
Vol.:(0123456789)1 3

Journal of Cancer Research and Clinical Oncology (2019) 145:543–550 

https://doi.org/10.1007/s00432-018-2787-1

ORIGINAL ARTICLE – CANCER RESEARCH

Radiomics-based machine learning methods for isocitrate 
dehydrogenase genotype prediction of diffuse gliomas

Shuang Wu1,2 · Jin Meng1,2 · Qi Yu1,2 · Ping Li3 · Shen Fu1,2,3,4,5 

Received: 16 August 2018 / Accepted: 1 November 2018 / Published online: 4 February 2019 

© The Author(s) 2019

Abstract

Purpose Reliable and accurate predictive models are necessary to drive the success of radiomics. Our aim was to identify the 

optimal radiomics-based machine learning method for isocitrate dehydrogenase (IDH) genotype prediction in diffuse gliomas.

Methods Eight classical machine learning methods were evaluated in terms of their stability and performance for pre-oper-

ative IDH genotype prediction. A total of 126 patients were enrolled for analysis. Overall, 704 radiomic features extracted 

from the pre-operative MRI images were analyzed. The patients were randomly assigned to either the training set or the 

validation set at a ratio of 2:1. Feature selection and classification model training were done using the training set, whereas 

the predictive performance and stability of the model were independently assessed using the validation set.

Results Random Forest (RF) showed high predictive performance (accuracy 0.885 ± 0.041, AUC 0.931 ± 0.036), whereas 

neural network (NN) (accuracy 0.829 ± 0.064, AUC 0.878 ± 0.052) and flexible discriminant analysis (FDA) (accuracy 

0.851 ± 0.049, AUC 0.875 ± 0.057) displayed low predictive performance. With regard to stability, RF also showed high 

robustness against data perturbation (relative standard deviations, RSD 3.87%).

Conclusions RF is a promising machine learning method in predicting IDH genotype. Development of an accurate and reli-

able model can assist in the initial diagnostic evaluation and treatment planning for diffuse glioma patients.
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Introduction

Gliomas account for approximately 70% of malignant central 

nervous system (CNS) tumors (Ostrom et al. 2017). Accord-

ing to the 2016 World Health Organization (WHO) clas-

sification of CNS tumors, adult diffuse gliomas consist of 

astrocytic tumors, oligodendrogliomas, and glioblastomas 

(WHO grade II–IV) (Louis et al. 2016). Genomic characteri-

zation has demonstrated that identifications of mutations in 

isocitrate dehydrogenase (IDH) genes were associated with 

improved prognosis in patients with glioma (Cancer Genome 

Atlas Research et al. 2015; Hartmann et al. 2010; Parsons 

et al. 2008; Yan et al. 2009). The median overall survival 

of patients with IDH-mutated glioblastoma was 31 months 

compared to 15 months for those without the mutation (Yan 

et al. 2009). Patients diagnosed with IDH wild-type grade 

II–III glioma, which was molecularly and clinically similar 

to glioblastoma, had worse overall survival than those with 

IDH-mutated glioma of same grade (Cancer Genome Atlas 

Research et al. 2015). It thus seems that the identification of 

IDH genotype is important in the management of gliomas.
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At present, the most commonly used method to assess 

IDH mutation status is molecular assay following biopsy or 

surgical resection. Although molecular assay can be inform-

ative, there are many factors that can limit its clinical use in 

evaluating treatment response and monitoring cancer pro-

gression (Rios Velazquez et al. 2017). These limiting factors 

include the lack of regular biopsies or surgical resections 

at the end of each treatment course, difficulty in evaluating 

the intra-tumor heterogeneity, inconvenient access of tumor 

samples, and failure to identify molecular genotype due to 

the poor quality of tumor tissues. In contrast to molecular 

assays, magnetic resonance imaging (MRI) is routinely used 

in the initial diagnosis and treatment response assessment of 

gliomas. Taking full advantage of the abundant information 

in these easily accessible images may provide an opportunity 

to overcome the limitations related to molecular assay.

MRI features have been used to predict the clinical out-

comes and molecular subtypes including IDH genotype 

in glioma (Carrillo et al. 2012; Lee et al. 2015; Park et al. 

2017). However, only a few imaging features have been used. 

