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Abstract

Radiomics is a quantitative approach to medical imaging, which aims at enhancing the existing data available to

clinicians by means of advanced mathematical analysis. Through mathematical extraction of the spatial distribution of

signal intensities and pixel interrelationships, radiomics quantifies textural information by using analysis methods from

the field of artificial intelligence. Various studies from different fields in imaging have been published so far,

highlighting the potential of radiomics to enhance clinical decision-making. However, the field faces several important

challenges, which are mainly caused by the various technical factors influencing the extracted radiomic features.

The aim of the present review is twofold: first, we present the typical workflow of a radiomics analysis and deliver a

practical “how-to” guide for a typical radiomics analysis. Second, we discuss the current limitations of radiomics,

suggest potential improvements, and summarize relevant literature on the subject.
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Key points

� Radiomics represents a method for the quantitative

description of medical images.

� A step-by-step “how-to” guide is presented for

radiomics analyses.

� Throughout the radiomics workflow, numerous

factors influence radiomic features.

� Guidelines and quality checklists should be used to

improve radiomics studies’ quality.

� Digital phantoms and open-source data help to im-

prove the reproducibility of radiomics.

Background
Like many other areas of human activity in the last de-

cades, medicine has seen a constant increase in the

digitalization of the information generated during clin-

ical routine. As more medical data became available in

digital format, new and always more sophisticated soft-

ware was developed to analyze them. At the same time,

the research on artificial intelligence (AI) has long

reached a point where its methods and software tools

have become not only powerful, but also accessible

enough to leave the computer science departments and

find applications in an increasing variety of domains. As

a consequence, the recent years have witnessed a con-

tinuous increase of AI applications in the medical sector,

aiming at facilitating repetitive tasks clinicians encounter

in their daily clinical workflows and to support clinical

decision-making.

The different techniques used in AI—i.e., mainly ma-

chine learning and deep learning algorithms—are espe-

cially useful when it comes to the emerging field of “big

data”. Big data is defined as “a term that describes large

volumes of high velocity, complex and variable data that

require advanced techniques and technologies to enable

the capture, storage, distribution, management, and ana-

lysis of the information.” 1 Due to the high amount of

multi-dimensional information, techniques from the

field of AI are needed to extract the desired information

from these data.
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In medicine, various ways to generate big data exist,

including the widely known fields of genomics, proteo-

mics, or metabolomics. Similar to these “omics” clusters,

imaging has been used increasingly to generate a dedi-

cated omics cluster itself called “radiomics”. Radiomics

is a quantitative approach to medical imaging, which

aims at enhancing the existing data available to clini-

cians by means of advanced, and sometimes non-

intuitive mathematical analysis. The concept of radio-

mics, which has most broadly (but not exclusively) been

applied in the field of oncology, is based on the assump-

tion that biomedical images contain information of

disease-specific processes [1] that are imperceptible by

the human eye [2] and thus not accessible through trad-

itional visual inspection of the generated images.

Through mathematical extraction of the spatial distribu-

tion of signal intensities and pixel interrelationships,

radiomics quantifies textural information [3, 4] by using

analysis methods from the field of AI. In addition, visual

appreciable differences in image intensity, shape, or tex-

ture can be quantified by means of radiomics, thus over-

coming the subjective nature of image interpretation.

Thus, radiomics does not imply any automation of the

diagnostic processes, rather it provides existing ones

with additional data.

Radiomics analysis can be performed on medical im-

ages from different modalities, allowing for an integrated

cross-modality approach using the potential additive

value of imaging information extracted, e.g., from mag-

netic resonance imaging (MRI), computed tomography

(CT), and positron-emission-tomography (PET), instead

of evaluating each modality by its own. However, the

current state-of-the-art of the research still shows lack

of stability and generalization, and the specific study

conditions and the authors’ choices have still a great in-

fluence on the results.

In this work, we present the typical workflow of a

radiomics analysis, discussing the current limitations of

this approach, suggesting potential improvements, and

commenting relevant literature on the subject.

Radiomics–how to?
The following section will give a practical advice on

“how to do radiomics” by illustrating each of the re-

quired steps in the radiomics pipeline (illustrated in

Fig. 1) and highlighting important points.

Step 1: image segmentation

For any radiomics approach, delineation of the region of

interest (ROI) in two-dimensional (2D) or of the volume

of interest (VOI) in three-dimensional (3D) approaches

is the crucial first step in the pipeline. ROIs/VOIs define

the region in which radiomic features are calculated.

Image segmentation might be done manually, semi-

automatically (using standard image segmentation algo-

rithms such as region-growing or thresholding), or fully

automatically (nowadays using deep learning algo-

rithms). A variety of different software solutions—either

open-source or commercial—are available, such as 3D

Slicer 2 [5], MITK 3, ITK-SNAP 4, MeVisLab 5, LifEx 6,

or ImageJ 7 [6], to name only some frequently used

open-source tools. For reviews on various different tools

for image segmentation, please refer to [7, 8].

