4]; etc. Segmentation is probably the most

critical component in radiomics because actual radiomics

features are generated from the segmented ROIs. This is

especially challenging in most tumors, including gliomas,

because they have indistinct margins. Also, as there is no

defined ground truth, consistency (reproducibility) of seg-

mentation becomes an important issue. Although the

semiautomated method is the current state-of-the-art

method in cancer imaging studies, fully automated

methods are consistently sought to improve reproducibil-

ity. Pattern recognition, advanced machine learning or the

deep learning technique explores this distinct research

topic to improve robustness and optimize the segmenta-

tion of tumors.

Radiomic Feature Extraction

Two types of features can be extracted from the segmented

volume, Bsemantic^ and Bagnostic^ features, using the

radiomics approach [7]. Semantic features are well-

known descriptors for the radiologists and include the size,

shape, location, vascularity speculation or necrosis.

Visually Accessible Rembrandt Images (VASARI) features

on MRI (VASARI ResearchProject . ht tps: / /wiki .

cancerimagingarchive.net/display/Public/VASARI+

Research+Project) are representative semantic imaging

descriptors for gliomas and showed relevance in genomic

data [8] and patient survival prediction [9]. On the other

hand, agnostic features are mathematically extracted,

quantitative imaging descriptors. Using computational

methods, morphologic features and low- and high-order

statistics features can be extracted. Table 1 summarizes

the agnostic quantitative radiomic features.

(1) Morphologic features

Rather than semantic feature extraction from individual

readers, shape and physical characteristics can be extracted

mathematically. Commonly used volume and shape features

include the surface area, volume, surface-to-volume ratio,

compactness and sphericity, all of which are used to describe

the 3D geometric properties of a tumor.

(2) Statistical methods

The detailed description of statistical radiomic features

refers to previous literature [7, 10]. Briefly, the first-order

features were derived from the intensity histogram using

first-order statistics including the intensity range, energy,

entropy, kurtosis, maximum, mean, median, uniformity

and variance. A histogram method is a commonly used tool

for imaging parameters displaying the range and frequency

Table 1 Quantitative radiomic features

Methods Simple methods Statistical methods Transformed methods

Type Morphologic features First-order features Second-order features Higher-order, model-based features

Examples Volume Histogram parameters Gray-level matrix Fractal dimensions Wavelet transformation

Shape Minkowski functionals Laplacian transforms
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of pixel values. Histogram parameters of imaging have

been shown to be useful in aiding the differential diagnosis

[11] and for monitoring the treatment response in glioblas-

tomas [12]. Although histogram analysis facilitates the ob-

jective assessment of the entire volume of interest, it has

the limitation that spatial information regarding each voxel

is lost and information related to the relative positions of

the various gray levels is not available.

On the other hand, texture features can retain spatial

information among pixels. Texture can be assessed using

statistical methods, i.e., histogram and gray-level depen-

dence matrices, model-based methods, i.e., fractal models,

or transformed-based methods, i.e., Fourier and the wave-

let transform. Gray-level dependence matrices are the gray

level co-occurrence matrix (GLCM) and the gray level

run length matrix (GLRLM). When using GLCM, various

textural features are extracted, and GLRLM characterizes

coarse textures as having many pixels in a constant gray

level run and fine textures as having few pixels in such a

run. Both GLCM and GLRLM can be constructed from

3D analysis of a volume of interest from matrices. For 3D

data, all 13 directions are considered with 26-voxel con-

nectivity for a given location, after which the varying

distances of 1, 2 and 3 voxels in 13 directions can be

computed.

(3) Transform-based methods

Wavelet transformation can be jointly used together with

the morphologic features and higher-order statistics. It is ap-

plied with a single-level directional discrete wavelet transform

of a high- and low-pass filter [13]. For example, eight wavelet-

decomposition images were generated from each MRI imag-

ing sequence input, i.e., HHH, HHL, HLH, HLL, LHH, LHL,

LLH and LLL images. The above texture features were then

applied to the wavelet-transformed images for texture features

multiplied by eight images and thus yielding high-

dimensional data.