Moreover, the identification of qualitative features is often 

inconsistent between observers. “Radiomics”, an emerging 

and promising field, hypothesizes that the advanced analysis 

of medical images can capture hundreds of additional fea-

tures which are not currently used and may be valuable in 

personalized medicine (Lambin et al. 2012). Several studies 

have investigated the potential of these high-dimensional 

and minable radiomic features to noninvasively facilitate 

tumor detection, subtype classification, therapeutic response 

assessment, and prognosis prediction in multiple cancers 

(Aerts et al. 2014; Fehr et al. 2015; Huang et al. 2016a, b; 

Li et al. 2016; Nie et al. 2016; Rios Velazquez et al. 2017; 

Zhang et al. 2017). For gliomas, radiomic features have also 

been applied to predict patient survival and molecular sub-

types via machine learning methods (Macyszyn et al. 2016; 

Rathore et al. 2016; Yu et al. 2017; Zhang et al. 2017a, b, 

2018). However, the effectiveness of different radiomics-

based machine learning approaches in IDH genotype predic-

tion for patients with diffuse glioma is yet to be assessed.

Using radiomic features provided in the TCGA/TCIA 

repositories (Bakas et al. 2017a, b), we evaluated and com-

pared eight classical machine learning methods in terms of 

their stability and performance for noninvasive and pre-oper-

ative IDH genotype prediction. A total of 126 patients with 

diffuse glioma were enrolled for analyses. Feature selection 

and classification model training were performed using the 

training set. The predictive performance of the model was 

independently tested in the validation set. Our aim was to 

identify the optimal and reliable IDH genotype prediction 

methods with the full use of MRI images.

Materials and methods

Data collection and patient cohort

All the patients included in our study were de-identified by 

the Cancer Genome Atlas; hence, no Health Insurance Port-

ability and Accountability Act or institutional review board 

approval was required. Radiomic features and additional 

information of the TCGA-GBM and TCGA-LGG collections 

consisting of 102 and 65 (Bakas et al. 2017a, b) patients, 

respectively, were obtained from the TCIA database (Clark 

et al. 2013) and the related articles (Bakas et al. 2017c). 

IDH genotype and clinical information were acquired from a 

molecular profiling study of diffuse gliomas (Ceccarelli et al. 

2016). We correlated the subtypes and clinical information 

with the imaging features using the unique TCGA identifi-

ers. Patients who met the following criteria were included in 

this study: (1) available radiomic features from the enhanc-

ing part of the tumor core (ET), the non-enhancing part of 

the tumor core (NET), and the peritumoral edema region 

(ED) of pre-operative MRI images, (2) known IDH geno-

type, and (3) age and gender information available at diag-

nosis (Fig. 1). Our final cohort consisted of 126 patients with 

grade II–III (n = 43) and grade IV (n = 83) glioma (Table 1).

Radiomic features

The details of image processing are described in a previous 

study (Bakas et al. 2017c). The pre-operative MRI modali-

ties, which included pre-contrast T1-weighted (T1), post-

contrast T1-weighted (T1-Gd), T2-weighted (T2), and T2 

fluid-attenuated inversion recovery (T2-FLAIR), were used 

for image analysis. Three sub-regions (ET, NET, ED) were 

segmented by an automated method and manually revised by 

an experienced neuroradiologist. The intensity features, vol-

umetric features, histogram-based features, textural param-

eters, spatial features, and glioma diffusion properties based 

on glioma growth models were calculated. The textural 

parameters were derived from the gray-level co-occurrence 

matrix (GLCM), gray-level run-length matrix (GLRLM), 

gray-level size zone matrix (GLSZM), and neighborhood 

gray-tone difference matrix (NGTDM). Finally, 704 radi-

omic features were extracted.

Feature selection and classification methods

Eight classical machine learning methods were investi-

gated and compared: Random Forest (RF), adaptive boost-

ing (Adaboost), Naive Bayes (NB), flexible discriminant 

analysis (FDA), k-nearest neighbors (kNN), support vector 

machines with radial basis function kernel (r-SVM), sup-

port vector machines with linear kernel (l-SVM), and neural 
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network (NN). Short descriptions of the essential features of 

each method are presented in Table 2.

Patients were randomly assigned to either the training set 

or the validation set at a recommended ratio of 2:1 (Dobbin 

and Simon 2011). With over 700 radiomic features used for 

analyses, it was necessary to perform feature selection before 

classification model building, and minimum redundancy 

maximum relevance (MRMR) was applied to select the rel-

evant and non-redundant features (De Jay et al. 2013; Ding 

and Peng 2005). Subsequently, the selected features were 

input as predictors for classification models constructing. 

Each model was trained using repeated (5 repeat iterations) 

tenfold cross-validation of the training set. The predictive 

performance was independently estimated in the validation 

set by quantifying the accuracy and area under the receiver 

operator characteristic (ROC) curve (AUC) (Robin et al. 

2011). All the machine learning algorithms were conducted 

using the R caret package (Kuhn 2008). The parameters set 

for model training are listed in Supplementary Table 1.