Manual and semi-automated image segmentation

(usually with manual correction) are the most often en-

countered methods but have several drawbacks. Firstly,

manual segmentation is time-consuming – depending

on how many images and datasets have to be segmented.

Second, manual and semi-automated segmentation

introduce a considerable observer-bias, and studies have

shown that many radiomic features are not robust

against intra- and inter-observer variations concerning

ROI/VOI delineation [9]. Consequently, studies using

manual or semi-automated image segmentation with

manual correction should perform assessments of intra-

and inter-observer reproducibility of the derived radio-

mic features and exclude non-reproducible features from

further analyses.

Deep learning-based image segmentation (often using

some sort of U-Net [10]) is rapidly emerging and many

different algorithms have already been trained for image

segmentation tasks of various organs (currently, most of

them being useful for the segmentation of entire organs,

but not for segmentation of dedicated tumor regions),

several of them being published as open-source. Since

recently, there are also several possibilities for integra-

tion of such algorithms in platforms like 3D Slicer or

MITK. Automated image segmentation certainly is the

best option, since it avoids intra- and inter-observer vari-

ability of radiomic features. However, generalizability of

trained algorithms currently is a major limitation, and

applying those algorithms on a different dataset often re-

sults in complete failure. Thus, further research has to

be devoted to the development of robust and

generalizable algorithms for automated image

segmentation.

Step 2: image processing

Image processing is located between the image segmen-

tation and feature extraction step. It represents the at-

tempt to homogenize images from which radiomic

2https://slicer.org
3https://mitk.org
4https://itksnap.org
5https://mevislab.de
6https://lifexsoft.org
7https://imagej.nih.gov
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features will be extracted with respect to pixel spacing,

grey-level intensities, bins of the grey-level histogram,

and so forth. Preliminary results have shown that the

test-retest robustness of radiomic features extracted

largely depends on the image processing settings used

[11–15]. In order to allow for reproducible research, it is

therefore important to report each detail of the image

processing step.

Several of the above-mentioned software platforms

(namely, 3D Slicer and LifEx) have integrations for

Fig. 1 The radiomics workflow. Schematic illustration of the patient journey including image acquisition, analysis utilizing radiomics, and derived

patient-specific therapy and prognosis. After image acquisition and segmentation, radiomic features are extracted. High-level statistical modeling

involving machine learning is applied for disease classification, patient clustering, and individual risk stratification
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radiomics analyses. 3D Slicer has incorporated an install-

able plugin for the open-source pyRadiomics package

[16] (which can otherwise be used within a solo Python

framework), whereas LifEx is a stand-alone platform

with integrated segmentation and texture analysis tools

and a graphical user interface. The image processing

step in the pyRadiomics package (which currently is one

of the most commonly used packages for radiomics ana-

lyses) can be defined by writing a so-called parameter

file (in a YAML or JSON structured text file). This par-

ameter file can be loaded into 3D Slicer or be incorpo-

rated into a Python framework. Example parameter files

for different modalities can be found in the pyRadiomics

GitHub repository8.

Interpolation to isotropic voxel spacing is necessary for

most texture feature sets to become rotationally invari-

ant and to increase reproducibility between different

datasets [17]. Currently, there is no clear recommenda-

tion whether upsampling or downsampling should be

the preferred method. In addition, data from different

modalities might need different approaches for image

interpolation. CT, for example, usually delivers isotropic

datasets, whereas MRI often delivers non-isotropic data

with need for different approaches to interpolation. After

applying interpolation algorithms to the image, the de-

lineated ROI/VOI should also be interpolated. For a de-

tailed description of image interpolation and different

interpolation algorithms, please refer to [17].

Range re-segmentation and intensity outlier filtering

(normalization) are performed to remove pixels/voxels

from the segmented region that fall outside of a specified

range of grey-levels [17]. Whereas range re-segmentation

usually is required for CT and PET data (e.g., for exclud-

ing pixels/voxels of air or bone within a tumor ROI/VOI),

range re-segmentation is not possible for data with arbi-

trary intensity units such as MRI. For MRI data, intensity

outlier filtering is applied. The most commonly used

method is to calculate the mean μ and standard deviation

σ of grey-levels within the ROI/VOI and to exclude grey-

levels outside the range μ ± 3σ [17–19].

The last image processing step is discretization of

image intensities inside the ROI/VOI (Fig. 2).

Discretization consists in grouping the original values

according to specific range intervals (bins); the proced-

ure is conceptually equivalent to the creation of a histo-

gram. This step is required to make feature calculation

tractable [20].

