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Abstract

Background: Radiomics is an emerging field in oncological research. In this study, we aimed at developing a

radiomics score (rad-score) to estimate postoperative recurrence and survival in patients with solitary

hepatocellular carcinoma (HCC).

Methods: A total of 319 solitary HCC patients (training cohort: n = 212; validation cohort: n = 107) were enrolled.

Radiomics features were extracted from the artery phase of preoperatively acquired computed tomography (CT)

in all patients. A rad-score was generated by using the least absolute shrinkage and selection operator (lasso)

logistic model. Kaplan-Meier and Cox’s hazard regression analyses were used to evaluate the prognostic significance of

the rad-score. Final nomograms predicting recurrence and survival of solitary HCC patients were established

based on the rad-score and clinicopathological factors. C-index and calibration statistics were used to assess the

performance of nomograms.

Results: Six potential radiomics features were selected out of 110 texture features to formulate the rad-score.

Low rad-score positively correlated with aggressive tumor phenotypes, like larger tumor size and vascular

invasion. Meanwhile, low rad-score was significantly associated with increased recurrence and reduced survival.

In addition, multivariate analysis identified the rad-score as an independent prognostic factor (recurrence:

Hazard ratio (HR): 2.472, 95% confident interval (CI): 1.339–4.564, p = 0.004;survival: HR: 1.558, 95%CI: 1.022–2.375,

p = 0.039). Notably, the nomogram integrating rad-score had a better prognostic performance as compared with

traditional staging systems. These results were further confirmed in the validation cohort.

Conclusions: The preoperative CT image based rad-score was an independent prognostic factor for the

postoperative outcome of solitary HCC patients. This score may be complementary to the current staging

system and help to stratify individualized treatments for solitary HCC patients.
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Background
Hepatocellular carcinoma (HCC) is the fifth most

common cancer and the second most common cause

of cancer-related death worldwide [1]. Current HCC

staging systems, like Barcelona Clinic Liver Cancer

(BCLC) staging system, indicate that hepatectomy is a

potentially curative treatment for patients with

early-stage HCC [2]. However, postoperative recur-

rence is high, with 5-year rates reaching 70% [3, 4],

suggesting that even in the same early-stage, patients

have a diverse postoperative prognosis. Thus, the

current staging systems still need improvement, for ex-

ample, incorporating new risk factors for a better

stratification of postoperative outcome. In fact, trad-

itional staging systems mainly consist of pathological

factors, like tumor size and vascular invasion, while

tremendous information in preoperative computed
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tomography (CT) or magnetic resonance imaging

(MRI) reflecting tissue intrinsic characters and hetero-

geneity [5–8] remains untapped. Recently, it has been

reported that various imaging features were associated

with pathological features and prognosis of the tumor

and complementary to current staging systems, like

rectal cancer and bladder cancer [9, 10]. As such, new

prognostic factors, like those derived from CT and

MRI images, to identify patients with high risk of post-

operative recurrence and death are urgently needed,

which could help to select patients who are more likely

to benefit from surgery.

Radiomics, an emerging and promising field, hypoth-

esizes that medical images, including CT and MRI,

could provide vivid and crucial information on tumor

[11]. By converting medical images into high-

dimensional, mineable and quantitative features via

high-throughput data extraction, radiomics method

provides an unprecedented opportunity to improve

decision-support in oncology at low cost and noninva-

sively. Currently, image examinations are routinely

conducted for cancer patients, including HCC [12].

Compared to developing new molecular biomarkers,

radiomics method may not require additional physical

or molecular tests and thus not increase the economic

burden of patients. In addition, previous studies have

demonstrated that quantitative radiomics features were

associated with clinical prognosis and underlying gen-

omic patterns across a range of cancer types, such as

non-small cell lung cancer [13] and advanced nasopha-

ryngeal carcinoma [14].

In HCC, contrast-enhanced computed tomography

(CECT) has been widely used in the diagnosis due to

its high specificity and sensitivity [12]. Meanwhile, it

had been reported that the characteristics of tumor CT

images were associated with gene expression profiles,

pathological features, and prognosis of HCC [11, 15–17].

As far as we are concerned, image features could be

divided into semantic features and agnostic features.

Semantic features are commonly used in the radiology

lexicon to describe regions of interest, including in-

ternal arteries, hypodense halos and so on, while agnostic

features, like texture features, attempt to capture lesion het-

erogeneity though quantitative descriptors [11, 14, 18, 19].