We repeated the procedure of training and validation 20 

times to achieve a robust estimate of the model performance. 

Different patients were assigned to the training and the vali-

dation set each time. The stability of each machine learning 

method was quantified through relative standard deviations 

(RSD) (Parmar et al. 2015). RSD% is defined as:

where σ_AUC is the standard deviation of the 20 AUC val-

ues and µ_AUC is the mean of the 20 AUC values. A lower 

RSD value corresponds to higher stability of the machine 

learning method.

Classification models based on features of different 
subcategories

To further explore the predictive values of different features in 

IDH genotype discrimination, the radiomic features were clas-

sified into six subcategories. The definitions of these features’ 

subcategories are shown in Table 3. Feature selection was per-

formed for each subcategory except spatial and TGM, as these 

two had few features. The predictive performance of the final 

model was independently estimated using the accuracy and 

AUC in the validation set. To achieve an average estimate of 

the model performance, we repeated the procedure 20 times.

All the analyses were completed using the R software (ver-

sion 3.3.1).

RSD% = �_AUC∕μ_AUC × 100% ,

Fig. 1  Workflow of classifi-

cation method training and 

validation

Table 1  Characteristics of 126 patients included in this study

Total

Patients n = 126

Histology

 Grade II–III 43 (34.1%)

 Grade IV 83 (65.9%)

IDH mutation

 WT 87 (69.0%)

 Mutant 39 (31.0%)

Age at diagnosis (years)

 Mean ± SD 53.5 ± 15.0

 Range 18–84

Gender

 Male 67 (53.2%)

 Female 59 (46.8%)
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Results

Predictive performance of the classification 
methods

In the current study, 126 patients (Table 1) were enrolled 

to investigate the effectiveness of eight machine learn-

ing methods (Table 2) for IDH genotype prediction. The 

workflow of classification model training and valida-

tion is displayed in Fig. 1. The accuracy and AUC were 

calculated to quantify the predictive performance of the 

classification methods. A total of 704 radiomic features 

were filtered by the feature selection method, MRMR. 

Then, the top 5, 10, 15, 20, 25, 30, 35 and 40 selected 

features were used to train the classifiers separately. The 

mean AUC and accuracy of all the classification methods 

trained with the selected features are reported in Supple-

mentary Table 2 and Supplementary Table 3. In terms of 

accuracy, RF with top 20 selected features showed the 

highest predictive performance (accuracy 0.895 ± 0.043, 

range 0.825–0.975), whereas NN with top 40 selected fea-

tures displayed the lowest predictive performance (accu-

racy 0.829 ± 0.064, range 0.659–0.927) (Supplementary 

Table 2). As far as the AUC values were concerned, RF 

with top 15 selected features had the highest predic-

tive performance (AUC 0.931 ± 0.036, range 0.866–1), 

while FDA with top 25 selected features showed the low-

est predictive performance (AUC 0.875 ± 0.057, range 

0.761–0.983) (Supplementary Table 3).

Stability of the classification methods

As the mean AUC value over all classifiers was highest 

when top 15 selected features were used (Fig. 2), the stabil-

ity of classification methods with top 15 selected features 

was analyzed. The most stable classification model was 

RF (RSD = 3.87%), followed by Adaboost (RSD = 4.76%), 

NB (RSD = 4.78%) and r-SVM (RSD = 4.81%). FDA 

(RSD = 5.82%) and kNN (RSD = 5.34%) had the lowest 

Table 2  The acronyms related to the used classification methods

Acronym Classification method name Short descriptions

RF Random forest An ensemble learning method which grows substantial decision trees at training time, 

then combines the individual decision of each tree to obtain the optimal classification 

result (Liaw and Wiener 2002)

Adaboost Adaptive boosting A machine learning method which combines a multitude of relatively “weak classifiers” 

to generate a “strong classifier” (Chen and Pan 2018)

NB Naive Bayes A probabilistic classifier which is based on the Bayes’ theorem (Rish 2001)

FDA Flexible discriminant analysis A flexible extension of linear discriminant analysis, in which a classification problem is 

reduced to a regression problem (Hastie et al. 1994)

kNN k-Nearest neighbors A non-parametric learning algorithm assigning the new unknown example to the class 

which the majority of its “k” nearest neighbors belong to (Bishop 2006; Duda et al. 