Notably, statistical-based texture analysis has made the

most significant contribution in testing medical hypothe-

ses [14]. A recent pixel-wise correlation study showed the

correlation between texture analyses and histopathology

[15] and the potential of texture analysis in biologic

usage.

Feature Selection and Classifier Modeling Strategies
According to Outcomes

By extracting a large amount of through-put data, radiomic

analysis faces issues of a high-dimensional biomarkers com-

pared to existing single-parameter analysis. Table 2 summa-

rizes the methods of radiomic analysis according to the out-

comes and considerations for high-dimensional data.

(1) For binary outcomes

Because radiomics has highly redundant feature space

[16], it is important to reduce highly correlated features in

the selected feature subset as correlated features can cause

collinearity [17]. The accuracy test and diagnostic perfor-

mance are most commonly used to measure the perfor-

mance of a model for binary outcomes, such as the area

under the curve (AUC) in receiver-operating curve analy-

sis. However, before testing the performance, appropriate

classification methods are required to be used to reduce

the potential risk of over-fitting or false discovery [18].

Various machine learning methods can be used for fea-

ture selection and classification for binary outcomes, and

the best combination of different feature selection and

classification methods can be computed. The combination

depends on the researchers, and usage is based on

Table 2 Feature selection and classifier modeling strategies according to outcomes

Outcome Diagnosis Prognosis/predictive Radiogenomics

Outcome type Binary Time-to-event Single, binary or multiple

Example of study hypothesis ‘Radiomic features distinguish

glioblastoma from primary

central nervous lymphoma’

‘Radiomic features in glioblastoma

have added prognostic value

to clinical data’

‘Radiomic features in glioblastoma

have a significant correlation

with specific genes’

Traditional statistical methods Classification Cox proportional hazard regression False discovery rate

Considerations for

high-dimensional data

Machine-learning- based feature

selection Dimension reduction

Statistical methods: Partial least squares

Cox-regression under lasso penalization

Machine learning:

Random survival forest

Principle component analysis

Machine learning:

Dimension reduction

Permutation test to correct multiple

testing issues for multiple outcomes

Performance measurement Receiver-operating

characteristics curve

C-index

Integrated Brier score

Correlation coefficients
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commonly adopted methods [16, 19, 20]. Figure 2 dem-

onstrates accuracy results for binary outcomes using dif-

ferent combinations of feature-selection methods and clas-

sification methods. The 12 methods for feature selection

were correlation-based and local learning-based clustering

feature selection, eigenvector centrality, feature selection

via concave minimization, generalized Fisher score, infi-

nite feature selection, minimum redundancy maximum

relevance, mutual information, relief, recursive feature

elimination, unsupervised discriminative feature selection

and zero-norm minimization. The classification methods

included adaptive boosting, decision tree, k-nearest neigh-

bor, linear kernel support vector machine, linear discrim-

inant analysis, naïve Bayes classifier, random forest and

radial basis function support vector machine. This shows

that the combination of feature selection and classification

method affects the performance in binary outcomes.

(2) For time-to-event outcomes

The high-dimensionality of radiomics data also poses chal-

lenges in studying the survival data. Univariate analysis using

the Cox-regression model was often initially used to select

features from multivariable data, although it is often not suf-

ficient to deal with high-dimensional data. Statistical methods

of a regularized Cox model [21] or a penalized Cox model

[22] can be applied. Machine learning methods have gained

considerable interest, for example, boosting methods [23, 24]

and random survival forests methods [25–27] have been pro-

posed to overcome hurdles of sparse meaningful data.

(3) For radiogenomics

Dealing with genomic data presents issues of multiple test-

ing problems, and the false discovery rate (FDR) [28] is a

commonly used method to correct the p value. Briefly, FDR

attempts to adjust the p value to each test or to reduce the p

value threshold from 5% to a more reasonable value. The q

values refer to the adjusted p values found using the FDR

approach and give a more accurate indication of the level of

false positives for a given cut-off value. Also, specific data

handling is required to erase noise from the genomic data.

Generalizability Issue of Radiomics

Radio-informatic analysis is based on modeling, and the per-

formance of this model needs to be tested in a validation set to

gain generalizability. Although complex statistical and ma-

chine learning methods are often used to address the chal-

lenges presented by a large data set, there is a risk of over-

fitting the data in overly parameterized models [29].

