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Abstract

Purpose: To evaluate the usefulness of the radiomic
model in predicting early (�2 years) and late (>2 years)
recurrence after curative resection in cases involving a single
hepatocellular carcinoma (HCC) 2–5 cm in diameter using
preoperative gadoxetic acid–enhanced magnetic resonance
imaging (MRI), in comparison with the clinicopathologic
model.

Experimental Design: This retrospective study included
167 patients with surgically resected and pathologically
confirmed single HCC 2–5 cm in diameter (n ¼ 167,
training set:validation set ¼ 128:39) who underwent
preoperative gadoxetic acid–enhanced MRI between Jan-
uary 2010 and December 2015. A radiomic model, a
clinicopathologic model, and a combined clinicopatho-
logic-radiomic (CCR) model were built using a random
survival forest to predict disease-free survival (DFS) in
the following conditions: early DFS versus late DFS,

dynamic phases, and the peritumoral area included in
the segmentation.

Results: The radiomic model showed a prognostic perfor-
mance comparable with the clinicopathologic model only
with 3-mm peritumoral border extension [c-index difference
(radiomic-clinicopathologic), �0.021, P ¼ 0.758]. The CCR
model with the 3-mm border extension showed the highest
c-index value but no statistically significant improvement over
the clinicopathologicmodel [CCR, 0.716 (0.627–0.799); clin-
icopathologic model, 0.696 (0.557–0.799)].

Conclusions: The prognostic value of the preoperative
radiomic model with 3-mm border extension showed com-
parable performance with that of the postoperative clinico-
pathologic model for predicting DFS of early recurrence of
HCC using gadoxetic acid–enhanced MRI. This suggests the
importance of including peritumoral changes in the radiomic
analysis of HCC.

Introduction
Hepatocellular carcinoma (HCC) is one of the most common

malignant tumors in the liver worldwide and is particularly
prevalent in East Asia. Among the various therapeutic options,
hepatic resection is considered one of the most efficient treat-
ments in patients with HCC when liver function is preserved.
Perioperative safety or long-term survival has recently increased
after surgery, but postoperative recurrence of HCC remains
high (1, 2).

The pathophysiology of intrahepatic recurrence may be
intrahepatic metastasis of the primary carcinoma or de novo
multicentric tumor (3). The distinction between these two types
of recurrence is important for surveillance, prevention, and man-
agement strategies of recurrence (4, 5). A definitive method to
distinguish between the two is a genetic or molecular study, but it
is technically complex, making its application in clinical practice
difficult (6, 7). Several recent studies have reported that aggressive
pathological factors, such as high tumor grade, microvascular
invasion (MVI), and microsatellite lesions, are associated with
tumor recurrence within 2 years after surgery. However, late
recurrence is associated with underlying liver conditions, such as
liver cirrhosis (8–10). Because imaging is closely correlated with
histopathologic examination, some imaging features may rea-
sonably predict tumor recurrence.

Radiomics is an emerging field that converts medical imaging
into high-dimensional mineable features using a large number of
image-characterization algorithms (11). Prognostic prediction
models may be built from noninvasively extracted radiomic
features in tumor images (12). Recently, a few radiomic analyses
of the early recurrence of HCC based on computed tomography
(CT) images have been conducted, and the prediction accuracy
was high (13). However, to the best of our knowledge, few
attempts have been made to evaluate both early and late recur-
rence using radiomic approach. In addition, magnetic resonance
imaging (MRI) is known to have a higher soft-tissue contrast than
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CT image, and gadoxetic acid contrast-enhancedMRI can provide
functional information such as hepatic uptake. Therefore, we
hypothesized that radiomics analysis using gadoxetic acid–
enhanced MRI would have comparable or incremental value in
predicting early and late recurrence compared with clinicopath-
ologic models.

In this study, we aimed to evaluate the usefulness of the
radiomic model in predicting early and late recurrence after
curative resection in a single HCC larger than 2 cm and smaller
than or equal to 5 cm in diameter using preoperative gadoxetic
acid–enhancedMRI, comparedwith the clinicopathologicmodel.

Materials and Methods
Study population

From January 2010 to December 2015, consecutive patients
who underwent curative resection for HCC confirmed patholog-
ically after surgery were included. The inclusion criteria for our
study were as follows: (i) a single HCC larger than 2 cm and
smaller than or equal to 5 cm; (ii) no extrahepatic metastasis or
major vascular invasion; (iii) no infiltrative type HCC, satellite
nodule, serosal invasion, or adjacent organ invasion; (iv) patients
who underwent preoperative gadoxetic acid–enhanced magnetic
resonance (MR) imaging within 2months before surgery; and (v)
HCC with hypointensity on hepatobiliary phase (HBP). HCC is
known to have different prognosis and prognostic factors based
on whether the diameter of the tumor is less than 2 cm or more
than 5 cm. More specifically, HCCs larger than 5 cm inmaximum
diameter are known to have a greater chance of spreading through
MVI and poor prognosis (14–16), and small HCCs less than 2 cm
are known to be associated with an excellent prognosis not being
affected by MVI, histologic grade, or tumor marker level (16).
Therefore, we included only single HCC with a diameter larger
than 2 cm and smaller than or equal to 5 cm for analysis. The
exclusion criteria for our study were as follows: (i) pretreatment
history before hepatectomy (n ¼ 44); (ii) patients with coma-
lignancy (n¼ 27); (iii) postop follow-up loss or expired less than

3 months (n ¼ 5), and inadequate for analysis due to motion
artifact (n ¼ 5; Supplementary Data S1).