Previous studies preferred the clinical application of

semantic features, as they were easy to acquire. Re-

cently, growing concerns have been paid on the po-

tential clinical application of agnostic features. For

instance, Fu et al. investigated the prognostic signifi-

cance of CT image texture features for advanced

HCC patients receiving TACE (transarterial che-

moembolization) [15]. Another study has suggested

that texture analysis was promising for HCC patient

stratification for determining the suitability of liver

resection vs. TACE [11]. Furthermore, texture analysis

has been reported for the potential for predicting

postoperative hepatic insufficiency and assessing fibro-

sis [20]. However, the prognostic significance of radio-

mics feature has been rarely investigated in HCC

patients receiving hepatectomy.

In this study, we aimed at developing a rad-score

derived from the preoperative CECT of solitary HCC

patients, based on the assumption that such rad-score

may help to identify patients who were at high risk of

postoperative recurrence and death and improve clin-

ical decision making for solitary HCC patients.

Methods

Patient selection and data collection

Patient recruitment, as well as the inclusion and exclu-

sion criteria, were presented in Additional file 1: Figure

S1. A total of 319 patients were enrolled and randomly

divided into a training cohort (n = 212) and validation

cohort (n = 107). The pathological diagnoses on all

cases were reviewed and confirmed independently by

two expert pathologists.

Baseline clinicopathological data were derived from med-

ical records. Tumor differentiation was graded by the

Edmondson grading system [21]. Postoperative follow-up

strategy and treatment strategy were according to a uni-

form guideline as we previously described [22, 23], and

were listed in the Additional file 2. Ethical approval was ob-

tained from the institutional review board of Zhongshan

Hospital, and the informed consent requirement was

waived. Time to recurrence (TTR) was defined as the inter-

val between surgery and recurrence or the last observation

for surviving patients without recurrence. Overall survival

(OS) was defined as the interval between surgery and death

or the last observation for surviving patients. The data were

censored at the last follow-up for living patients.

Quantitative imaging characteristics

CT protocols and details of texture features are described

in Additional file 2. Arterial phase CECT data were re-

trieved from the institution archive in dicom format and

loaded to a personal laptop for further textural analysis. In

this study, a total of 110 candidate radiomics features were

generated from one image by using an in-house algorithm

implemented in Matlab 2016a (MathWorks, Natick, MA,

USA). For texture analysis, a region of interest (ROI) was

delineated initially around the tumor outline of the largest

cross-sectional area. Details of texture feature extraction

are presented in Additional file 3: Figure S2.

Inter-observer and intra-observer reproducibility of

radiomics feature extraction

Sixty images were randomly chosen for evaluating the

inter-observer reproducibility of the radiomics feature.
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All these images were reviewed by two radiologists

with 10 (reader 1) and 5 years (reader 2) experience in

abdominal CT interpretation. To assess the intra-observer

reproducibility, reader 1 repeated the generation of texture

features twice in a 1-week period followed the same

procedure.

A two-way random, single measure (absolute agree-

ment) intraclass correlation coefficients (ICC) was

used to assess the differences between the features

generated by reader 1 (first time) and those by reader

2, as well as between the twice-generated features by

reader 1. An ICC value below 0.40 was considered

poor reliability, fair for values between 0.41 and 0.59,

good for values between 0.60 and 0.74, and excellent

for values between 0.75 and 1.00. This is a descriptive

statistic can be used when quantitative measurements

are made on units that are organized into groups. It

describes how strongly units in the same group

resemble each other. Previously, it has been reported

as a reliable method to evaluate the reproducibility of

data [24, 25] and has been used in the radiomics

research [26].

Feature selection and rad-score building

According to the Harrell’s guideline, the number of

events should exceed the number of included covari-

ates by at least 10 times in a multivariate analysis.

Therefore, in our study, the least absolute shrinkage

and selection operator (lasso) method combined with

logistic regression [27], was used to select the most

useful features in the training cohort. This method

minimized a log partial likelihood subject to the sum

of the absolute values of the parameters being bounded

by a constant:

β̂ ¼ argmin ℓ βð Þ; subject to
X

β j

�

�

�

�

�

�
≤s

where, β̂ is the obtained parameters, l(β) is the log partial

likelihood of the logistic regression model, s>0 is a constant.

As a benefit of the absolute constraint, the lasso

method shrinks coefficients and changes some coeffi-

cients to zero [28]. Therefore, it can be used for the

feature reduction and selection. In this study, the

standardized constraint parameter s was set as

0.00013868 and lasso selected 6 nonzero coefficients

(β̂). Then, the logistic regression model was obtained with

its outcome being the hazard rate at the fifth year after op-

eration for individuals. The R software and “glmnet” pack-

age (R foundation for Statistical computing, Vienna,

Austria, URL: http://www.R-project.org, 2016) were

used for the lasso logistics regression model analysis.