Three parameters characterize discretization: the range

of the discretized quantity, the number of bins, and their

width (size). The range equals the product of the bin

number times the bin width; therefore, only two of the

parameters can be freely set. Different combinations can

lead to different results; the choice of the three parame-

ters is usually influenced by the context, e.g., to simplify

the comparison with other works using a particular

binning:

� The range is usually preserved from the original

data, but exceptions are not uncommon, e.g. when

the discretized data is to be compared with some

reference dataset or when ROIs with much smaller

range than the original have to be analyzed. It is

worth mentioning that when the range is not

preserved and if the number of bins is particularly

small, the choice of the range boundaries can have a

strong impact on the results;

� Fixing the bin number (as is the case of discretizing

grey-level intensities) normalizes images and is espe-

cially beneficial in data with arbitrary intensity units

(e.g., MRI) and where contrasts are considered im-

portant [17]. Thus, it is the recommended

discretization method for MRI data, although this

recommendation is not without controversies (for

further discussion, please refer to the relative pyRa-

diomics documentation9). The use of a fixed bin

number discretization is thought to make radiomic

features more reproducible across different samples,

since the absolute values of many features depend

on the number of grey levels within the ROI/VOI;

� Fixing the bin size results in having direct control

on the absolute range represented on each bin,

therefore allowing the bin sequence to have an

immediate relationship with the original intensity

scale (such as Hounsfield units or standardized

uptake values). This approach makes it possible to

compare discretized data with different ranges, since

the bins belonging to the overlapping range will

represent the same data interval. For that reason,

previous work recommends the use of a fixed bin

size for PET images [14]. It is recommended to use

identical minimum values for all samples, defined by

the lower bound of the re-segmentation range

A still open question is the optimal bin number/bin

width which should be used in this discretization step.

This question becomes particularly important when con-

sidering that the discretization is equivalent to averaging

the values within each bin, and the effect is similar to

applying a smoothing filter on the data distribution.

When the bins are too wide (too few), features can be

averaged out and lost; when the bins are too small (too

many), features can become indistinguishable from

8https://github.com/Radiomics/pyradiomics/tree/master/examples/
exampleSettings

9https://pyradiomics.readthedocs.io/en/latest/faq.html#radiomics-fixed-
bin-width
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noise. A balance is reached when discretization can filter

out the noise while preserving the interesting features; un-

fortunately, this implies that the optimal choice of binning

is highly dependent from the both data acquisition parame-

ters (noise) and content (features). As an example, previous

preliminary work has shown that different MRI sequences

might need different bin numbers for obtaining robust and

reproducible radiomics features [11]. Moreover, small num-

ber of bins can generate undesired dependencies on the

particular choice of range and bin boundaries, thus under-

mining the robustness of the analysis. The present recom-

mendation is to always start by inspecting the histogram of

the data from which radiomic features are to be extracted

and to decide upon a reasonable set of parameters for the

discretization step based on the experience.

Step 3: feature extraction

After image segmentation and processing, extraction of

radiomic features can finally be performed. Feature ex-

traction refers to the calculation of features as a final

processing step, where feature descriptors are used to

quantify characteristics of the grey levels within the

ROI/VOI [17]. Since many different ways and formulas

exist to calculate those features, adherence to the Image

Biomarker Standardization Initiative (IBSI) guidelines

[17] is recommended. These guidelines offer a consensus

for standardized feature calculations from all radiomic

feature matrices. Different types (i.e., matrices) of radio-

mic features exist, the most often encountered ones be-

ing intensity (histogram)-based features, shape features,

texture features, transform-based features, and radial

features. In addition, different types of filters (e.g., wave-

let or Gaussian filters) are often applied during the fea-

ture extraction step. In practice, feature extraction

means simply pressing the “run” button and waiting for

the computation to be finished.

Step 4: feature selection/dimension reduction

Depending on the software package used for feature extrac-

tion and the number of filters applied during the process,

the number of extracted features to deal with during the

following step of statistical analysis and machine learning

ranges between a few and, in theory, unlimited. The higher

the number of features/variables in a model and/or the

lower the number of cases in the groups, e.g., for a classifi-

cation task, the higher the risk of model overfitting.

As a consequence, reducing the number of features to

build statistical and machine learning models during a

step called feature selection or dimension reduction is of

crucial importance for generating valid and generalizable

results. Several “rules of thumb” may exist for defining

the optimal number of features for a given sample size,

but no true evidence for these rules exists in the litera-

ture. For some guidance regarding study design or sam-

ple size calculation, please consider reference [21]. The

dimension reduction is a multi-step process, leading to

exclusion of non-reproducible, redundant, and non-

relevant features from the dataset.

Multiple ways for dimension reduction and feature se-

lection exist among researchers. The following steps re-

flect our personal experience and have been performed

in several clinical studies so far [2, 22–27] (Fig. 3).

