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Introduction

Lung cancer is one of the most aggressive human cancers 

worldwide, with a 5-year overall survival of 10–15%, 

showing no significant improvement over the last three 

decades (1,2). In total, 87% of lung cancers are diagnosed 

with non-small cell lung carcinoma (NSCLC), which 

includes adenocarcinoma, squamous cell carcinoma, and 

large cell carcinoma histological types. Lung cancers are 

classified according to molecular subtypes, predicated on 

particular genetic alterations that drive and maintain lung 

tumorigenesis (3). Such driver mutations, and the associated 

constitutively active mutant signaling proteins, are critical 

to tumor cell survival, leading to the development of novel 

targeted therapies (4). Currently, the standard of care for 

unresectable NSCLC tumors is concurrent chemoradiation 

that showed more than half treatment failing locally (5). 

Recent evidence suggests that pre- and post-treatment 

anatomical or functional/molecular imaging information 

could be used to tailor treatment type and intensity, and 

predict treatment outcomes in radiotherapy. For instance, 

changes in tumor volume on computed tomography 

(CT) have been used to predict radiotherapy response in 

NSCLC patients (6,7). Functional/molecular imaging, 

in particular positron emission tomography (PET) 

with 18F-fludeoxyglucose (FDG), has received special 

attention as a potential prognostic factor for predicting 

radiotherapy efficacy (8), and has been shown to be useful 
for the delineation of radiation targets of stage III NSCLC 

(9,10). For instance, the prognostic value of pre- and mid-
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radiotherapy FDG-PET/CT metrics was examined for 

77 patients with stage III NSCLC treated with modestly 

intensified radiation dose (median radiation dose of  

66 Gy) (11). Some pre- and mid-radiotherapy PET metrics 

were found prognostic of the local recurrence and regional/

distant recurrence, but not on the overall survival.

Advances in delivery and imaging technologies put a 

step forward into a new era of image-guided and adaptive 

radiotherapy (IGART), which has witnessed burgeoning 

interest in applying different imaging modalities, both to 

define the target volume and to predict treatment response. 
In modern IGART, there is a strong interest for using 

multimodal imaging in tumor staging and optimizing the 

treatment planning of different cancer types (12). The goal 

is to achieve improved target definition by incorporating 

complementary anatomical information [CT, magnetic 

resonance (MR), ultrasound, etc.] coupled with an improved 

disease characterization and localization using functional and 

molecular imaging (PET, functional MR, etc.). Recently, 

a dose-escalation adaptive treatment target volume to the 

responding tumor defined on mid-treatment FDG-PET 

demonstrated great promise to deliver high-dose radiation 

(up to a total dose of 86 Gy) to the more aggressive areas of 

locally stage I-III NSCLC tumors with a reasonable rate of 

radiotherapy-induced toxicity (13). This clinical trial of 42 

patients achieved its primary goal to improve 2-year local-

regional tumor control rates, with an infield tumor control 

rate of 82% and overall tumor control rate of 62%, and a 

5-year overall survival rate of 30% (13). Moreover, using mid-

radiotherapy FDG-PET/CT on stage III NSCLC patients, 

it was found that without high-dose radiation escalation, the 

2-year cumulative incidence of local recurrence was about 

24% (11), while the RTOG 0617 rate was around 34% (14).

In radiation oncology, information from imaging data 

has been related to treatment endpoints, although extracting 

relevant features to a particular task remains challenging and 

not fully explored. The problem could be addressed according 

to an engineering ‘pattern recognition’ approach, as previously 

proposed (15), which requires understanding of the clinical 

endpoint and the characteristics of the imaging modality. 

This process of extraction of quantitative information from 

anatomical/molecular images with their corresponding 

biological information and clinical endpoints is a new emerging 

field referred to as ‘radiomics’ (16,17). Radiomics could be 

thought of as consisting of two main steps: (I) extraction 

of quantitative imaging static and dynamic features from a 

previously defined tumor region; and (II) the imaging features 
or traits are then incorporated into mathematical models for 

treatment outcome prediction that is aimed at providing added 

value for personalizing of treatment regimens in comparison 

with commonly used clinical predictors.

NSCLC has been on the forefront of radiomics studies, 

including CT-based radiomic signature consisting of 

three features shown to predict distant metastasis in lung 

adenocarcinoma (18). Histological subtype (adenocarcinoma 

or squamous cell carcinoma) were predicted with features 

extracted from pretreatment CT images using the Relief 

feature selection method and a Naïve Bayes’ classifier with 
an AUC of 0.72 for tumor histology (19). A combination of 

image radiomics and clinical factors improved prediction 

of disease-free survival (20). The combination of PET/

CT was shown to predict local control (21). Changes in 

radiomics features (delta-radiomics) was shown to predict 

NSCLC outcomes (22). A general review of radiomics 

in radiotherapy is provided by Avanzo et al. (23). In the 

following, we provide a description of the mechanics 

involved for conducting radiomics analysis in lung cancer 

using single and/or multi-modality imaging data.