Therefore, the purpose of prediction or prognostic modeling

is to provide valid information for new patients and necessi-

tates the validation in the modeling process.

Fig. 2 The heatmap demonstrates

that diagnostic accuracy can be

changed depending on which

feature-selection method and

classification method is applied.

Color scale: expressed from

yellow (accuracy, 100%) to blue

(accuracy, 65%)
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Internal validation utilizes the resampling technique within

the given data set, such as cross-validation and boot-strapping

methods in the original sample. However, the results are from

the derivative cohort and have less general applicability com-

pared to a separate cohort. A separate cohort is more desirable

to support generalizability by including temporally different

cohorts (temporal validation), cohorts from other places (geo-

graphic validation) or both temporally and geographically dif-

ferent cohorts (fully external validation). This issue compli-

cates radiomics models because the external validation cohort

has different scan parameters and may fundamentally affect

radiomics features. Although the standardization of image ac-

quisition is central to the integrity of the entire radiomics pipe-

line [30], it is very difficult to achieve when the external val-

idation is performed using the different image acquisition in

an outside hospital. Nontheless, the generalizability is the pur-

pose of the radiomics approach, and it is a still difficult prob-

lem to be solved in the radiomics research.

Examples of Radiomics Research
in Neuro-Oncology

Radiomics and radiogenomics research for cancer studies

have expanded dramatically over the past decade. In the sub-

sequent section, we will demonstrate examples from neuro-

oncology, which is one of the most active fields in radio-

informatic research utilizing various quantitative imaging bio-

markers and advanced imaging techniques. Table 3 summa-

rizes the currently published articles dealing with radiomics in

the field of neuro-oncology.

Radiomics as a Diagnostic Biomarker

The diagnostic biomarker is a popular topic for the radiomics

approach [8, 31–38]. Texture features have long been investi-

gated as a diagnostic marker before the term ‘radiomics’ was

established. Texture analyses successfully distinguished glio-

mas frommetastases [31] with an accuracy of 85%, sensitivity

of 87% and specificity of 79% in a previous study. The

radiomics approach can help glioma grading and determine

tumor aggressiveness. In a study of 66 patients with patholog-

ically proven gliomas, texture analysis of T1, T1 CE and ADC

showed improved accuracy of glioma grading [32].

Conventional T1, FLAIR and T1 with contrast enhancement

(T1 CE) are the most commonly used techniques in radiomics,

although investigations now attempt to apply radiomics to

advanced imaging such as the apparent diffusion coefficient

(ADC). In our pilot study, ADC radiomics was performed for

differentiating atypical primary central nervous system lym-

phoma from glioblastoma, and showed better diagnostic per-

formance (AUC, 0.98) compared to a single but strong param-

eter of ADC (AUC, 0.78) or CBV (0.90). Figure 3

demonstrates the distinction between two disease entities

using the radiomics model.

The binary outcome of the presence or absence of a

molecular biomarker was tested in low-grade glioma char-

acterization [36]. In 165 patients with grade II and grade

III gliomas, a radiomic model was built to predict

isocitrate dehydrogenase 1 (IDH1) mutation and the 1p/

19 co-deletion status as well as the histologic grade. AUC

reached 0.86 for IDH1 mutation and 0.96 for the 1p/19q

co-deletion status. Another study used 671 features for

non-invasive diagnosis of IDH1 mutation in 110 patients

with grade II gliomas and showed an AUC of 0.86. These

results imply the utility of the radiomics approach in the

differential diagnosis, glioma grading and non-invasive

diagnosis of molecular markers in neuro-oncology. The

results will be strengthened when they are tested with

external validation cohorts.

Radiomics as a Prognostic Biomarker

Survival research for patients with glioblastoma has been

conducted in several aspects using both semantic and ag-

nostic features [8, 39–43, 50]. A comprehensive data set of

the Cancer Imaging Archive (http://cancerimagingarchive.

net/) with clinical, imaging and genomic information is

widely available, and early radiomics studies show that

sematic features by expert radiologists were useful in

predicting survival in patients with glioblastoma [8, 50].