The first step should involve exclusion of non-

reproducible features, if manual or semi-automated

ROI/VOI delineation was used during the image seg-

mentation step. A feature which suffers from higher

intra- or interobserver variability is not likely to be in-

formative, e.g., for assessing therapeutic response. Simi-

larly, the test-retest robustness of the extracted features

should be assessed (e.g., using a phantom). Non-robust

features should also be excluded if the study aim is the

evaluation of longitudinal data, although it is important

that the relevant change of features over time is incorpo-

rated into the selection procedure [28]. Simply assessing

reproducibility/robustness by calculation of intra-class-

correlation coefficients (ICCs) might not be sufficient

since ICCs are known to depend on the natural variance

of the underlying data. Recommendations for assessing

reproducibility, repeatability, and robustness can be

found in [29].

Fig. 2 Image intensity discretization. Original data (a) and a generic discretized version (b)
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The second step in the feature selection process is the

selection of the most relevant variables for the respective

task. Various approaches often relying on machine learn-

ing techniques can be used for this initial feature selec-

tion step, such as knock-off filters, recursive feature

elimination methods, or random forest algorithms.

Since these algorithms often do not account for collinear-

ities and correlations in the data, building correlation clus-

ters represents the logical next—third—step in the

dimension reduction workflow. In some cases, this step

might be combined with the previous (second) step since

few machine learning techniques are able to account for

correlations within the data. The majority, however, is not.

Correlation clusters (for an example, see Fig. 3) visualize

clusters of highly correlated features in the data and allow

selection of only one representative feature per correlation

cluster. This selection process again might be based on ma-

chine learning algorithms and/or on conventional statistical

methods and data visualization. As a general principle, the

variable with the highest biological-clinical variability in the

dataset should be selected since it might be most represen-

tative of the variations within the specific patient cohort.

The data visualization step is also of high importance once

the dimensionality of the data has been reduced.

Finally, the remaining, non-correlated and highly rele-

vant features can be used to train the model for the re-

spective classification task. Although the present review

does not aim to cover the model training and selection

process, the importance of splitting the dataset into a

training and at least an independent testing dataset (for

optimal conditions even an additional validation dataset)

cannot be stressed enough [30]. This is especially

relevant given the limitations currently encountered in

the field of radiomics as discussed in the following

section.

Current limitations in radiomics

Although radiomics has shown its potential for diagnostic,

prognostic, and predictive purposes in numerous studies,

the field is facing several challenges. The existing gap be-

tween knowledge and clinical needs results in studies lack-

ing clinical utility. In case a clinically relevant question is

considered, the reproducibility of radiomic studies is often

poor, due to lack of standardization, insufficient reporting,

or limited open source code and data. Also, the lack of

proper validation and the subsequent risk of false-positive

results hampers the translation to clinical practice [31].

Moreover, the interpretability of the features, especially

those derived from texture matrices and/or after filtering,

mistakes in the interpretation of the results (e.g., causation

vs. correlation), or the lack of comparison with well-

established prognostic and predictive factors, results in

reservation towards its use in clinical decision support sys-

tems. Furthermore, radiomics studies are often based on

retrospectively collected data and thus have low level of evi-

dence and mainly serve as proof-of-concept, whereas pro-

spective studies are required to confirm the value of

radiomics.

Due to the retrospective nature of radiomic studies,

imaging protocols, including acquisition, and reconstruc-

tion settings, are often not controlled or standardized.

For each image modality, multiple studies have assessed

the impact of these settings on radiomic features or

attempted to minimize their influence by eliminating

Fig. 3 Dimension reduction and feature selection workflow
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features that are sensitive to these variabilities. Although

these studies are relevant to create awareness of the in-

fluencing factors, it should be noted that the information

is often not directly helpful to future studies. The repro-

ducibility of radiomic features is not necessarily

generalizable to different disease sites, modalities, or

scanners, e.g., robust features in one disease site are

not necessarily robust in another disease site [32].

Moreover, in case robust radiomic features are

assessed using cut-off values of correlation coeffi-

cients, one should be aware that these cut-offs are

often arbitrarily chosen and the number of “robust”

features depend on the number of subjects involved.

Furthermore, for the generalizability of robustness

studies, it is important that radiomic feature calcula-

tions are compliant with the IBSI guidelines [17].

Apart from the variations in scanners and settings,

radiomic feature values are also influenced by patient

variabilities, e.g., geometry, which impact the levels of

noise and presence of artifacts in an image. There-

fore, the aim of a recent study was to quantify these

so-called “non-reducible technical variations” and

stabilize the radiomic features accordingly [33].

The next sections summarize the studies that

assessed radiomic feature robustness for different ac-

quisition and reconstruction settings of CT, PET, and

MRI, as well as for ROI delineation and image pre-

processing steps. Figure 4 provides an overview of fac-

tors that have been investigated in literature for their in-

fluence on radiomic feature values. In Tables 1, 2, and 3,

the studies are collected in one overview for all three mo-

dalities considered in this review: CT, MRI, and PET, re-

spectively. A recent review provides an overview of

existing phantoms that have been used for radiomics for

all three modalities [120].