Thefinal study population consisted of 167patients (mean age,
56 years; range, 30–77 years), including 131 men (mean age, 56
years; range, 30–77 years) and 36 women (mean age, 58 years;
range, 39–72; Table 1). The median time between MR imaging
and surgery was 23 days (range, 8–59 days). For temporally
independent validation, patients who underwent surgery prior
to October 2013 were assigned to a training cohort (n ¼ 128),
and the subsequent patients were assigned to a validation cohort
(n ¼ 39).

The institutional review board approved this retrospective
study, and the requirement for informed consent was waived
because of the retrospective nature of the study. This study was
conducted in accordance with the Declaration of Helsinki.

MR imaging protocol
MRI was performed using one of the three 3.0-T systems

(Magnetom Trio a Tim, Siemens Medical Solutions; Achieva,
Philips Medical Systems; Discovery, GE Medical Systems) or a
1.5-T system (Achieva 1.5-T, Philips Medical Systems).

All images were obtained in the transverse plane with a field of
view of 44 � 33 cm or 40 � 30 cm. Two-dimensional dual-
echo T1-weighted gradient-recalled-echo images were initially
obtained (in-phase and opposed-phase). Dynamic images were
obtained before and after contrast material administration in
arterial, portal venous, hepatic venous, and final dynamic phases
by using a T1-weighted three-dimensional gradient-echo
sequence (Supplementary Data S2). To determine the imaging
delay for arterial phase imaging, we used a bolus technique with
1 mL of gadoxetic acid disodium (Primovist; Bayer Schering
Pharma) and a 20 mL of 0.9% saline chaser at an injection
rate of 1 or 2 mL/s to determine the peak enhancement of
the abdominal aorta. For dynamic imaging, 0.1 mL/kg
(0.025 mmol/kg) of gadoxetic acid disodium was injected, fol-
lowed by a 20mL of saline chaser at the same rate as that used for
the bolus injection. T2-weighted images were obtained with

Table 1. Patient characteristics in the training and validation sets

2–5 cm HCC

Parameter
Training
(n ¼ 128)

Validation
(n ¼ 39) P

Mean age (y) 56.4 � 9.0 56.8 � 9.8 0.822
M/F ratio 97: 31 34: 5 0.196
Child–Pugh class 1.000
A 120 (93.8) 37 (94.9)
B 8 (6.3) 2 (5.1)

MELD score 3.65 � 3.26 2.96 � 2.95 0.216
Serum bilirubin level 0.81 � 0.45 0.91 � 0.54 0.287
Cause of liver disease 0.371
HBV 113 (88.3) 32 (82.1)
HCV 6 (4.7) 1 (2.6)
Alcoholism 3 (2.3) 2 (5.1)
Others 6 (4.7) 4 (10.2)

Cirrhosis 72 (56.3) 18 (46.2) 0.356
AFP level (ng/mL) 305.2 � 1643.2 327.9 � 821.4 0.908
PIVKA-II level (mAU/mL) 203.6 � 546.0 71.2 � 161.4 0.017a

Major resection 49 (38.3) 11 (28.2) 0.338
Capsule formation 105 (82.0) 35 (89.7) 0.370
Differentiation (poor vs. others) 5 (3.9) 2 (5.1) 0.666
MVI 49 (38.3) 13 (33.3) 0.711

Abbreviations: HBV, hepatitis B virus; HCV, hepatitis C virus; MELD, model for
end-stage liver disease; MV, microvascular invasion.
aStatistically significant.

Translational Relevance

Only few reports have compared the prognostic perfor-
mance of preoperative magnetic resonance imaging features
that predict early recurrence of hepatocellular carcinoma with
that of postoperative clinicopathologic findings. Radiomics
mathematically extracts high-dimensional features frommed-
ical images, which can distinguish between images that are
difficult to perceive with the human eye. This study showed
that postoperative disease-free survival in patients with resect-
able hepatocellular carcinoma can be predicted to a compa-
rable level with the postoperative clinicopathologic prediction
model using radiomic approach of preoperative gadoxetic
acid–enhanced magnetic resonance imaging with three-
millimeter peritumoral border extension. Therefore, the radio-
mic model of the preoperative image with three-millimeter
border extensionmaybeuseful for predictingprognosis before
the invasive procedure and affect the direction of treatment for
each patient. However, the combined clinicopathologic and
radiomic model showed no improvement in prognostic per-
formance compared with that of the clinicopathologic model.

Kim et al.