Statistical analysis

Statistical analyses were performed using SPSS soft-

ware (20.0; SPSS, Inc., Chicago, IL, USA) and R soft-

ware (R Foundation for Statistical Computing, Vienna,

Austria) with the “rms” package (R Foundation for

Statistical Computing, Vienna, Austria). Continuous

variables were compared using the Mann-Whitney U,

while category variables were compared using Chi-

squared or Fisher’s exact tests. X-tile (Yale University,

New Haven, CT, USA) software was used to determine

the optimal cut-off value of the rad-score, which is a

graphical method that illustrates the presence of sub-

stantial tumor subpopulations and shows the robust-

ness of the relationship between a biomarker and

outcome by construction of a two-dimensional projec-

tion of every possible subpopulation [29, 30]. Survival

curves were depicted using Kaplan–Meier analysis

(log-rank test). The Cox’s proportional hazards regres-

sion model was applied for univariate and multivariate

analyses. “Rms” package was used to build nomogram

models. The Harrell’s concordance index (C-index)

and calibration curves were used to evaluate the

nomogram models [31]. Details of nomogram models

were listed in the Additional file 2. A two-sided value

of p < 0.05 was considered statistically significant.

Table 1 Clinicopathological features of HCC patients in training

and validation cohorts

Variable Training cohort Validation cohort p

Median(range) age, y 55(24–85) 55(13–83) 0.93

Gender (male/female) 175/37 88/19 0.95

Tumor size(≤3,> 3), cm 76/133 38/69 0.82

Vascular invasion
(Present/Absent)

22/190 12/95 0.82

Microvascular invasion
(Present/Absent)

68/144 29/78 0.36

Tumor differentiation (III-IV/I-II) 16/193 6/101 0.46

Liver cirrhosis(Present/Absent) 166/46 87/20 0.53

HbsAg (Positive/Negative) 178/34 85/22 0.32

Tumor encapsulation
(Present/ Absent)

112/110 59/48 0.70

Preoperative blood test

DBIL(mean ± SD), μmol/L 6.9 ± 11.9 7.3 ± 16.4 0.45

TBIL(mean ± SD), μmol/L 14.8 ± 14.5 15.04 ± 19.2 0.94

ALT(mean ± SD), U/L 40.1 ± 31.3 46.1 ± 69.2 0.91

AST(mean ± SD), U/L 38.7 ± 27.3 453.6 ± 66.3 0.67

AFP(mean ± SD), ng/ml 4460 ± 13,186 3800 ± 12,646 0.60

ALB(mean ± SD), g/L 40.7 ± 7.0 39.8 ± 3.6 0.06

GGT(mean ± SD), U/L 84.3 ± 98.8 80.8 ± 83.5 0.38

Abbreviations: ALB Albumin, ALT Alanine aminotransferase, AST Aspartate

aminotransferase, DBIL Direct Bilirubin, TBIL Total bilirubin, GGT, γ-

Glutamyltransferase, AFP Alpha-fetoprotein
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Results
Clinical characteristics of the patients

No significant differences in clinicopathological fea-

tures were observed between the two cohorts (Table 1).

All patients were solitary HCC and received R0 resec-

tion. The mean follow-up time in training and valid-

ation cohorts was 52.7 ± 21.6 months and 54.5 ±

22.1 months, respectively. Overall survival rates at 1, 3,

and 5 years after operation was 87, 76 and 69% for

training cohort and 88, 75 and 72% for validation co-

hort, respectively.

Results of inter-observer and intra-observer reproducibility

of radiomics feature extraction

Satisfactory inter- and intra-observer reproducibility of

the texture feature extraction was achieved. The repro-

ducibility of radiomics feature extraction was good be-

tween the two readers (ICC range: 0.71–0.95) or

between reader 1’s first and second-extracted features

(ICC range: 0.83–0.99). These results suggested that our

radiomics feature values were highly reproducible.

Development of the rad-score and its association with

clinicopathological features

Six features were selected out of 110 texture features

by using the lasso-logistic selection of the basis of 212

patients in the training cohort (Additional file 4: Figure

S3). The rad-score calculation formula consisting of

these features was presented in Additional file 2. All

the coefficients in the equation are from lasso-logistic

regression. Determined by X-tile software, the optimal

cut-off for rad-score was 4.32 (Rad-score range: Train-

ing cohort: 1.70–22.3; Validation cohort: 2.1–29.2). Ac-

cordingly, patients were divided into high (> 4.32) and

low (≤ 4.32) groups.