Methods

Image segmentation

Medical image segmentation is a process to separate 

structures of interest in an image from its background or 

other neighboring structures. It is a necessary prerequisite 

step for many medical imaging applications including 

radiomics. There are several commercial and academic 

software tools that support different segmentation 

algorithms. In general, commercial software packages have 

better implementations with a user-friendly interface for 

manual and semi-automatic segmentation methods, but 

often lag behind the latest developments in the field. In 

contrast, academic software packages, such as ITK (24), 

BioImage Suite (25), MIPAV (26), and ImageJ (27), 3D 

slicer (28) may tend to be oriented towards single-modality 

applications and less friendly in handling multimodality 

images as sometimes may be required. These algorithms 

go under different categories. For instance, Pham and 

coworkers divided segmentation algorithms into eight 

different categories: thresholding, region growing, 

classifiers, clustering, Markov random field models, 

artificial neural networks, deformable models and atlas-

guided approaches (29). Among the most robust image 

segmentation are based on deformable models (snakes or 

level sets), which are geometric representations of curves 
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or surfaces that are defined explicitly or implicitly in the 

imaging domain. These models move under the influence 

of internal forces (contour curvature) and external forces 

(image boundary constraints) (30,31). An example showing 

joint segmentation of PET/CT in lung cancer is shown in 

Figure 1 using a multi-valued level set algorithm (32).

Image features extraction

The features extracted from images could be divided into 

static (snapshot of enhancement at one point in time) and 

dynamic (time variant) features according to the acquisition 

protocol at the time of scanning, and into pre- or intra-

treatment features according to the scanning time point (33).  

The static features are based on intensity,  object 

morphology, and texture as presented in our previous 

work on pattern recognition analysis in PET images (15) 

or our similarity learning in content-based retrieval from 

mammogram databases (34,35). The dynamic features are 

extracted from time-varying acquisitions such as dynamic 

PET, SPECT or MR. These features are based on kinetic 

analysis using tissue compartment models and parameters 

related to transport and binding rates (36).

Static image features

Several static image features can be applied to radiomics 

studies.

Standard uptake value (SUV) descriptors of PET

The radiotracer intensity values are extracted PET images 

and are converted into SUVs with statistical descriptors such 

GTV-CT

GTV-PET

GTV-OET/CT

Initializ ation

MVLS

CT

PET

GTV-CT

GTV-PET

GTV-OET/CT

A

B C

D

Figure 1 Joint estimation of lung PET/CT target/disease volume. (A) A fused PET/CT displayed in CERR with manual contouring shown 

of the subject’s right gross tumor volume. The contouring was performed separately for CT (in orange), PET (in green), and fused PET/CT 

(in red) images; (B) the MVLS algorithm was initialized with a circle (in white) of 9.8 mm diameter, evolved contour is steps of 10 iterations 

(in black), and the final estimated contour (in thick red). The algorithm converged in 120 iterations in few seconds. The PET/CT ratio 
weighting was selected as 1:1.65; (C) MVLS results is shown along with manual contour results on the fused PET/CT. Note the agreement 

of the fused PET/CT manual contour and MVLS (dice =0.87); (D) MVLS contour superimposed on CT (top) and PET (bottom) separately. 

PET, positron emission tomography; CT, computed tomography; CERR, computational environment for radiotherapy research; MVLS, 

multivalued level set.
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as maximum, minimum, mean, standard deviation (SD), and 

coefficient of variation (CV). SUV is a standard method in 

PET image quantitative analysis (37), and similarly for CT 

analogous metrics could be derived from the Hounsfield 

units (HU) or summarizing intensity statistics in case of MRI.

Intensity volume histogram (IVH)

The IVH is defined in analogous fashion to the dose volume 
histogram (DVH): each point on the IVH defines the 

absolute or relative volume of that structure that exceeds a 

variable intensity threshold as a percentage of the maximum 

intensity. The IVH is thus intended to play the same role 

of as the DVH in reducing complicated 3D data into a 

single easier histogram to interpret. This method would 

allow for extracting several metrics from functional images 

for outcome analysis such as Ix (minimum intensity to x% 

highest intensity volume), Vx (percentage volume having at 

least x% intensity value), and descriptive statistics (mean, 

minimum, maximum, standard deviation, etc.).

Texture features

There are several types of texture features that have already 

been used in different studies, such as texture features using 

gray-level co-occurrence matrices (GLCM), neighborhood 

gray-tone difference matrices (NGTDM), gray-level 

run length matrices (GLRLM), and gray-level size zone 

matrices (GLSZM), or Laws energy measures (38,39). Here, 

we briefly describe the GLCM features, which is among the 
most commonly used textures as an example. The matrix 

representing the number of times that defined intensity 

levels (indexed by i and j) occur between neighboring 

voxels in the entire 3D image. Mathematically, this can be 

viewed as an extension of the second-order joint conditional 

probability density function of a given texture image. For an 

image with M intensity bins, the co-occurrence matrix size 

is M×M. The M levels are obtained by applying an image 

quantization method to limit the size of the matrix. Typical 

values for M are selected in powers of 2 (8, 16, 32, 64, etc.). 

It should be emphasized that these metrics are independent 

of tumor position, orientation, size, and brightness, and 

take into account the local intensity-spatial distribution 

(40,41). This is a crucial advantage over direct (first-order) 
histogram metrics (e.g., mean and standard deviation), 

which only measures intensity variability independent of the 

spatial distribution in the tumor microenvironment.

Dynamic image features

In order to quantify a contrast agent or a tracer dynamic 

behavior in a neighborhood (which can be one or more 

voxels) basis, compartment modeling approaches are 

typically used in dynamic imaging acquisitions (36). 

As an example, we briefly review the characteristics of 

compartment models used for FDG-PET and similar 

principles are applied in cases of dynamic CT or MRI.