CT and PET CT

Multiple studies (16 were identified in this review) have

investigated the stability over test-retest scenarios for

CT radiomics (Table 1), where the publicly available

RIDER Lung CT collection was often evaluated [121].

For PET, only a few test-retest studies were performed,

which were either on a phantom or lung cancer data

(Table 2). Recently, an extensive review on factors influ-

encing PET radiomics was published [122].

Fig. 4 Factors influencing radiomics stability. Summary of technical factors in each step of the radiomics workflow potentially decreasing

radiomic feature robustness, reproducibility, and classification performance
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Table 1 Literature review for oncologic imaging or phantom studies with computed tomography

Ref. Study (first author) Year Factor Site/Organ

Test-retest [34] Du et al. 2019 NSCLC

[35] Mahon et al. 2019 NSCLC

[36] Tanaka et al. 2019 Lung cancer

[37] Tunali et al. 2019 NSCLC

[38] Zwanenburg et al. 2019 NSCLC, HNSCC

[39] Berenguer et al. 2018 Phantom

[40] Desseroit et al. 2017 NSCLC

[41] Larue et al. 2017 Phantom

[42] Larue et al. 2017 NSCLC, esophageal cancer

[43] Hu et al. 2016 Rectal cancer

[32] van Timmeren et al. 2016 NSCLC, rectal cancer

[44] Aerts et al. 2014 NSCLC

[45] Balagurunathan et al. 2014 NSCLC

[46] Balagurunathan et al. 2014 NSCLC

[47] Fried et al. 2014 NSCLC

[48] Hunter et al. 2013 NSCLC

Acquisition [49] Hepp et al. 2020 Dose NSCLC

[50] Piazzese et al. 2019 Contrast Oesophageal cancer

[51] Robins et al. 2019 Dose Simulated lesions

[36] Tanaka et al. 2019 Breathing Lung cancer

[39] Berenguer et al. 2018 Scanner, kVp, mAs, pitch, FOV, acq. mode Phantom

[52] Ger et al. 2018 Scanner Phantom

[53] Mackin et al. 2018 mAs Phantom

[54] Shafiq-ul-Hassan et al. 2018 Scanner Phantom

[55] Buch et al. 2017 kVp, mAs, pitch, acq. mode Phantom

[41] Larue et al. 2017 Scanner, mAs Phantom

[42] Larue et al. 2017 Breathing NSCLC, esophageal cancer

[56] Mackin et al. 2017 Scanner Phantom

[57] Shafiq-ul-Hassan et al. 2017 mAs, pitch Phantom

[58] Lo et al. 2016 mAs Phantom, lung nodules

[59] Solomon et al. 2016 Dose Liver, lung nodules, renal stones

[60] Fave et al. 2015 kVp, mAs, Breathing NSCLC

[61] Oliver et al. 2015 Breathing Lung cancer

[48] Hunter et al. 2013 Breathing NSCLC

Reconstruction [62] Choe et al. 2019 Kernel Pulmonary nodules

[50] Piazzese et al. 2019 2D/3D Oesophageal cancer

[63] Ligero et al. 2019 Kernel Different tumor sites

[51] Robins et al. 2019 Voxel size, kernel Simulated lesions

[64] Varghese et al. 2019 Voxel size, filtering Phantom

[39] Berenguer et al. 2018 Voxel size, kernel Phantom

[54] Shafiq-ul-Hassan et al. 2018 Voxel size Phantom

[55] Buch et al. 2017 Voxel size Phantom

[41] Larue et al. 2017 Voxel size Phantom

[56] Mackin et al. 2017 Voxel size Phantom
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The voxel size was the mostly investigated influencing

reconstruction factor for CT, whereas this was the full-

width half maximum (FWHM) of the Gaussian filter for

PET. Four and 12 studies were identified that studied

the influence of image discretization on CT and PET

radiomic features, respectively. Figure 4 provides an

overview of factors that have been investigated in litera-

ture for their influence on radiomic feature values.

MRI

The impact of test-retest, acquisition and reconstruction

settings, segmentation, and image pre-processing has

been explored less extensively to date than for PET and

CT. Only four studies were found that investigated the

influence of reconstruction settings, one of these studies

included patient images. The influence of segmentation

on MRI radiomic features has been more extensively

studied for a variety of tumor sites. Table 3 summarizes

the present literature for influencing factors on radiomic

features in MRI. Figure 4 provides an overview of factors

that have been investigated in literature for their influ-

ence on radiomic feature values.

Reduce radiomics’ dependency

Recent literature regarding the robustness for different ac-

quisition and reconstruction settings, ROI delineation,

and image pre-processing steps shows that the most com-

monly used approach to deal with this is to eliminate

radiomic features that are not robust against these factors.