Further investigation was performed to assess the as-

sociation between the rad-score and clinicopathological

features in the training cohort (Additional file 5: Table

S1). Patients with low rad-score were positively associ-

ated with high preoperative alpha-fetoprotein (AFP) level

(p < 0.001), larger tumor size (p < 0.001), presence of vas-

cular invasion (p = 0.009), advanced TNM stage (p =

0.015) and BCLC stage (p = 0.020), suggesting that low

rad-score may indicate tumor aggressiveness.

Fig. 1 Prognostic significance of rad-score for solitary HCC patients. a Training cohort: median TTR [95%CI] for low rad-score [n = 49]

versus high rad-score [n = 163]: 38 [28.2–47.1] versus 53 [48.0–58.4] months; p = 0.005. b Validation cohort: p = 0.054. c Training cohort:

median OS [95%CI] for low rad-score [n = 49] versus high rad-score [n = 163]: 54.9[45.4–64.5] versus 70.5 [66.6–74.5] months; p = 0.003. d

Validation cohort: median OS [95%CI] for low rad-score [n = 37] versus high rad-score [n = 70]: 50.9[38.5–63.3] versus 82.2 [75.6–88.8]

months; p = 0.003
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Low rad-score correlated with poor survival in solitary

HCC patients

In the training cohort, low rad-score were significantly

associated with shorter TTR (median TTR [95%

confident interval (CI)] for low [n = 49] versus high

rad-score [n = 163]: 38 [28.2–47.1] versus 53 [48.0–58.4]

months; p = 0.005, Fig. 1a). In the validation cohort, no

significance was observed in recurrence between the two

groups with the p value of 0.054 (Fig. 1b), suggesting

that the rad-score was slightly over-fitted to the training

cohort. As for OS, low rad-score significantly correlated

with shorter postoperative survival in both training co-

hort (median OS [95% CI] for low [n = 49] versus high

rad-score [n = 163]: 54.9[45.4–64.5] versus 70.5 [66.6–

74.5] months; p = 0.003, Fig. 1c) and validation cohort

(median OS [95%CI] for low [n = 37] versus high [n =

70]: 50.9[38.5–63.3] versus 82.2 [75.6–88.8] months; p =

0.003, Fig. 1d).

Multivariate analyses suggested that rad-score was an in-

dependent prognostic factor of recurrence in the training

cohort (Hazard ratio (HR): 2.472, 95%CI: 1.339–4.564, p =

0.004, Table 2). As for OS, the rad-score (HR: 1.558, 95%CI:

1.022–2.375, p = 0.039, Table 3) was also identified as an in-

dependent prognostic factor in the training cohort. Similar

results were observed in the validation cohort (recurrence:

HR: 1.890, 95%CI: 1.04–3.436, p = 0.036, Table 2; survival:

HR: 3.236, 95%CI: 1.416–7.407, p = 0.005, Table 3).

All these results demonstrated that rad-score was an inde-

pendent prognostic factor of postoperative recurrence and

survival for solitary HCC patients. Patients with low rad-

score have a higher recurrence rate and poorer survival.

The performance of rad-score based prognostic

nomograms

Based on the results of multivariate analysis, rad-score

based nomogram predicting postoperative recurrence

Table 2 Uni-and Multivariate analyses of predictors of postoperative recurrence in training and validation cohorts

Variables Training cohort Validation cohort

Univariate Multivariate Multivariate

HR 95%CI p HR 95%CI p HR 95%CI p

Gender Male 1.131 0.672–1.903 0.642 \ \ \ \ \ \

Female

Tumor size ≤3 cm 1.831 1.190–2.817 0.006 \ \ 0.193 \ \ 0.167

> 3 cm

Vascular invasion Present 2.364 1.341–4.166 0.003 2.602 1.408–4.807 0.002 \ \ 0.141

Absent

Microvascular invasion Present 1.285 0.858–1.926 0.223 \ \ \ \ \ \

Absent

Differentiation III-IV 1.242 0.871–1.772 0.231 \ \ \ \ \ \

I-II

Liver Cirrhosis YES 1.076 0.89–1.301 0.451 \ \ \ \ \ \

NO

HBsAg Positive 1.292 0.747–2.233 0.359 \ \ \ \ \ \

Negative

Tumor encapsulation Present 1.533 1.032–2.277 0.034 1.637 1.074–2.494 0.022 \ \ 0.975