Clin Cancer Res; 25(13) July 1, 2019 Clinical Cancer Research3848

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/25/13/3847/2052561/3847.pdf by guest on 27 August 2022



multishot and single-shot turbo spin-echo sequences by using a
navigator-triggered technique. Diffusion-weighted images were
also obtained using a navigator-triggered technique at b values of
50, 400, and 800 s/mm2, and the apparent diffusion coefficient
was calculated by the MR units.

MR radiomic feature analysis
Image segmentation and preprocessing. In the preoperative gadoxe-
tic acid contrast-enhanced dynamic liver MRI, arterial phase (AP),
portal phase (PP), and HBP images were downloaded in a Digital
Imaging and Communications in Medicine format. Registration
was then performed on the three phases with resampling the
image to a voxel size of 1� 1� 1mm.One abdominal radiologist
semiautomatically segmented the tumor lesion in HBP images
three-dimensionally using 3D slicer (www.slicer.org), and the
generated mask was commonly used for AP, PP, and HBP
images (17). The drawn mask expanded the 3 mm and 5 mm
outward, creating three kinds of 3Dmasks with border extensions
(0 mm, 3 mm, and 5 mm) to capture the radiomic features
of the peritumoral area as well as inside the tumor. Another
radiology resident independently performed tumor segmentation
on randomly chosen 30 lesions to evaluate interobserver
reproducibility.

Radiomic feature extraction. Feature extraction and additional
image preprocessing were performed using PyRadiomics (version
1.3.0; Computational Imaging and Bioinformatics Lab, Harvard
Medical School; ref. 18). Before the feature extraction, normali-
zation of the MRI signal intensities (SIs) was performed using
PyRadiomics because MRI SI is usually relative with large differ-
ences between scanners and vendors. For 1,301 radiomic features
were extracted for each dynamic phase, a maximum of 3,903
features were obtainedwhen all three phaseswere used. Radiomic
features were extracted for each phase combination (AP, PP, HBP,
AP-PP, AP-HBP, PP-HBP, and AP-PP-HBP) to evaluate the most
predictive combination of the phases, and for each border exten-
sion (0 mm, 3mm, and 5mm) to assess the effect of peritumoral

change on prognosis. Subsequently, feature normalization was
performed using z-score, and hierarchical feature clustering was
performedusing Spearman correlation coefficient (Fig. 1). Z-score
normalization was performed first in the training cohort and then
we recorded the mean and standard deviation values for each
radiomic feature. This process did not include a validation cohort.
In the validation phase, the radiomic feature values of the vali-
dation cases were z-score normalized using the mean and stan-
dard deviation values of each radiomic feature memorized in the
training cohort. Therefore, validation cases canbepredicted one at
a time.

Feature selection and prediction model building. We performed
radiomic feature selection using a random forest minimal depth
algorithm and built the prognostic model using random survival
forest (19, 20), which is one of the methods for survival data set.
More specifically, we used two splitting methods in the random
survival forest, namely, log-rank method (21) and the maximally
selected rank statistics (maxstat) method (22). These methods
have recently reported good results asmodel trainingmethods for
survival analysis (23). We presented both results of the two
different splitting rules to assess the consistency of thepredictions.
Hyperparameter optimization was performed to increase model
generalizability before building the final prognostic model using
thenested cross-validationwithfiveouter iterations and two inner
iterations (23).

In addition to the radiomic model, a clinicopathologic model
and a combined clinicopathologic-radiomic (CCR) model were
built to evaluate the prognostic performance of all three models
and incremental value of the radiomic model (Supplementary
Data S3). Prognostic model training was performed n ¼ 1,000
times using bootstrap samples of the training cohort. The perfor-
mances were evaluated in the temporally independent validation
set using the Harrell's concordance index (c-index; ref. 24).
Diagnostic performances of the model were compared via the
95% confidence interval (CI) for the difference of the c-index. The
difference was considered to be significant if the 95% CI did not

Figure 1.

Framework for radiomic analysis.
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include 0. The 95% CI was estimated using the percentile boot-
strap method with 1,000 resamples (25). Details related to radio-
mic feature extraction and analysis are described in Supplemen-
tary Data S4.

Pathologic evaluation
The surgical specimens of all patients were subjected to histo-

pathologic analysis. Pathologic data analyzed in this study were
histologic tumor grade, capsule formation, fibrous capsule inva-
sion, presence of gross and/or microscopic vascular invasion,
presence of satellite nodule, and surgical margin abutting. His-
tologic tumor grade was determined by the following predomi-
nant features: well differentiated, moderately differentiated, or
poorly differentiated. Capsule formation was recorded as present
or absent. Vascular invasion was classified as macroscopic and
microscopic depending on the involvement level by the tumor.
MVI was defined as a tumor within a vascular space lined by
endothelium that was visible only on microscopy.

Evaluation of outcome
All patients underwent contrast-enhanced CT or MRI at 3–6

months after surgery and were followed up for at least 2 years.
During the follow-up period, we retrospectively reviewed the
medical records for tumor recurrence. Tumor recurrence was
determined by radiologic evidence of new tumor in imaging
studies. Early recurrence was defined as recurrence within 2 years
after curative resection of HCC and late recurrence was defined as
recurrence after 2 years after curative resection of HCC. For early
recurrence, disease-free survival (DFS) was defined as the interval
between the date of surgery and the first date of tumor recurrence
on imaging (event) within 2 years or the last follow-up date
without recurrence (censored) within 2 years. All cases that did
not relapse by 2 years were censored. For late recurrence, DFS was
defined as the interval between the date of surgery and the first
date of tumor recurrence on imaging (event) after 2 years or the
last follow-up date without recurrence (censored). The early
recurrence cases that recurred within 2 years were censored.