Kinetic model for FDG (36). A 3-compartment model is 

used to depict the trapping of FDG-6-Phosphate (FDG6P) 

in tumor. In Figure 2, Cb(t) denotes the input function; C1(t) 

the concentration of un-phosphorylated FDG; and C2(t) 

the concentration of FDG-6-Phosphate. The bi-directional 

transport across the membrane via GLUTs is represented 

by the rate-constants K1 and k2, the phosphorylation of 

FDG is denoted by k3 while the action of G6-phophatase 

is represented with rate constant k4. We will start the 

analysis assuming k4=0, but we will explore non-zero k4. 

Using estimates of compartmental modeling, measures 

of FDG uptake rate (K) will be evaluated by the relation  

KFDG = K1*k3 /(k2+k3) We expect that statistical properties of 

the neighborhood K values to be predictive of local control.

Multi-metric modeling of response

In the context of data-driven outcomes modeling, the 

observed treatment outcome is considered to be caused 

by multiple dosimetric, clinical, and biological input  

variables (42). Outcomes in radiation oncology are generally 

characterized by two metrics: tumor control probability 

(TCP) and the surrounding normal tissue complication 

probability (NTCP) (43,44). Before outcomes modeling, 

features selection will be used to find the best subset of 

features for the models. There are principally three types 

of techniques existing for the feature selection task: filter 

method, wrapper method and embedded method (45). 

Filter-based method is an information-based method that 

is computationally efficient, including mutual information, 
correlation-based and relief method. The wrapper method 

Cb(t) C1(t) C2(t)
K1

K3

K4

K2

Figure 2 General compartmental model depicting the FDG in 

tumor.



639Translational Lung Cancer Research, Vol 6, No 6 October 2017

© Translational lung cancer research. All rights reserved. Transl Lung Cancer Res 2017;6(6):635-647tlcr.amegroups.com

uses the prediction performance of a classifier to assess the 
importance of the features, while the embedded method 

implements the selection of features in the process of the 

training. With the optimized chosen feature, a data-driven 

model can be build such as classical logistic regression 

approaches or more advanced machine learning techniques.

For  more  deta i l s  about  outcome model ing  in 

radiotherapy, the reader can refer to our previous work (46) 

and to the dose-response explorer system (DREES) that is a 

dedicated software tool for this purpose (47). Below, we will 

show examples using standard logistic regression and more 

advanced machine learning.

Outcome modeling by logistic regression

Logis t i c  model ing  i s  a  common tool  for  mul t i -

metric modeling. In our previous work (42,48), a logit 

transformation was used:

( )
( )

( ) , 1,...,
1

i

i

g x

i g x

e
f x i n

e
= =

+
[1]

where n is the number of cases (patients), xi is a vector of the 

input variable values (i.e., image features) used to predict f (xi) 

for outcome yi (i.e., TCP or NTCP) of the ith.

( )
1

, 1,..., , 1,...,
d

i j ij

j

g x x i n j dβ β
−

= + = =∑ [2]

where d is the number of model variables and the ß's are 

the set of model coefficients determined by maximizing the 
probability that the data gave rise to the observations. The 

number of parameters can be determined from the feature 

selection approach or by incorporating all features and 

applying shrinkage methods such as LASSO (49).

Outcome modeling by machine learning

Machine learning represents a wide class of artificial 

intelligence techniques [e.g., neural networks, decision 

trees, support vector machines (SVM)], which are able 

to emulate living beings’ intelligence by learning the 

surrounding environment from the given input data. 

Basically SVM [see for e.g. (50)] and neural networks are 

both based on supervised learning that is typically used 

in image-based outcome modeling, aiming at estimating 

an unknown (input, output) mapping from known (input, 

output) samples. These methods are increasingly being 

utilized in radiation oncology because of their ability to 

detect nonlinear patterns in the data (51). In particular, 

neural networks were extensively investigated to model 

post-radiation treatment outcomes for cases of lung injury 

(52,53). Learning is defined in this context as estimating 

dependencies from data (54).

From data with input and labels yi, D = {(xi, yi) ∈ Rn 
× 

C | i =1,2,3,...N} of N total samples, a function f:Rn → C 

can be found, such that f(xi) ≅ yi for each sample i. Two 

types of algorithm can be encountered: classification, when 

the target set C is discretized or regression when C =R. 

For instance, taking a binary classification (e.g. low/high  

risk of tumor failure) represented by C ={1,-1}, SVM 

would seek for a developing hyperplane in some higher 

dimension such that the data points are separated with 

the maximal margin according to their labels (Figure 3A).  

Mathematically, SVM is then described by an optimization 

problem:

Maxw,b,rr

with,

‖w‖ =1 and (〈w, xi〉 +b)·yi ≥ r,i =1,2,…,N

SVMA
Input layer

Input #1

Input #2

Input #3

Input #4

Hidden layer Output layer

Output

Neural networkB

Figure 3 Difference between SVM (A) and neural network (B) modelling. SVM, support vector machine.
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where r ∈ R,w ∈ Rn and yi = {1, -1} are variables to 

be optimized. Essentially, the objective function r is the 

maximal margin to be found, and the constraints impose 

the lower bound of each datapoint (xi, yi) to the decision 

boundary to be greater than r at least. Thus, the optimal 

weights (w, b) uniquely determine a SVM binary classifier:

( ) ( ),SVMf x g w x b= + [3]

where, the indicator function  is defined by

( )
1, 0

1, 0

z
g z

z

− < 
=  ≥ 

On the other hand, neural network constructs a nonlinear 

function using self-iterations in sets of matrix (weights) 
( ) ( ){ }1, 2,3,...
l l

jkW W l= =  and vectors (bias) 
( ) ( ){ }1,2,3,...
l l

mb b l= =  
such that,

( ) ( ) ( )( ) ( )( )1 1 22

NNf x W W x b bσ σ= ⋅⋅⋅ ⋅ ⋅ + + ⋅⋅⋅ [4]

where,  is a designated nonlinear function called 

activation, which plays an important part in neural network. 