2000)

r-SVM Support vector machines with radial basis 

function kernel

A classification algorithm of support vector machine using the radial basis function 

kernel (Cristianini and Shawe-Taylor 2000)

l-SVM Support vector machines with linear kernel A classification algorithm of support vector machine using the linear kernel (Cristianini 

and Shawe-Taylor 2000)

NN Neural network A computing system which is inspired by how the nervous systems in a brain works 

and contains a considerable amount of interconnected processing elements working in 

unison for solving specific problems (Bishop 2006)

Table 3  Table defining the feature subcategory

Feature subcategory Feature subcategory definition Feature number

Volume Features of volumetric type 21

Spatial Features of spatial type 11

TGM Tumor growth model parameter 6

NET-hit Histogram-based, intensity and textural features of the non-enhancing part of the tumor core 222

ET-hit Histogram-based, intensity and textural features of the enhancing part of the tumor core 222

ED-hit Histogram-based, intensity and textural features of the peritumoral edema 222

ALL All features 704
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stability among all the classification methods. Figure 3 

shows an evaluation of model stability and predictive per-

formance. We observed that RF (RSD = 3.87%, AUC 0.931 

± 0.036, accuracy 0.885 ± 0.041) out-performed other 

machine learning methods.

Classification models based on features of different 
subcategories

To investigate the value of the different features in IDH 

genotype predicting, the features were divided into six sub-

categories (Table 3). As RF had the highest stability and 

predictive performance among the eight classifiers, we used 

it to estimate the predictive role of different subcategories. 

As illustrated in Fig. 4, volume, NET-hit, ET-hit, and ED-hit 

out-performed spatial and TGM. The RF model based on 

volume features (AUC 0.928 ± 0.035, range 0.838–1; accu-

racy 0.876 ± 0.036, range 0.805–0.927) showed the high-

est predictive performance, whereas the RF model based on 

spatial features (AUC 0.566 ± 0.052, range 0.468–0.664, 

accuracy 0.668 ± 0.054, range 0.585–0.756) or TGM fea-

tures (AUC 0.573 ± 0.078, range 0.424–0.743, accuracy 

Fig. 2  Mean AUC values over all classifiers

Fig. 3  Plots between model stability and predictive performance (Accuracy, AUC) of classifiers with top 15 selected features. a Accuracy vs 

RSD. b AUC vs RSD. RSD relative standard deviation; AUC  area under receiver operator characteristics curve

Fig. 4  Predictive performance 

of RF based on different 

feature subcategory. The top 15 

selected features were used to 

train RF. a Accuracy; b AUC 
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0.643 ± 0.059, range 0.537–0.756) had the lowest predic-

tive performance.

Discussion

Precision oncology refers to customizing cancer care for 

individual patients. Such individual customization can maxi-

mize the benefits of prevention and treatment interventions 

while minimizing adverse effects. The success of precision 

oncology relies on accurately categorizing patients on the 

basis of their prognostic characteristics and responses to a 

specific treatment. As quantitative features extracted from 

medical images can be used to enhance the understanding 

of tumor characteristics, some studies have explored the 

value of radiomic features in precision oncology (Aerts et al. 

2014; Nie et al. 2016; Rios Velazquez et al. 2017). Rios 

Velazquez et al. illustrated that radiomics-based machine 

learning model can be used to predict EGFR mutation status, 

which is an important biomarker for the treatment of lung 

cancer (Rios Velazquez et al. 2017). Nie et al. showed the 

potential of radiomics-based machine learning model to pre-

dict pathologic responses after pre-operative chemoradiation 

therapy for locally advanced rectal cancer (Nie et al. 2016). 

Results from these studies suggested that highly accurate 

and reliable classification models can promote the success 

of radiomics in precision oncology. Furthermore, identifying 

the optimal machine learning methods is recommended for 

different clinical tasks (Lambin et al. 2017).

Parmar et al. compared 12 machine learning methods in 

terms of their prognostic performance and stability for over-

all survival (OS) prediction in patients with lung cancer. 

They identified Random Forest (AUC: 0.66 ± 0.03) as the 

method with the highest prognostic performance and high 

stability (Parmar et al. 2015). Zhang et al. evaluated nine 

classification methods in terms of their predictive perfor-

mance for the prediction of local failure and distant failure in 

advanced nasopharyngeal carcinoma. Random Forest (AUC 

0.85 ± 0.01) and adaptive boosting (AUC 0.82 ± 0.01) were 

found to have the highest prognostic performance (Zhang 

et al. 2017). In another study, Parmar et al. investigated 11 

machine learning methods in terms of their performance 

for predicting OS in patients with head and neck cancer. 

Bayesian (AUC 0.67, RSD: 11.28), Random Forest (AUC 

0.61, RSD 7.36), and Nearest Neighbor (AUC 0.62, RSD 

10.52) displayed high prognostic performance and stabil-

ity (Parmar et al. 2015a, b). However, the optimal machine 

learning methods for IDH genotype predicting in patients 

with diffuse glioma have yet to be determined.