Statistical analysis
DFSwas assessed by the Kaplan–Meiermethod, anddifferences

in survival distributions between groups were compared using
log-rank tests. Cox regression analysis was performed to identify
the independent clinicopathologic prognostic factors for DFS.
Multivariate Cox regression was performed for variables with a
P value of �0.2 in the univariate Cox regression analysis. The
Harrell's c-index was used to assess prognostic accuracy (24) and
hazard ratios and 95% CIs were measured. The interobserver
reproducibility of the radiomic features was evaluated in terms
of the intraclass correlation coefficient (ICC). An ICC value greater
than 0.75 was considered indicative of good reproducibility (26).
More specific information related to radiomic analysis is
described in Supplementary Data S4. All statistical and radiomic
analyses were performed using the R software (version 3.3.1; R
Foundation for Statistical Computing). A P value of <0.05 was
considered statistically significant.

Results
Patient characteristics

The characteristics of patients in the training and validation sets
are summarized in Table 1. No significant differences were found

in most clinicopathologic factors between the training and val-
idation sets. Protein induced by vitamin K absence or antagonist-
II showed a significant difference between the training and val-
idation sets, but a-fetoprotein showed no significant difference.

In thefinal study population (n¼ 167), histologic examination
of noncancerous liver parenchyma showed 90 patients with
cirrhosis (53.9%). Underlying causes of HCC were hepatitis B
infection (n ¼ 145, 86.8%), hepatitis C infection (n ¼ 7, 4.2%),
alcoholic liver disease (n ¼ 5, 3.0%), and other origin (n ¼ 10,
6.0%). The surgical resection comprised 60 (35.9%) major resec-
tions (�3 segments according to Couinaud classification) and
107 (64.1%) minor resections or wedge resections. Recurrences
occurred in 61 patients (early recurrence, 32; late recurrence, 29)
of the 167 patients, with estimated 1-, 2-, and 5-year cumulative
global DFS rates being 90.9% (95% CI, 86.6–95.4), 80.4% (95%
CI, 74.5–86.7), and 61.5% (95% CI, 53.8–70.2), respectively.

Clinicopathologic prognostic factors
Survival analysis for DFS was performed for early and late

recurrences. The identified independent factors for early recur-
rence were age, hepatitis C infection, alcohol hepatitis, cirrhosis,
tumor capsule, andMVI. For late recurrence, cirrhosiswas the only
independent prognostic factor (Table 2).

MR radiomic analysis and model comparison
We evaluated the performance of the clinicopathologic, radio-

mic, andCCRmodels for three tumor border extensions (0, 3, and
5 mm).

For the prediction of DFS in early recurrence, the radiomic
model showed a prognostic performance comparable with
the clinicopathologic model without statistically significant dif-
ference, only with 3-mm border extension [c-index difference
(radiomic-clinicopathologic), log-rank �0.021, P ¼ 0.758; max-
stat, 0.008, P¼ 0.986; Table 3].When the 3-mmborder extension
was used, the highest radiomic prognostic performance was
observed (c-index, log-rank 0.675;maxstat 0.679) and the highest
prognostic performance of the CCR model was observed (log-
rank 0.716, maxstat 0.707; Table 3; Supplementary Data S5).

The CCR model showed no statistically significant improve-
ment over the clinicopathologic model in all cases (Table 3).
Except for 3-mm border extension, most of the CCRmodels were
less predictive than the clinicopathologic models with or without
statistical significance.

For late recurrence DFS prediction, the radiomic model did not
show statistically significant different c-index values from those of
the clinicopathologicmodel, but numerically the radiomicmodel
showed lower c-index values than the clinicopathologic model in
all cases. The highest c-index value was observed in the clinico-
pathologic model (c-index, 0.746; Table 3).

For the analysis of combination of different phases of gadoxetic
acid–enhanced MRI, the highest c-index was achieved when all
three phases were used to predict early recurrence (c-index, log-
rank 0.716; maxstat 0.707; Table 4). Among the single phases,
HBP showed the highest c-index value (c-index, log-rank 0.669;
maxstat 0.682; Table 4).

In the CCR model, we obtained the optimal cutoff for differ-
entiating the high-risk group and the low-risk group based on
the hazard function (21) for the training data set (log-rank test,
P < 0.001; Fig. 2).When the validation set was stratified into high-
and low-risk groups, the survival curves showed statistically
significant difference between the two groups (P ¼ 0.031) in the

Kim et al.

Clin Cancer Res; 25(13) July 1, 2019 Clinical Cancer Research3850

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/25/13/3847/2052561/3847.pdf by guest on 27 August 2022



validation set (Fig. 2). Meanwhile, the survival curves were sig-
nificantly different in the training data for the clinicopathologic
model (P < 0.001) or radiomic model (P < 0.001). However, the
survival curves of the high- and low-risk groups were not signif-
icantly different in the validation set in these two models.