From (d), the sets of weights and bias uniquely determine 

a neural network function fNN, and the nonlinearity is 

understood to stem solely from the activation functions . 

Also, here “W
(1)

,W
(2)

,…” denote the matrix form of weights 

and similar for the bias vectors “b
(1)

,b
(2)

,…”. The index  

l= 1,2,3,… indicating the depth in weights and bias are 

called layers (Figure 3B). A shallow network (small number 

of layers) can represent a very complex function as long as 

the number of neurons is sufficiently large, and the deeper 
in layer, the more complex functions neural network can 

represent. Under the supervision, i.e., imposing fNN(xi) ≅ yi, 

it then gives the best weights and bias ( ) ( ){ }* *, 1, 2,3,...
l l

W b l =  
to be utilized.

Among all the machine learning techniques, the deep 

neural network has recently showed impressive performance in 

a variety of biomedical problems, such as patient classification, 
treatment planning, and biological process understanding. 

These methods do not require explicit extraction of features 

as discussed above. For instance, Kuruvilla et al. presented 

lung cancer classification using static features extracted from 
segmented lung with feedforward and feedforward backward 

propagation network (55). They used thirteen training 

functions (back propagation neural networks) for classification, 
as previously proposed by Paulin et al. (56). This method 

allowed to find tumor classification with an accuracy of 93.3%, 
a specificity of 100% and a sensitivity of 91.4% (55). In 

addition, Kumar et al. proposed to use deep features extracted 

in CT images from an autoencoder, which is based on neural 

networks to “encode” the data to a latent space, along with a 

binary decision tree (e.g., malignant vs. benign) as a classifier 
for lung cancer classification (57). On the output layer, a 

“decoding” transformation is used for data reconstruction to 

obtain learned features that are extracted and implemented to 

the trained classifier.

Examples of radiomics application in lung cancer

Modeling of patients’ survival from CT imaging

Aerts et al. (58) built a radiomic signature consisting of a 

combination of four features, ‘Statistics Energy’ describing 

the overall density of the tumor, ‘Shape Compactness’ 

quantifying how compact the tumor shape is, ‘Gray Level 

Nonuniformity’ a measure for heterogeneity and wavelet ‘Gray 

Level Nonuniformity HLH’, also describing intra-tumor 

heterogeneity after decomposing the image in mid-frequencies. 

The signature was obtained by selecting the most stable features 

using the RIDER dataset, and then trained on a set of 422 lung 

cancer patients for the prediction of survival. The signature, 

assessed on an independent lung dataset, was predictive for 

survival with a c-index (CI) of 0.65, and was successfully tested 

on cohorts of different cancer types (lung, head and neck cancer) 

thus demonstrating the translational capability of radiomics 

across different cancers. In the same study, gene expression of 

89 patients from a lung cancer cohort was measured for 21,766 

genes, and revealed significant associations between the radiomic 
features and gene-expression patterns.

Modeling of patient survival using PET imaging

Ohri el al. (59) have recently published a radiomics model 

from a multi-center data of 201 patients. Using the LASSO 

procedure, they identified 1 textural feature calculated from 

GLCM, SumMean, as an independent predictor of overall 

survival that complement volume [metabolic tumor volume 

(MTV)] in decision tree. The optimal cutpoint for the MTV 

was found to 93.3 cm3, and the optimal SumMean cutpoint for 

tumors above 93.3 cm3 in the decision tree was 0.018 (Figure 4).

Modeling of tumor response using PET/CT

There is an inherent advantage of combining imaging 

information from multiple modalities such as PET/CT or 

PET/MRI. In a retrospective study of 30 NSCLC patients (33), 

thirty features were extracted from both PET and CT images 
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with and without motion-correction as shown in Figure 5. The 

features included tumor volume; SUV/HU measurements, such 

as mean, minimum, maximum, and the standard deviation; IVH 

metrics; and texture based features such as energy, contrast, 

local homogeneity, and entropy. The data corrected for motion 

artifacts based on a population-averaged probability spread 

function (PSF) using de-convolution methods derived from four 

4D-CT data sets (60). An example of such features in this case 

is shown in Figure 5. Then, these features can be implemented 

in the DREES software (Figure 6) to predict local failure (21),  

which consisted of a model of 2-parameters from features 

from both PET and CT based on IVHs provided the best 

performance.

Radiogenomics example

In addition to relating imaging information to clinical 

endpoints, it could be also related to biological and genotypic 

molecular signatures. The identification of patients with 

presence of mutations of epidermal growth factor receptor 

(EGFR) in NSCLC is of great interest as they may respond 

to EGFR-targeted drugs and molecular methods used to 

detect EGFR mutations are expensive. Radiomic feature 

Laws-Energy on the pretreatment CT scan was significantly 
predictive for EGFR-mutation status. A radiomic model for 

identification of EGFR mutant status from tumor segmented 
semi-automatically on CT using seed-based region growing 

method was developed through multiple logistic regression 

and pairwise selection with moderate predictive power 

(AUC, 0.647; 95% confidence interval: 0.576–0.701). The 

model improved the AUC to 0.709 by including also clinical 

variables (61). An example is shown in Figure 7. Gene fusion 

have been become of clinical interest as fusion-positive 

patients may benefit by targeted drugs.