The drawback of this method is that potentially relevant

information could be removed, whereas stability not ne-

cessarily means informativity. A few solutions have been

proposed in order to reduce the influence of the afore-

mentioned factors on radiomics studies. One proposed so-

lution is to eliminate the dependency of features on a

certain factor by modeling the relationship and applying

Table 1 Literature review for oncologic imaging or phantom studies with computed tomography (Continued)

Ref. Study (first author) Year Factor Site/Organ

[57] Shafiq-ul-Hassan et al. 2017 Kernel Phantom

[65] Bogowicz et al. 2016 Voxel size, calculation factors* NSCLC, oropharyngeal carcinoma

[66] Kim et al. 2016 Algorithm Pulmonary tumors

[58] Lo et al. 2016 Kernel Phantom, lung nodules

[67] Lu et al. 2016 Algorithm, voxel size Lung cancer

[59] Solomon et al. 2016 Algorithm Liver, lung nodules, renal stones

[68] Zhao et al. 2016 Algorithm, voxel size Lung cancer

[60] Fave et al. 2015 2D/3D NSCLC

[69] Kim et al. 2015 Algorithm Phantom

[70] Zhao et al. 2014 Voxel size, kernel Phantom

Segmentation [62] Choe et al. 2019 Pulmonary nodules

[63] Ligero et al. 2019 Different tumor sites

[71] Qiu et al. 2019 Hepatocellular carcinoma

[37] Tunali et al. 2019 NSCLC

[72] Pavic et al. 2018 Mesothelioma, NSCLC, HN

[73] Kalpathy-Cramer et al. 2016 Lung nodules, phantom

[44] Aerts et al. 2014 NSCLC

[45] Balagurunathan et al. 2014 NSCLC

[74] Parmar et al. 2014 Lung cancer

Image processing [75] Lee et al. 2019 Discretization, resampling Lung cancer

[52] Ger et al. 2018 Discretization, HU threshold, filtering Phantom

[57] Shafiq-ul-Hassan et al. 2017 Resampling Phantom

[76] Bagher-Ebadian et al. 2017 Filtering Oropharyngeal cancer

[41] Larue et al. 2017 Discretization Phantom

[56] Mackin et al. 2017 Resampling, filtering Phantom

[65] Bogowicz et al. 2016 Discretization* NSCLC, Oropharyngeal carcinoma

[60] Fave et al. 2016 Resampling, filtering NSCLC

*In this study, CT perfusion maps were in vestigated
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Table 2 Literature review for oncologic imaging or phantom studies with positron emission tomography

Ref. Study (first author) Year Factor Site/Organ

Test-retest [77] Konert et al. 2020 NSCLC

[78] Vuong et al. 2019 Lung cancer

[79] Gallivanone et al. 2018 Phantom

[40] Desseroit et al. 2017 NSCLC

[80] Leijenaar et al. 2013 NSCLC

Acquisition [77] Konert et al. 2020 Breathing NSCLC

[81] Pfaehler et al. 2019 Acquisition time Phantom

[82] Branchini et al. 2019 Injected activity Pedriatic cancer

[78] Vuong et al. 2019 Breathing Lung cancer

[83] Charles et al. 2017 Breathing Phantom

[84] Lovat et al. 2017 Scan timing Neurofibromatosis-1

[85] Reuzé et al. 2017 Scanner Cervical cancer

[86] Shiri et al. 2017 Acquisition time Phantom, lung, HN, liver cancer

[13] Bailly et al. 2016 Acquisition time Neuroendocrine tumors

[87] Forgacs et al. 2016 Acquisition time Phantom, lung cancer

[88] Grootjans et al. 2016 Breathing, duty cycle Lung cancer

[89] Nyflot et al. 2015 Injected activity, acquisiton time Simulated phantom

Reconstruction [81] Pfaehler et al. 2019 Algorithm, PSF, FWHM Phantom

[79] Gallivanone et al. 2018 PSF, TOF, matrix size, iterations, subsets, FWHM Phantom

[12] Altazi et al. 2017 Algorithm Cervical tumor

[86] Shiri et al. 2017 PSF, TOF, iterations, subsets, FWHM, matrix size Phantom, lung, HN, liver cancer

[13] Bailly et al. 2016 Algorithm, iterations, FWHM, matrix size Neuroendocrine tumors