In the present study, we investigated and compared 

eight radiomics-based machine learning methods to pre-

operatively predict IDH genotype for diffuse gliomas. As 

described in the previous study, MRI images used for feature 

extraction were collected from eight institutes, which may 

make the model broadly applicable in the clinical practice 

(Bakas et al. 2017c). Moreover, the features analyzed in this 

study were extracted from labels segmented through a semi-

automatic approach (Bakas et al. 2017c), which can reduce 

the variation of delineation between different observers and 

produce more reproducible and stable features (Parmar et al. 

2014). More stable features may result in a more reliable 

classification model.

As over 700 quantitative radiomic features were analyzed 

in the current study, feature selection was performed. Feature 

selection is an exceedingly helpful strategy in data mining. It 

can help simplify the model, avoid the curse of dimensional-

ity, and reduce over-fitting. MRMR was applied for feature 

selection in our analyses (Ding and Peng 2005). Finally, 

the top 5, 10, 15, 20, 25, 30, 35 and 40 selected features 

were used to train the classifiers separately. The accuracy, 

AUC, and RSD were quantified to evaluate the predictive 

performance and stability of eight classical machine learning 

methods. The average performance over all classifiers was 

highest when the top 15 selected features were used, and RF 

(AUC 0.931 ± 0.036, accuracy 0.885 ± 0.041, RSD 3.867) 

had the highest predictive performance and stability. As one 

of the most frequently used machine learning algorithms in 

clinical classification problems (Parmar et al. 2015; Rios 

Velazquez et al. 2017; Zhang et al. 2017a, b), RF reduces 

over-fitting by bootstrap sampling and randomly selecting 

features at each split in the process of training (Liaw and 

Wiener 2002). The results from our analyses suggest that RF 

should be preferred with regard to predicting IDH genotype 

for patients with gliomas.

In the current study, we also evaluated and compared 

the predictive value of different feature subcategories. It 

has been shown that volume features were associated with 

molecular subtypes in glioma. Park et al. have shown that 

the IDH-mutant group had a smaller proportion of enhanc-

ing tumors in grade II and III gliomas (Park et al. 2017). 

Carrillo et al. demonstrated that the presence of non-contrast 

enhancing tumor was related to IDH mutation in grade IV 

gliomas (Carrillo et al. 2012). Textural features, which can 

quantify the intra-tumor heterogeneity by evaluating the 

gray-level intensity and position of the pixels within an 

image (Castellano et al. 2004; O’Connor et al. 2015), have 

also been applied to predict MGMT methylation status (Xi 

et al. 2017), EGFR expression (Li et al. 2018), and immune 

cell infiltration status (Narang et al. 2017) for gliomas. In 

our analysis, the feature subcategories volume, NET-hit, ET-

hit, and ED-hit had high predictive performance (Fig. 4). 

Some of the patients with diffuse glioma did not demonstrate 

enhancement or edema on MRI scans. The models based on 

volume features or NET-hit features provide an opportunity 

to noninvasively and pre-operatively predict IDH genotype 

for these patients.
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This study has some limitations. First, larger sample sizes 

and external validation are required to assess the generaliz-

ability of our model. In the current study, we repeated the 

training procedure 20 times; each time different patients 

were assigned to the training and the validation set. Fur-

thermore, the model predictive performance was repeatedly 

and independently evaluated in the validation set. These 

approaches enabled a proper estimation of our model gen-

eralizability. Second, recent studies have illustrated that 

diffusion-weighted imaging and magnetic resonance spec-

troscopy (MRS) have the potential to noninvasively identify 

IDH genotype for gliomas (Branzoli et al. 2017; Choi et al. 

2016; Lee et al. 2015; Zhang et al. 2017a, b). The addition 

of imaging features from these modalities may improve the 

classification performance of our model. Third, the under-

lying biological mechanisms of how these features are 

correlated with IDH genotype in diffuse gliomas are pres-

ently unclear. Further research is needed to explore these 

mechanisms.

In summary, the role of MRI radiomic features in IDH 

genotype predicting and eight radiomics-based machine 

learning methods was compared and investigated in the 

present study. RF with top 15 selected features showed the 

highest predictive performance and stability (accuracy 0.885 

± 0.041, AUC 0.931 ± 0.036, RSD 3.87%). These radiom-

ics-based models maximized the value of the information 

contained in the medical images. Identification of an optimal 

radiomics-based machine learning method to noninvasively 

and pre-operatively predict IDH genotype can be valuable 

in the initial diagnostic evaluation and treatment planning 

for patients with diffuse glioma.
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