Discussion

The use of imaging in outcome modeling of radiotherapy 
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Figure 4 Modeling of patient survival using PET imaging. (A) PET images from two sample patients whose tumors had similar 

metabolic tumor volume and SUVmax and similar appearances, but had disparate SumMean values. Both tumors were scored as markedly 

heterogeneous based on visual examination. Survival time for the patient in the upper panel was 15.5 months, compared to 47.8 months for 

the patient in the lower panel; (B) conditional inference tree for the combination of metabolic tumor volume and SumMean as predictors 

of overall survival (top), and corresponding Kaplan-Meier curves for overall survival for the three groups resulting from the tree-defined 
cutpoints (bottom). PET, positron emission tomography; SUV, standard uptake value.
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response has witnessed rapid increase in recent years 

adding more value to already existing use of imaging in 

cancer treatment in general and radiotherapy in particular. 

However, there are several issues that are currently limiting 

its rapid progression. It is well recognized that image 

acquisition protocols may impact the reproducibility of 

extracted features from image modalities, which may 

consequently impact the robustness and stability of these 

features for treatment prediction. This includes static 

features such as SUV/HU/MRI descriptors and texture 

features. Interestingly, texture-based features were shown 

to have a reproducibility similar to or better than that of 

simple SUV descriptors (62). This demands protocols 

for standardized acquisition. In addition, factors that may 

impact the stability of these features also include signal-to-

noise ratio (SNR), partial volume effect, motion artifacts, 

Figure 5 Pre-treatment PET/CT image of a NSCLC patient who failed locally. (A) PET/CT overlaid image in our research treatment 

planning system, CERR. IVHs of (B) CT and (C) PET, respectively. (D) and (E) are the texture maps of the corresponding region of interest 

for CT (intensity bins equal 100 HU) and PET (intensity bins equal 1 unit of SUV), respectively. Note the variability between CT and PET 

features: the PET IVH and co-occurrence matrices show much greater heterogeneity for this patient. Importantly, patients vary widely 

in the amount of PET and CT gross disease image heterogeneity between patients. PET, positron emission tomography; CT, computed 

tomography; NSCLC, non-small cell lung carcinoma; CERR, computational environment for radiotherapy research; IVH, intensity volume 

histogram; HU, Hounsfield unit; SUV, standard uptake value.
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parameter settings, resampling size, and image quantization 

(15,63). Indeed, a 3D (static) PET may fail to provide 

accurate position, volume, and absorbed activity distribution 

for a mobile tumor. Conventional (3D) PET/CT was 

compared to respiratory-gated (4D) PET/CT PET to assess 

the impact of respiratory motion in the variability of features 

extracted in phantoms (64) and in lung cancer patient (65). 

An inconsistency of long axis length between 3D images and 

4D images at inhale/exhale, indicated that tumor shape and 

rotation varied between phases (65). Nevertheless, advances 

in hardware and software technologies will further facilitate 

wider application of advanced image processing techniques 

to medical imaging to achieve better clinical results. For 

instance, pre-processing methods such as denoising and 

deconvolution methods already help in mitigating such 

artifacts (66,67), however, more advanced image restoration 

methods based on nonlocality and sparsity may be more 

fruitful (68). Outcome modeling using logistic regression 

has become a de facto standard, however, more advanced 

modeling techniques such machine learning may provide 

further predictive power particularly when dealing with 

more complex and nonlinear relationships among features 

and between clinical outcomes. We believe that the synergy 

between image analysis and machine learning (51) could 

provide powerful tools to strengthen and further the 

utilization of image-based outcome modeling in clinical 

practice towards improved clinical decision making and 

personalized medicine in the future.

Conclusions

In this review, we have presented an overview of possible 

applications of radiomics in lung cancer, ranging from basic 

image segmentation, outcome modeling, to deciphering 

Figure 6 Image-based modeling of local failure from PET/CT features. (A) Model order selection using leave-one-out cross-validation; (B) 

most frequent model selection using bootstrap analysis where the y-axis represents the model selection frequency on resampled bootstrapped 

samples; (C) plot of local failure probability as a function of patients binned into equal-size groups showing the model prediction of 

treatment failure risk and the original data [reproduced with permission from Vaidya et al., 2012 (21)]. PET, positron emission tomography; 

CT, computed tomography.
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genetic signatures. As the role of imaging continue to 

increase in lung cancer management, radiomics will 

follow suit. However, it is recognized that this field is 

still in its infancy with challenges such as image protocol 

standardization to breathing motion artifacts that may 

limit its reproducibility and possible use in clinical trials 

currently. Nevertheless, concerted effort by the research 

and the clinical community is aiming to mitigate these 

challenges and benefit from the potentials of radiomics in 

personalized precision medicine.
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Figure 7 Example images of a patient with EGFR mutation and without WT at baseline and follow-up scan. EGFR, epidermal growth 

factor receptor; WT, wild-type.