The interobserver reproducibility of the radiomic feature
extraction showed high ICC values (median, 0.991; range,
0.813–0.999 for the model with 3-mm border extension; Sup-
plementary Data S6).

Discussion
In the present study, we developed and validated a radiomic

model and CCR model using preoperative gadoxetic acid–

enhanced MRI for individualized prediction of DFS in patients
with HCC. Our results demonstrated that the radiomic model
with appropriate border extension using preoperative MRI
showed comparable performance with the postoperative clin-
icopathologic model for predicting DFS of early recurrence.
This result supports the clinical importance of using radiomics
for preoperative clinical decision-making before the surgical
pathology report in patients with HCC. More refined and
personalized radiomic model using machine learning may
improve the performance of prognostication of each patient
with HCC. In addition, we developed a radiomic model using
gadoxetic acid–enhanced multiphase MRI data to reflect the
nature of tumor perfusion and the hepatic uptake function. The
suggested optimal forms of the input data for the radiomic

Table 3. Comparison of diagnostic performance of radiomic model versus clinicopathologic model according to tumor size and peritumoral border extension (all
three dynamic phases were used)

Size Ba Sb CP RAD CCR Difference (CCR-CP)c P Difference (RAD-CP)d P
Early recurrence (c-index)
2–5 cm 0 L 0.701 0.470 0.516 �0.185 (�0.320, �0.018) 0.034e �0.231 (�0.381, �0.065) 0.018e

HCCs M 0.673 0.501 0.527 �0.146 (�0.320, 0.014) 0.064 �0.172 (�0.365, 0.031) 0.108f

3 L 0.696 0.675 0.716g 0.019 (�0.101, 0.162) 0.788 �0.021 (�0.160, 0.148) 0.758f

M 0.671 0.679 0.707g 0.036 (�0.092, 0.209) 0.620 0.008 (�0.156, 0.217) 0.986f

5 L 0.697 0.397 0.448 �0.250 (�0.402, �0.076) 0.008e �0.301 (�0.471, �0.109) 0.008e

M 0.671 0.364 0.404 �0.267 (�0.414, �0.094) 0.002e �0.308 (�0.492, �0.102) 0.004e

Late recurrence (c-index)
2–5 cm 0 L 0.746 0.491 0.594 �0.152 (�0.359, 0.058) 0.128 �0.255 (�0.492, �0.041) 0.046e

HCCs M 0.745 0.516 0.680 �0.065 (�0.342, 0.095) 0.404 �0.228 (�0.542, 0.075) 0.062
3 L 0.745 0.545 0.595 �0.150 (�0.508, 0.125) 0.402 �0.200 (�0.542, 0.108) 0.224

M 0.737 0.622 0.716 �0.021 (�0.358, 0.225) 0.894 �0.115 (�0.475, 0.258) 0.468
5 L 0.744 0.705 0.711 �0.033 (�0.208, 0.359) 0.628 �0.039 (�0.225, 0.408) 0.524

M 0.744 0.696 0.696 �0.048 (�0.292, 0.178) 0.636 �0.048 (�0.358, 0.358) 0.594

NOTE: Each prognostic model training was performed n ¼ 1,000 times using bootstrap samples of the training cohort. The performances were evaluated in the
temporally independent validation set using the c-index. The number of the training set and the validation set was 128 and 39.
Abbreviations: 0, 3, 5, the peritumoral border extension (mm); ALL, all three phases of AP, PP, andHBP; AP, arterial phase; CCR, combined clinicopathologic-radiomic
model; CP, clinicopathologic model; Difference, difference between c-indices of the prognostic models; HBP, hepatobiliary phase; L, log-rank split rule; M, maxstat
split rule; PP, portal phase; RAD, radiomic model.
aB means peritumoral border extension (mm).
bS means splitting methods for the random survival forest.
cDifference (CCR-CP) means difference between c-indices of the CCR and CP; numbers in parentheses are 95% CIs.
dDifference (RAD-CP) means difference between c-indices of the RAD and CP; numbers in parentheses are 95% CIs.
eStatistically significant.
fThe radiomic model showed a prognostic performance comparable to the clinicopathologic model without statistically significant difference.
gThe highest value in the CCR models. However, the CCR model showed no statistically significant improvement over the clinicopathologic model.