[90] Cheng et al. 2016 Attenuation correction NSCLC

[87] Forgacs et al. 2016 Algorithm, TOF, FWHM, voxel size Phantom, lung cancer

[91] Lasnon et al. 2016 PSF, FWHM Lung cancer

[92] van Velden et al. 2016 Algorithm NSCLC

[93] Doumou et al. 2015 FWHM Esophageal cancer

[89] Nyflot et al. 2015 Iterations, FWHM Phantom

[94] Yan et al. 2015 PSF, TOF, iterations, FWHM, matrix size Lung cancer

Segmentation [77] Konert et al. 2020 NSCLC

[95] Yang et al. 2020 Simulated lung lesions

[81] Pfaehler et al. 2019 Phantom

[78] Vuong et al. 2019 Lung cancer

[79] Gallivanone et al. 2018 Phantom

[96] Hatt et al. 2018 NSCLC, HN, simulated lesions

[12] Altazi et al. 2017 Cervical tumor

[83] Charles et al. 2017 Phantom

[97] Lu et al. 2016 Nasopharyngeal carcinoma

[92] van Velden et al. 2016 NSCLC

[93] Doumou et al. 2015 Esophageal cancer

[98] Hatt et al. 2013 Esophageal cancer

[80] Leijenaar et al. 2013 NSCLC

Image processing [77] Konert et al. 2020 Discretization NSCLC

[95] Yang et al. 2020 Discretization Simulated lung lesions
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corrections accordingly. This had been explored recently

for different CT exposure settings [123]. Another method

to eliminate the dependency is to convert images using

deep learning, in order to simulate reconstruction with

different settings, which was shown to improve CT radio-

mics’ reproducibility for images reconstructed with differ-

ent kernels [62]. This approach has the potential to solve

other radiomics dependencies to improve robustness in

the future. Different than image-wise dependency correc-

tions, post-reconstruction batch harmonization has been

proposed in order to harmonize radiomic feature sets ori-

ginating from different institutes, which is a method called

ComBat [124–126]. Furthermore, a recent study investi-

gated the performance of data augmentation instead of

feature elimination to incorporate the knowledge on influ-

encing factors on radiomic features [127].

Open-source data

Publicly available datasets like the RIDER dataset 10 help

to gain knowledge about the impact of varying factors in

radiomics [121]. Also, the availability of a public phantom

dataset, intended for radiomics reproducibility tests on

CT, could help to further assess the influence of acquisi-

tion settings in order to eliminate non-robust radiomic

features [128]. However, studies are needed to show if ro-

bustness data acquired on a phantom can be translated to

the human. Similar initiatives for PET and MRI would

help to understanding of the impact of changes in settings

on radiomics. In other words, open-source data plays an

important role in the future improvement of radiomics.

Solution: quality control and standardization

In order to increase the chance of clinically relevant and

valuable radiomics studies, we would recommend

verifying whether the following questions could be an-

swered with “yes,” prior to commencement of the study:

� Is there an actual clinical need which could

potentially be answered with (the help of)

radiomics?

� Is there enough expertise in the research team,

preferably from at least two different disciplines, to

ensure high quality of the study and potential of

clinical implementation?

� Is there access to enough data to support the

conclusions with sufficient power, including external

validation datasets?

� Is it possible to retrieve all other non-imaging data

that is known to be relevant for the research ques-

tion (e.g., from biological information,

demographics)?

� Is information on the acquisition and reconstruction

of the images available?

� Are the imaging protocols standardized and if not, is

there a solution to harmonize images or to ensure

minimal influence of varying settings on the

modeling?

Besides these general questions, which should been asked

before the start of a study, there are some recent contribu-

tions in the field that aim to facilitate the execution of radio-

mics studies with higher quality: (1) IBSI: harmonization of

radiomics implementations and guidelines on reporting of

radiomic studies [17, 129], (2) Radiomics Quality Score

(RQS): checklist to ensure quality of radiomics studies [130],

and (3) Transparent reporting of a multivariable prediction

model for individual prognosis or diagnosis (TRIPOD) state-

ment—guidelines for reporting of prediction models for

prognosis or diagnosis [30]. For the radiomic feature calcula-

tion, we recommend to use an implementation that is IBSI

compliant, which could be verified using the publicly

Table 2 Literature review for oncologic imaging or phantom studies with positron emission tomography (Continued)

Ref. Study (first author) Year Factor Site/Organ

[82] Branchini et al. 2019 Discretization Pedriatic cancer

[87] Forgacs et al. 2019 Discretization Lung cancer

[81] Pfaehler et al. 2019 Discretization Phantom

[99] Whybra et al. 2019 Resampling Esophageal cancer

[100] Presotto et al. 2018 Discretization Phantom

[12] Altazi et al. 2017 Discretization Cervical cancer

[85] Reuzé et al. 2017 Resampling Cervical cancer

[101] Yip et al. 2017 Discretization, resampling NSCLC

[97] Lu et al. 2016 Discretization Nasopharyngeal carcinoma

[92] van Velden et al. 2016 Discretization NSCLC

[93] Doumou et al. 2015 Discretization Esophageal cancer

[14] Leijenaar et al. 2015 Discretization NSCLC

10https://wiki.cancerimagingarchive.net/display/Public/
RIDER+Lung+CT

van Timmeren et al. Insights into Imaging           (2020) 11:91 Page 11 of 16



available digital phantom [129, 130]. Also, regarding choices

for image discretization and resampling, we recommend fol-

lowing the IBSI guidelines. Besides that, it is important to be

consistent and transparent, and detailed reporting on the

pre-processing steps applied to improve reproducibility and

repeatability of radiomic studies need to be ensured.