Volume Radius_std Shape_s16 Gabor_
energy-

dir135-w3

Gabor_
energy-
dir45-w9

Laws_
energy-10

Laws_
energy-13

GLCM_
IMC1-

mean-d1

GLCM_
MCC-

mean-d1

GLCM_
IMC1-

mean-d4

Sigmoid-
slope-

mean-d5

Sigmoid-
offset-

mean-d5

7766.4531 1.5218 0.1449 5337.9292 419770.4007 475.1879 1369.5768 -0.2523 0.9400 -0.0448 0.3281 159.5525

7195.8281 1.6567 0.1509 4043.5141 327365.1417 512.0283 1352.9327 -0.2548 0.9438 -0.0417 0.33.3 159.3593

-570.6250 0.1349 0.0060 -1294-4151 -92405.2591 36.8404 -16.6440 -0.0025 0.0038 0.0031 0.0025 -0.1932

EGFR

Baseline

Baseline

Delta

Follow-up

Follow-up

Volume Radius_std Shape_s16 Gabor_
energy-

dir135-w3

Gabor_
energy-
dir45-w9

Laws_
energy-10

Laws_
energy-13

GLCM_
IMC1-

mean-d1

GLCM_
MCC-

mean-d1

GLCM_
IMC1-

mean-d4

Sigmoid-
slope-

mean-d5

Sigmoid-
offset-

mean-d5

3502.3594 1.4229 0.1734 11601.6528 419578.9161 367.7399 353.9079 -0.2650 0.9093 -0.0390 0.2272 300.7215

4522.7656 1.2514 0.1648 10605.4513 361191.4791 326.2651 349.4020 0.2606 0.9018 -0.0344 0.2292 252.3925

1020.4063 -0.1715 -0.0086 -996.2015 -58387.4370 -41.4148 -4.5059 0.0044 -0.0075 0.0046 0.0019 -48.3290

WT

Baseline

Delta

Follow-up



645Translational Lung Cancer Research, Vol 6, No 6 October 2017

© Translational lung cancer research. All rights reserved. Transl Lung Cancer Res 2017;6(6):635-647tlcr.amegroups.com

to declare.

References

1. Stewart BW, Wild CP. World Cancer Report 2014 

[Internet]. Cited 2017 Sep 1. Available online: http://

publications.iarc.fr/Non-Series-Publications/World-

Cancer-Reports/World-Cancer-Report-2014

2. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. 

CA Cancer J Clin 2008;58:71-96.

3. Pao W, Girard N. New driver mutations in non-small-cell 

lung cancer. Lancet Oncol 2011;12:175-80.

4. Travis WD, Brambilla E, Riely GJ. New pathologic 

classification of lung cancer: relevance for clinical practice 
and clinical trials. J Clin Oncol 2013;31:992-1001.

5. Blackstock AW, Govindan R. Definitive Chemoradiation 
for the Treatment of Locally Advanced Non-Small-Cell 

Lung Cancer. J Clin Oncol 2007;25:4146-52.

6. Seibert RM, Ramsey CR, Hines JW, et al. A model for 

predicting lung cancer response to therapy. Int J Radiat 

Oncol Biol Phys 2007;67:601-9.

7. Ramsey CR, Langen KM, Kupelian PA, et al. A technique 

for adaptive image-guided helical tomotherapy for lung 

cancer. Int J Radiat Oncol Biol Phys 2006;64:1237-44.

8. de Geus-Oei LF, Oyen WJ. Predictive and prognostic 

value of FDG-PET. Cancer Imaging 2008;8:70-80.

9. Konert T, Vogel W, MacManus MP, et al. PET/CT 

imaging for target volume delineation in curative intent 

radiotherapy of non-small cell lung cancer: IAEA 

consensus report 2014. Radiother Oncol 2015;116:27-34.

10. Hallqvist A, Alverbratt C, Strandell A, et al. Positron 

emission tomography and computed tomographic imaging 

(PET/CT) for dose planning purposes of thoracic 

radiation with curative intent in lung cancer patients: A 

systematic review and meta-analysis. Radiother Oncol 

2017;123:71-7.

11. Gensheimer MF, Hong JC, Chang-Halpenny C, et al. 

Mid-radiotherapy PET/CT for prognostication and 

detection of early progression in patients with stage III 

non-small cell lung cancer. Radiother Oncol 2017. [Epub 

ahead of print].

12. Jaffray DA. Image-guided radiotherapy: from current 

concept to future perspectives. Nat Rev Clin Oncol 

2012;9:688-99.

13. Kong F-M, Ten Haken RK, Schipper M, et al. Effect 

of Midtreatment PET/CT-Adapted Radiation Therapy 

With Concurrent Chemotherapy in Patients With Locally 

Advanced Non-Small-Cell Lung Cancer: A Phase 2 

Clinical Trial. JAMA Oncol 2017. [Epub ahead of print].

14. Bradley JD, Paulus R, Komaki R, et al. Standard-dose 

versus high-dose conformal radiotherapy with concurrent 

and consolidation carboplatin plus paclitaxel with or without 

cetuximab for patients with stage IIIA or IIIB non-small-

cell lung cancer (RTOG 0617): a randomised, two-by-two 

factorial phase 3 study. Lancet Oncol 2015;16:187-99.

15. El Naqa I, Grigsby P, Apte A, et al. Exploring feature-

based approaches in PET images for predicting cancer 

treatment outcomes. Pattern Recognit 2009;42:1162-71.

16. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: 

Extracting more information from medical images using 

advanced feature analysis. Eur J Cancer 2012;48:441-6.

17. Kumar V, Gu Y, Basu S, et al. Radiomics: the process 

and the challenges. Magnetic Resonance Imaging 

2012;30:1234-48.

18. Coroller TP, Grossmann P, Hou Y, et al. CT-based 

radiomic signature predicts distant metastasis in lung 

adenocarcinoma. Radiother Oncol 2015;114:345-50.