Table 2. Prognostic factors of early versus late recurrence in 2–5 cm HCCs

2–5 cm HCC
Early recurrence (DFS) Late recurrence (DFS)

Univariate Multivariate Univariate Multivariate
HR P HR (95% CI) P HR P HR (95% CI) P

Age 1.055 0.009a 1.048 (1.006–1.092) 0.026a 1.027 0.199 1.021 (0.975–1.069) 0.372
CPS 0.485 0.476 0.983 0.982
MELD score 0.937 0.246 1.001 (0.857–1.169) 0.987 1.094 0.066 1.097 (0.922–1.305) 0.295
Hepatitis C 2.564 0.121 6.805 (1.686–27.469) 0.007a 3.821 0.028 2.666 (0.582–12.213) 0.207
Alcohol hepatitis 5.666 0.004 12.562 (3.330–47.383) <0.001a 2.297 0.415
Cirrhosis 1.487 0.278 2.875 (1.272–6.495) 0.011a 2.273 0.041 2.366 (1.031–5.428) 0.042a

Major resection 0.817 0.596 1.041 0.916
AFP 0.999 0.354 0.999 0.557
AFP100 0.828 0.678 0.469 0.161 0.478 (0.160–1.435) 0.188
PIVKA 1.000 0.254 1.000 (0.999–1.001) 0.492 1.000 0.765
Capsule 0.517 0.107 0.242 (0.0947–0.620) 0.003a 1.701 0.384
Differentiation 1.494 0.583 1.000 0.997
MVI 2.075 0.039a 2.711 (1.220–6.027) 0.014a 1.031 0.936
Serum bilirubin 0.495 0.174 0.337 (0.0715–1.585) 0.168 1.524 0.138 0.698 (0.236–2.068) 0.517

Abbreviations: AFP100, AFP level over 100; CI, confidence interval; CPS, Child–Pugh score A versus B; DFS, disease-free survival; MELD, model for end-stage liver
disease; MVI, microvascular invasion.
aStatistically significant.
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model in the present study could be the basis for future research
in HCC.

The present study demonstrated the preoperative usefulness of
radiomic features for predicting early recurrence ofHCC.Multiple
tumors, microscopic vascular invasion, serosal invasion, tumor
markers, Milan criteria, positive surgical margin, and nonana-
tomic resection are known clinicopathologic factors that affect
early recurrence (27–29). Imaging features, such as peritumoral
enhancement, peritumoral hypointensity, irregular tumor mar-
gin, and arterial rim enhancement, are also associated with the
early recurrence of HCC (30, 31). In previous studies, most
preoperative imaging prognostic factors, which are generally
subjective criteria by the observers, were reported to be correlated
with postoperative histopathologic factors. However, in the pres-
ent study, we observed that preoperative radiomic features
showed comparable prognostic performance with that of post-
operative clinicopathologic data. It is meaningful in clinical
practice in several aspects. It is helpful in predicting prognosis
and determiningmanagement plan in patients without histology.
It is objective compared with image interpretation, which
depends on the observer's subjectivity. In addition, the radiomic

model may be useful for prognostic prediction after surgical
histology is obtained to compensate for the pathologic report.
This may be explained by the fact that radiomic features were
derived by mathematical equations, which could capture histo-
pathologic characteristics and gross morphologic features. More-
over, in vivo radiomics can analyze the entire tumor thoroughly in
three dimensions, indicating that comparable or more informa-
tion could be obtained comparedwith pathologic examination in
which only small tissues are sampled and assessed. In this study,
we did not observe an additional value of the radiomic model
compared with that of the clinicopathologic model, but further
study is required because the importance of radiomic features
incorporated with clinicopathologic data has been reported in
several oncologic studies (13, 32).

For the prognostic performance of late recurrence, the radiomic
model did not show statistically significant difference from the
clinical model, but the clinical usefulness of the radiomic model
was low. Recurrence ofHCCwas speculated to be caused by either
metastasis of primary tumor ormetachronousmulticentric occur-
rence in the underlying liver disease. Several studies have reported
that early recurrence is due to primary tumor metastasis and late

Table 4. Comparison of the diagnostic performance of the radiomicmodel versus the clinicopathologicmodel according to dynamic phases included in the radiomic
analysis (in the condition of 3-mm peritumoral border extension)

Phase Sa CP RAD CCR Difference (CCR-CP)b P Difference (RAD-CP)c P
Early recurrence (c-index)
AP L 0.701 0.609 0.633 �0.068 (�0.270, 0.127) 0.548 �0.093 (�0.303, 0.119) 0.410

M 0.673 0.580 0.599 �0.075 (�0.240, 0.115) 0.368 �0.093 (�0.268, 0.115) 0.348
PP L 0.698 0.542 0.595 �0.103 (�0.256, 0.094) 0.264 �0.156 (�0.328, 0.061) 0.116

M 0.673 0.584 0.667 �0.006 (�0.187, 0.182) 0.954 �0.089 (�0.287, 0.135) 0.408
HBP L 0.699 0.581 0.669d �0.030 (�0.189, 0.121) 0.75 �0.118 (�0.283, 0.051) 0.156

M 0.673 0.583 0.682d 0.009 (�0.137, 0.156) 0.892 �0.090 (�0.287, 0.111) 0.382
AP þ PP L 0.701 0.561 0.604 �0.097 (�0.209, 0.037) 0.152 �0.140 (�0.258, 0.010) 0.072

M 0.670 0.528 0.577 �0.094 (�0.221, 0.051) 0.21 �0.142 (�0.293, 0.027) 0.098
AP þ HBP L 0.700 0.611 0.700 <0.001 (�0.119, 0.125) 0.996 �0.089 (�0.250, 0.088) 0.300