A representative quantitative analysis was conducted in

119 glioblastoma patients with 12,190 features [39] in

which the radiomics approach stratified a low- or high-

risk group and showed better performance than the clini-

cal (age and Karnofsky performance score) and radiologic

parameters of CBV and ADC. Peri-enhancing tumoral le-

sions also showed prognostic value in glioblastomas [42]

in which a subset of ten radiomic ‘peritumoral’ features

was found to be predictive of survival compared to fea-

tures from an enhancing tumor portion, necrotic regions

and known clinical factors.

Radiomics Approach for Other Surrogate Endpoints

Radiomics showed potential for use as a predictive marker

for treatment response in glioblastoma patients treated

with an antiangiogenic agent [44]. The study included

172 patients with recurrent glioblastoma, extracted 4842

quantitative radiomic features and generated a prediction

model for stratifying the low- and high-risk response

group for bevacizumab treatment.

Pseudoprogression can become a surrogate endpoint for

radiomics studies, and preliminary results (not shown in

Table 3) reported that radiomic features from either MRI

[51] or PET [45] can become predictive for discriminating

104 Nucl Med Mol Imaging (2018) 52:99–108
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pseudoprogression from true progression. These results

showed that the radiomics approach may become helpful to

address challenging diagnoses in neuro-oncology.

Radiogenomics

Both semantic and agnostic features have been studied

for radiogenomic analysis [46–49] to find the association

between radiomics features and known gene loci. The

set of genes can vary from a single gene to multiple

gene loci, and a significant correlation is determined

using Pearson’s correlation with the adjusted p value.

Radiogenomic analysis found an association between se-

mantic features with gene mutation in glioblastoma, i.e.,

the contrast-to-necrosis ratio with KLK3 and RUNX3,

association of SVZ involvement with Ras oncogene

family members, such as RAP2A, and the metabolic en-

zyme TYMS, and the association of vasogenic edema

with the oncogene FOXP1 and PIK3IP1 [49]. A more

recent study using 48 samples identified significant im-

aging correlat ions for six driver genes, EGFR,

PDGFRA, PTEN, CDKN2A, RB1 and TP53, with vari-

ous agnostic features among 256 imaging phenotypes

[47]. This research field has yet to be validated with

external validation data, and further investigation with

large cohort numbers is particularly required in this field

of research.

Outlook—Radiomics as a New Imaging
Biomarker in Cancer Studies

Imaging data can non-invasively assess tissue characteristics

using the radiomics approach and therefore have potential to

be routinely used for diagnostic and predictive purposes in

cancer studies. Biomarkers that can be reliably used to test

medical hypotheses cross the first gap and become a useful

‘medical research tool;’ if the biomarker crosses the second

gap, then it becomes a ‘clinical decision-making tool’ [52].

Radiomics has currently become a useful tool for research

studies. However, as it is a new imaging biomarker, further

validation and qualification are needed for it to become a

clinical decision-making tool in health care. Also, a potential

limitation in image analysis is the heterogeneous imaging ac-

quisition parameters being used in clinical practice and affect-

ing the results. A previous CT study [1] showed that radiomic

features are reproducible over a wide range of imaging set-

tings, unless smooth and sharp reconstruction algorithms are

used. MR-based radiomic features may be more vulnerable to

changes in acquisition parameters, wherein the margin and

signal-to-noise ratio can be easily varied across imaging pro-

tocols. Parametric maps such as ADC maps or normalized

cerebral blood volume may be robust across the different ac-

quisition schemes, but this issue needs to be further studied.

Consequently, it is important to determine how different im-

aging acquisition parameters affect the computed values of the

radiomic features.

Conclusion

Radiomics mines high-throughput quantitative imaging fea-

tures to depict tissue characteristics noninvasively and to find

relationships with meaningful clinical and genetic informa-

tion. In neuro-oncologic research, radiomics can be studied

as either a diagnostic, prognostic, predictive biomarker or

radiogenomics. Selection of a proper model needs to be based

on the outcome types. Also, validation of the model with

independent data set is critical to generalize the results from

radiomic analysis. When it obtains generalizability across het-

erogeneous imaging acquisition protocols, it can become a

clinical decision-making tool in clinical practice.
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