19. Wu W, Parmar C, Grossmann P, et al. Exploratory 

Study to Identify Radiomics Classifiers for Lung Cancer 
Histology. Front Oncol 2016;6:71.

20. Huang Y, Liu Z, He L, et al. Radiomics Signature: A 

Potential Biomarker for the Prediction of Disease-Free 

Survival in Early-Stage (I or II) Non-Small Cell Lung 

Cancer. Radiology 2016;281:947-57.

21. Vaidya M, Creach KM, Frye J, et al. Combined PET/CT 

image characteristics for radiotherapy tumor response in 

lung cancer. Radiother Oncol 2012;102:239-45.

22. Fave X, Zhang L, Yang J, et al. Using Pretreatment 

Radiomics and Delta-Radiomics Features to Predict Non-

Small Cell Lung Cancer Patient Outcomes. Int J Radiat 

Oncol Biol Phys 2017;98:249.

23. Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The 

promise of radiomics. Phys Med 2017;38:122-39.

24. Yoo TS, Ackerman MJ, Lorensen WE, et al. Engineering 

and algorithm design for an image processing Api: a 

technical report on ITK--the Insight Toolkit. Stud Health 

Technol Inform 2002;85:586-92.

25. Papademetris X, Jackowski MP, Rajeevan N, et al. 

BioImage Suite: An integrated medical image analysis 

suite: An update. Insight J 2006;2006:209.

26. McAuliffe MJ, Lalonde FM, McGarry D, et al. Medical 

Image Processing, Analysis and Visualization in clinical 

research. 14th IEEE Symposium on Computer-Based 

Medical Systems. Bethesda, MD, 2001:381-6. Available 

online: http://ieeexplore.ieee.org/document/941749/

27. Abramoff MD, Magalhães PJ, Ram SJ. Image processing 



646

© Translational lung cancer research. All rights reserved. Transl Lung Cancer Res 2017;6(6):635-647tlcr.amegroups.com

Constanzo et al. Radiomics in precision medicine for lung cancer

with ImageJ. Biophotonics International 2004;11:36-42. 

28. Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer 

as an Image Computing Platform for the Quantitative 

Imaging Network. Magn Reson Imaging 2012;30:1323-41.

29. Pham DL, Xu C, Prince JL. Current Methods in Medical 

Image Segmentation. Annu Rev Biomed Eng 2000;2:315-37.

30. Sethian JA. Level Set Methods and Fast Marching 

Methods: Evolving Interfaces in Computational Geometry, 

Fluid Mechanics, Computer Vision, and Materials Science. 

Cambridge: Cambridge University Press, 1999:402.

31. Xu C, Pham D, Prince J. Image Segmentation Using 

Deformable Models. In: Sonka M, Fitzpatrick J. editors. 

Handbook of Medical Imaging. Medical Image Processing 

and Analysis. SPIE Press, 2000:129-74.

32. El Naqa I, Yang D, Apte A, et al. Concurrent multimodality 

image segmentation by active contours for radiotherapy 

treatment planning. Med Phys 2007;34:4738-49.

33. Naqa IE. The role of quantitative PET in predicting 

cancer treatment outcomes. Clin Transl Imaging 

2014;2:305-20.

34. El Naqa I, Wei L, Yang Y. Content-based image retrieval 

for digital mammography. In: Mohammed S, Fiaidhi J. 

editors. The Ubiquity 2.0 Trend and Beyond. Hershey: 

IGI Global, 2010:485-508.

35. El-Naqa I, Yang Y, Galatsanos NP, et al. A similarity 

learning approach to content-based image retrieval: 

application to digital mammography. IEEE Trans Med 

Imaging 2004;23:1233-44.

36. Watabe H, Ikoma Y, Kimura Y, et al. PET kinetic analysis-

-compartmental model. Ann Nucl Med 2006;20:583-8.

37. Strauss LG, Conti PS. The applications of PET in clinical 

oncology. J Nucl Med 1991;32:623-648; discussion 649-650.

38. Khalil MM. editor. Basic Science of PET Imaging. 

Springer, 2017. Available online: http://link.springer.com/

content/pdf/10.1007/978-3-319-40070-9.pdf

39. Vallières M, Freeman CR, Skamene SR, et al. A radiomics 

model from joint FDG-PET and MRI texture features for 

the prediction of lung metastases in soft-tissue sarcomas of 

the extremities. Phys Med Biol 2015;60:5471.

40. Castleman KR. editor. Digital Image Processing. New 

Jersey: Prentice Hall Inc., 1979. 

41. Haralick RM, Shanmugam K, Dinstein I. Textural 

Features for Image Classification. IEEE Transactions on 
Systems, Man, and Cybernetics 1973;SMC-3:610-21.

42. Deasy J, El Naqa I. Image-Based Modeling of Normal 

Tissue Complication Probability for Radiation Therapy. 

In: Bentzen SM, Harari PM, Mackie TR, et al. editors. 

Radiation Oncology Advances. Springer, 2007.

43. Steel GG. editor. Basic clinical radiobiology. 3rd 

ed. London: Arnold; New York: Oxford University 

Press, 2002. Available online: http://trove.nla.gov.au/

version/45382700

44. Webb SP. editor. The physics of three-dimensional 

radiation therapy conformal radiotherapy, radiosurgery, 

and treatment planning. Bristol: UK Institute of Physics 

Pub, 2001. Available online: http://trove.nla.gov.au/

work/10354339

45. Guyon I, Elisseeff A. An introduction to variable and 

feature selection. J Mach Learn Res 2003;3:1157-82.