M 0.672 0.591 0.660 �0.013 (�0.137, 0.109) 0.862 �0.081 (�0.273, 0.111) 0.398
PP þ HBP L 0.699 0.626 0.704 0.004 (�0.113, 0.123) 0.912 �0.073 (�0.217, 0.092) 0.356

M 0.677 0.594 0.698 0.021 (�0.127, 0.164) 0.738 �0.083 (�0.293, 0.111) 0.394
ALL L 0.696 0.675 0.716e 0.019 (�0.101, 0.162) 0.788 �0.021 (�0.160, 0.148) 0.758

M 0.671 0.679 0.707e 0.036 (�0.092, 0.209) 0.620 0.008 (�0.156, 0.217) 0.986
Late recurrence (c-index)
AP L 0.740 0.483 0.485 �0.255 (�0.475, 0.175) 0.070 �0.257 (�0.492, 0.192) 0.068

M 0.738 0.381 0.464 �0.273 (�0.575, 0.108) 0.138 �0.357 (�0.608, 0.092) 0.076
PP L 0.744 0.489 0.498 �0.245 (�0.408, 0.142) 0.066 �0.255 (�0.425, 0.142) 0.068

M 0.741 0.609 0.663 �0.078 (�0.275, 0.308) 0.376 �0.132 (�0.308, 0.309) 0.136
HBP L 0.744 0.516 0.519 �0.225 (�0.425, 0.175) 0.056 �0.228 (�0.442, 0.175) 0.056

M 0.744 0.427 0.504 �0.240 (�0.592, 0.042) 0.088 �0.317 (�0.642, 0.008) 0.054
APþPP L 0.745 0.607 0.621 �0.124 (�0.342, 0.094) 0.212 �0.138 (�0.358, 0.094) 0.168

M 0.742 0.514 0.610 �0.132 (�0.408, 0.142) 0.268 �0.228 (�0.492, 0.158) 0.132
APþHBP L 0.743 0.233 0.269 �0.474 (�0.675, �0.125) 0.026f �0.511 (�0.692, �0.125) 0.024f

M 0.740 0.398 0.569 �0.172 (�0.525, 0.125) 0.306 �0.342 (�0.625, 0.075) 0.064
PPþHBP L 0.744 0.509 0.545 �0.199 (�0.492, 0.108) 0.198 �0.236 (�0.508, 0.075) 0.112

M 0.744 0.529 0.570 �0.174 (�0.492, 0.092) 0.240 �0.216 (�0.475, 0.108) 0.138
ALL L 0.745 0.545 0.595 �0.150 (�0.508, 0.125) 0.402 �0.200 (�0.542, 0.108) 0.224

M 0.737 0.622 0.716 �0.021 (�0.358, 0.225) 0.894 �0.115 (�0.475, 0.258) 0.468

NOTE: Each prognostic model training was performed n ¼ 1,000 times using bootstrap samples of the training cohort. The performances were evaluated in the
temporally independent validation set using the c-index. The number of the training set and the validation set was 128 and 39.
Abbreviations: 0, 3, 5, the peritumoral border extension (mm); ALL, all three phases of AP, PP, andHBP; AP, arterial phase; CCR, combined clinicopathologic-radiomic
model; CP, clinicopathologic model; Difference, difference between c-indices of the prognostic models; HBP, hepatobiliary phase; L, log-rank split rule; M, maxstat
split rule; PP, portal phase; RAD, radiomic model.
aS means splitting methods for the random survival forest.
bDifference (CCR-CP) means difference between c-indices of the CCR and CP; numbers in parentheses are 95% CIs.
cDifference (RAD-CP) means difference between c-indices of the RAD and CP; numbers in parentheses are 95% CIs.
dAmong the single phases, HBP showed the highest c-index value.
eThe highest c-index was achieved when all three phases were used to predict early recurrence.
fStatistically significant.
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recurrence is due to multicentric occurrence (9, 33). In late
recurrence, only liver cirrhosis has been reported as an indepen-
dent factor (8, 9). Consistent with the previous studies, the only
independent clinicopathologic factor of the late recurrence in our
study was liver cirrhosis. Although the radiomic model did not
show a significant difference with the clinicopathologic model,
the only independent factor, liver cirrhosis, can be assessed before
surgery more easily than with the radiomic model. Therefore, the
clinical usefulness of the radiomic model is limited for predicting
late recurrence.

We found that the peritumoral change had a significant effect
on DFS through radiomics. The predictability of DFS increased
when a peritumoral area of 3 mm diameter was included in the
radiomic analysis. Our results are in good agreement with those
reported in previous studies, which suggested that arterial peri-
tumoral enhancement, non-smooth tumor margin, and peritu-
moral hypointensity on HBP are independent predictors of MVI,
which is a potent prognostic factor of HCC (30, 31). All these
suggested prognostic findings are presented in the peritumoral
area. However, most previous oncologic radiomic studies did not
consider the peritumoral area as a potential prognostic factor,
because only the tumors were segmented (13, 32, 34). In the
present study, the radiomic model showed a prognostic perfor-
mance comparable to that of the clinicopathologicmodel only for
3-mm border extension, in which the highest prognostic perfor-
mance was observed. This result indicates that appropriate border
extension is required to achieve performance comparable to the
clinicopathologic model. The radiomic model with 5-mm border
extension showed lower prognostic performance than the clini-
copathologic model. This may be due to the known nature of
the distribution of microsatellites in HCC. A microsatellite is
defined as a pathologically microscopic invasion into the portal
vein and/or intrahepatic metastasis. The number of microsatel-
lites is known to decrease with distance from the primary HCC
and increase with the primary tumor size (35–37). Therefore, it is
possible that the 5-mm border extension may have reduced
prognostic performance due to the decrease in the number of
microsatellites in the farther peritumoral area and inclusion of the