A recent study evaluated the quality of 77 oncology-

related radiomics studies using RQS and TRIPOD, and

concluded that “the overall scientific quality and

reporting of radiomics studies is insufficient,” showing

the importance of guidelines and criteria for future stud-

ies [131].

Outlook: workflow integration

While currently many research efforts aim towards

standardization of radiomics, translation into clinical

practice also requires adequate implementation of radio-

mics analyses into the clinical workflow once the

Table 3 Literature review for oncologic imaging or phantom studies with magnetic resonance imaging

Ref. Study (first
author)

Year Factor Site/Organ

Test-retest [102] Bianchini et al. 2020 Phantom

[9] Baessler et al. 2019 Phantom

[103] Fiset et al. 2019 Cervical cancer

[35] Mahon et al. 2019 NSCLC

[104] Peerlings et al. 2019 Ovarian cancer, lung cancer, colorectal liver
metastasis

[105] Schwier et al. 2019 Prostate

Acquisition [9] Baessler et al. 2019 Matrix size Phantom

[106] Bologna et al. 2019 TR, TE, INU, noise level Phantom

[107] Cattell et al. 2019 Noise level Phantom

[103] Fiset et al. 2019 Scanner Cervical cancer

[108] Um et al. 2019 Scanner, field strength Glioblastoma

[109] Yang et al. 2018 Noise level, accelerator factor Phantom, glioma

Reconstruction [9] Baessler et al. 2019 Matrix size Phantom

[106] Bologna et al. 2019 Voxel size Phantom

[107] Cattell et al. 2019 Voxel size Phantom

[109] Yang et al. 2018 Algorithm Phantom, glioma

Segmentation [110] Traverso et al. 2020 Cervical cancer

[9] Baessler et al. 2019 Phantom

[107] Cattell et al. 2019 Phantom

[111] Duron et al. 2019 Lacrymal gland tumors, breast lesions

[103] Fiset et al. 2019 Cervical cancer

[112] Tixier et al. 2019 Glioblastoma

[113] Zhang et al. 2019 Nasopharyngeal carcinoma, sentinel lymph
node

[114] Saha et al. 2018 Breast cancer

[115] Veeraraghavan
et al.

2018 Breast cancer

Image
processing

[116] Isaksson et al. 2020 Normalization Prostate cancer

[117] Scalco et al. 2020 Normalization Prostate cancer

[110] Traverso et al. 2020 Normalization, discretization, filtering Cervical cancer

[106] Bologna et al. 2019 Normalization, resampling, filtering Phantom

[111] Duron et al. 2019 Discretization Lacrymal gland tumors, breast lesions

[118] Moradmand et al. 2019 Bias field correction, filtering Glioblastoma

[119] Um et al. 2019 Bias field correction, normalization, discretization,
filtering

Glioblastoma
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standardization issue has been adequately addressed and

clinical utility has been proven in prospective clinical

trials.

A useful radiomics tool should seamlessly integrate

into the clinical radiological workflow and be incorpo-

rated into or interfaced with existing RIS/PACS systems.

Such systems should provide segmentation tools or

ideally deep learning-based automated segmentation

methods as well as standardized feature extraction algo-

rithms and modality-adjusted image processing adhering

to the standards described above. In case of fully auto-

mated segmentation, the possibility to inspect and

manually correct the segmentation results should be

incorporated.

In a future workflow, known important radiomics fea-

tures could then be displayed alongside other quantita-

tive imaging biomarkers and the images themselves. The

radiologist could then use all these information to sup-

port his clinical judgement or—where possible—esti-

mate, e.g., prognostic factors.

It is, however, important to note, that radiomics

should only be viewed as an additional tool and not as a

standalone diagnostic algorithm. Certainly, many chal-

lenges lie ahead until radiomics can be integrated in our

daily routine: from the above-mentioned issues sur-

rounding image standardization to legal issues that will

certainly arise regarding regulatory issues. Nonetheless,

it could prove a valuable if not critical step towards a

more integrated approach to healthcare.

Conclusions

Throughout the radiomics workflow, multiple factors have

been identified that influence the feature values, including

random variations in scanner and patients, image acquisi-

tion and reconstruction settings, ROI segmentation, and

image preprocessing. Several studies have proposed to ei-

ther eliminate unstable features, correct for influencing

factors, or harmonize datasets in order to improve the ro-

bustness of radiomics. Recently published guidelines and

checklists aim to improve the quality of future radiomics

studies, but transparency has been recognized as the most

important factor for reproducibility. Assessment of clinical

relevance and impact prior to study commencement, in-

creased level of evidence using studies with large enough

datasets and external validation, and its combination with

established methods will help moving the field towards

clinical implementation.
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