46. El Naqa I. Outcomes Modeling. In: Starkschall G, Alfredo 

R, Siochi C. editors. Informatics in Radiation Oncology. 

CRC Press, 2013:257-75. 

47. El Naqa I, Suneja G, Lindsay PE, et al. Dose response 

explorer: an integrated open-source tool for exploring 

and modelling radiotherapy dose-volume outcome 

relationships. Phys Med Biol 2006;51:5719-35.

48. El Naqa I, Bradley J, Blanco AI, et al. Multivariable 

modeling of radiotherapy outcomes, including dose-

volume and clinical factors. Int J Radiat Oncol Biol Phys 

2006;64:1275-86.

49. Tibshirani RJ. Regression shrinkage and selection via the 

lasso. J R Stat Soc B 1996;58:267-88.

50. Vapnik VN, Vapnik V. Statistical learning theory. Vol. 1. 

New York: Wiley, 1998. Available online: http://www.

dsi.unive.it/~pelillo/Didattica/Artificial%20Intelligence/
Old%20Stuff/Slides/SLT.pdf

51. El Naqa I, Li R, Murphy MJ. editors. Machine learning in 

radiation oncology: theory and applications. Springer, 2015.

52. Munley MT, Lo JY, Sibley GS, et al. A neural network 

to predict symptomatic lung injury. Phys Med Biol 

1999;44:2241-9.

53. Su M, Miften M, Whiddon C, et al. An artificial neural 
network for predicting the incidence of radiation 

pneumonitis. Med Phys 2005;32:318-25.

54. Hastie T, Tibshirani R, Friedman JH. The elements of 

statistical learning: data mining, inference, and prediction: 

with 200 full-color illustrations. New York: Springer 

Google Scholar, 2001.

55. Kuruvilla J, Gunavathi K. Lung cancer classification 
using neural networks for CT images. Comput Methods 

Programs Biomed 2014;113:202-9.

56. Paulin F, Santhakumaran A. Back propagation neural 

network by comparing hidden neurons: case study on 

breast cancer diagnosis. Int J Comput Appl 2010;2:40-4.

57. Kumar D, Wong A, Clausi DA. Lung Nodule 

Classification Using Deep Features in CT Images. 



647Translational Lung Cancer Research, Vol 6, No 6 October 2017

© Translational lung cancer research. All rights reserved. Transl Lung Cancer Res 2017;6(6):635-647tlcr.amegroups.com

2015 12th Conference on Computer and Robot. Vision 

2015:133-8.

58. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding 

tumour phenotype by noninvasive imaging using 

a quantitative radiomics approach. Nat Commun 

2014;5:4006.

59. Ohri N, Duan F, Snyder BS, et al. Pretreatment 18F-FDG 

PET Textural Features in Locally Advanced Non-Small 

Cell Lung Cancer: Secondary Analysis of ACRIN 6668/

RTOG 0235. J Nucl Med 2016;57:842-8.

60. Naqa IE, Low DA, Bradley JD, et al. Deblurring of 

breathing motion artifacts in thoracic PET images by 

deconvolution methods. Med Phys 2006;33:3587-600.

61. Aerts HJ, Grossmann P, Tan Y, et al. Defining a Radiomic 
Response Phenotype: A Pilot Study using targeted therapy 

in NSCLC. Sci Rep 2016;6:srep33860.

62. Tixier F, Hatt M, Le Rest CC, et al. Reproducibility of 

tumor uptake heterogeneity characterization through 

textural feature analysis in 18F-FDG PET. J Nucl Med 

2012;53:693-700.

63. Cheng NM, Fang YH, Yen TC. The promise and limits of 

PET texture analysis. Ann Nucl Med 2013;27:867-9.

64. Carles M, Torres-Espallardo I, Alberich-Bayarri A, et al. 

Evaluation of PET texture features with heterogeneous 

phantoms: complementarity and effect of motion and 

segmentation method. Phys Med Biol 2017;62:652.

65. Oliver JA, Budzevich M, Zhang GG, et al. Variability 

of Image Features Computed from Conventional and 

Respiratory-Gated PET/CT Images of Lung Cancer. 

Transl Oncol 2015;8:524-34.

66. El Naqa I, Kawrakow I, Fippel M, et al. A comparison of 

Monte Carlo dose calculation denoising techniques. Phys 

Med Biol 2005;50:909-22.

67. Zaidi H, Abdoli M, Fuentes CL, et al. Comparative 

methods for PET image segmentation in 

pharyngolaryngeal squamous cell carcinoma. Eur J Nucl 

Med Mol Imaging 2012;39:881-91.

68. Gunturk BK, Li X. Image restoration: fundamentals and 

advances. CRC Press, 2012. Available online: https://books.

google.fr/books?hl=fr&lr=&id=MHPhrxEaOfcC&oi=fnd&

pg=PP1&dq=Gunturk+BK,+Li+X,+eds.+Image+Restoratio

n:+Fundamentals+and+Advances.+Boca+Raton,+FL:+CRC+

Press,+Taylor+and+Francis+group%3B+2012&ots=o304Rm

xg1i&sig=exo9soQB3VauQvCPteFpDrFmIXQ

Cite this article as: Constanzo J, Wei L, Tseng HH, El Naqa 

I. Radiomics in precision medicine for lung cancer. Transl Lung 

Cancer Res 2017;6(6):635-647. doi: 10.21037/tlcr.2017.09.07