peritumoral normal hepatic parenchyma. This suggested that
proper border extensions may contribute to predictability.

Technically, a distinct tumoral boundary in HBP of gadoxetic
acid–enhanced MRI enabled the border extension with high
reproducibility. Segmentation is critical for radiomics because
the subsequent feature data are generated from the segmented
volumes. However, it is also challenging because tumors may
have indistinct borders (12). In a previous radiomic study, HCC
border segmentation was performed based on morphologic or
perfusional difference in AP or PP of CT scan manually (13).
However, in our experience, distinguishing between tumor itself
and peritumoral change is difficult because of the indistinct
border. We believe that our method could be an easy solution
to better segmentation in MRI. By defining clear boundaries, we
could analyze the various diameters of the peritumoral area,
resulting in prognostic potential of morphologic changes within
3 mm of the peritumoral area. Moreover, the prediction of DFS
showed the highest performance when all three dynamic phase
images were used among all the possible combinations of three
phases. Various prognostic imaging features, such as peritumoral
enhancement or rim enhancement inAP, irregular or non-smooth
tumor margin, and peritumoral hypointensity in HBP, have been
demonstrated in different dynamic phases (30, 31, 38–41).
Therefore, all three phases seem to be necessary to reflect all of
these image features. Our result suggests that a multiparametric
approach is required for postoperative prognostic analysis ofHCC
using MRI and should include at least three dynamic phases.

This study has several limitations. First, it has a limited
sample size of 167 patients. Radiomic features were basically
high-dimensional data, and machine learning–based random
forest was used; thus, there was a risk of overfitting. Therefore,
parameter optimization was performed using the nested 5-fold
cross-validation of the two different methodologies (log-rank,
maxstat) to achieve the generalized model. The prediction model
was validated with a temporally independent validation set using
bootstrap resampling (n ¼ 1,000) of the training set for an
objective evaluation of the model. Second, semiautomatic region
of interest placement can be a limiting factor because

Figure 2.

CCRmodel for predicting DFS in early postoperative period (<2 years) in patients with 2–5 cm HCCs. Kaplan–Meier estimates of DFS and prediction curves of the
CCR for DFS in the training set (A, B) and the validation set (C, D). The validation cohort stratified into a low- and a high-risk group based on a cutoff value
determined on the training cohort. A significant patient stratification was shown (P¼ 0.031) with high predictive performance (c-index: 0.716). In the training
cohort, recurrences occurred in 22 of 29 patients in the high-risk group and 3 of 99 patients in the low-risk group. In the validation cohort, recurrences occurred in
4 of 10 patients in the high-risk group and 3 of 29 patients in the low-risk group.
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interobserver variability is known to affect the result (42). How-
ever, because we used HBP images in gadoxetic acid–enhanced
MRI for segmentation, high interobserver reproducibility could
be achieved. Third, only HBP-hypointense HCCs were included
(excluding iso-/hyperintense HCCs) for clear delineation of the
HCCs in HBP. However, only a small proportion of HCCs may
show iso to hyperintensity on HBP, and they are known to have
good prognosis (43, 44). Fourth, we performed SI normalization
and voxel size resampling prior to radiomics feature extraction for
quantitative comparison of images between different MRI
machines andpatients, but didnot have access to how this process
affects the results. However, recent CT radiomics studies have
reported that using gray-level normalization and voxel-size
resampling greatly reduced the dependency of differences in
scanners and CT parameters (45–47). It is presumed that these
preprocesses would be effective for MRI, but further study is
needed. Fifth, the training and validation cohorts were temporally
disjoint and may cause problems if there were temporal changes
in image acquisitionor patient characteristics.However, this study
was performed without any changes in the MRI unit or the image
acquisition protocol between the training cohort and the valida-
tion cohort. No statistically significant difference was found in the
clinical conditions between the training cohort and the validation
cohort except for PIVKA-II (Table 1). PIVKA-II is a tumor marker
associatedwith thediagnosis ofHCC, but there is no evidence that
it affects the prognosis (30, 31). In addition, it is known that
temporal validation is better than random split according to the
TRIPOD statement (48).

In conclusion, the prognostic value of the preoperative
radiomic model with 3-mm border extension showed compa-
rable performance with that of the postoperative clinicopath-
ologic model for predicting DFS of early recurrence of HCC
using gadoxetic acid–enhanced MRI. This suggests the impor-
tance of including peritumoral changes in the radiomic anal-
ysis of HCC.
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