Absent

Rad-score ≤4.32 1.779 1.174–2.703 0.007 1.558 1.022–2.375 0.039 1.890 1.041–3.436 0.036

> 4.32

DBIL, μmol/L 1.002 0.986–1.019 0.797 \ \ \ \ \ \

TBIL, μmol/L 1.003 0.99–1.015 0.691 \ \ \ \ \ \

ALT, U/L 1.001 0.998–1.004 0.624 \ \ \ \ \ \

AST, U/L 1.001 0.999–1.004 0.339 \ \ \ \ \ \

AFP, ng/ml 1.000 1.000–1.000 0.494 \ \ \ \ \ \

ALB, g/L 1.020 0.986–1.055 0.253 \ \ \ \ \ \

GGT, U/L 1.002 1.001–1.004 0.002 1.002 1.000–1.003 0.017 \ \ 0.426

Abbreviations: ALB Albumin, ALT Alanine aminotransferase, AST Aspartate aminotransferase, DBIL Direct Bilirubin, TBIL Total bilirubin; GGT γ-Glutamyltransferase,

AFP Alpha-fetoprotein
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(Fig. 2a) of solitary HCC patients was established. In

the nomogram model, each factor was ascribed a

weighted point that implied a risk of recurrence or sur-

vival. For example, low rad-score was ascribed 20

points (on a scale of 0–100 points) in nomogram for

postoperative survival. Each patient with a high total

score had a worse prognosis, namely higher risk of re-

currence or death. C-index was used to evaluate the

predictive accuracy (discrimination) of the rad-score

based nomograms, which was 0.639 (95% CI: 0.577–

0.701, Table 4) for the nomogram of recurrence and

0.714 (95% CI: 0.635–0.793, Table 4) for the nomogram

of survival in the training cohort. In the validation cohort,

the C-index was 0.587(95% CI: 0.479–0.695, Table 4) for

nomogram of recurrence, and the C-index was 0.71 (95%

CI: 0.602–0.808, Table 4) for nomogram of survival. In

addition, 50-sample bootstrapped calibration plots re-

vealed the good predictive accuracy of the nomogram for

the prediction of 3- (Fig. 2b, c) and 5- (Fig. 2d, e) year re-

currence rate in the training and validation cohorts.

Similarly, rad-score based nomogram prediction postop-

erative survival of solitary HCC patients was developed

(Fig. 3a). Good predictive accuracy of 3- (Fig. 3b, c) and

5-(Fig. 3d, e) year survival rate was also observed in both

training and validation cohorts.

Indeed, the Hosmer-Lemeshow test yielded no signifi-

cant difference between the predictive calibration curve

and the ideal curve for postoperative recurrence and sur-

vival prediction in both training and validation datasets.

These results indicated that two nomograms could pre-

dict postoperative recurrence and survival effectively.

Comparison between the rad-score based nomograms

and traditional staging systems

Previously, several traditional staging systems have

been proposed for patients with HCC, including 7th

Table 3 Uni-and Multivariate analyses of predictors of postoperative survival in training and validation cohorts

Variables Training cohort Validation cohort

Univariate analysis Multivariate analysis Multivariate analysis

HR 95%CI p HR 95%CI p HR 95%CI p

Gender Male 0.931 0.451–1.923 0.847 \ \ \

Female

Tumor size(cm) ≤3 2.822 1.406–5.650 0.004 1.910 0.897–4.070 0.035 \ \ 0.139

> 3

Vascular invasion Present 3.52 1.701–7.287 0.001 1.794 0.797–4.037 0.008 \ \ 0.982

Absent

Micro-vascular invasion Present 1.084 0.574–2.051 0.803 \ \ \ \ \ \

Absent

Differentiation III-IV 1.515 0.886–2.592 0.129 \ \ \ \ \ \

I-II

Liver Cirrhosis Yes 1.113 0.838–1.479 0.458 \ \ \ \ \ \

No

HBsAg Present 1.557 0.662–3.664 0.31 \ \ \ \ \ \

Absent

Tumor encapsulation Absent 2.105 1.155–3.846 0.015 2.326 1.272–4.255 0.006 \ \ 0.394

Present

Rad-score ≤4.32 2.387 1.321–4.310 0.004 2.283 1.261–4.132 0.006 3.236 1.416–7.407 0.005

> 4.32

DBIL, μmol/L 1.015 0.998–1.031 0.084 \ \ \ \ \

TBIL, μmol/L 1.012 0.998–1.026 0.102 \ \ \ \ \ \

ALT, U/L 0.998 0.991–1.005 0.57 \ \ \ \ \ \

AST, U/L 1.000 0.995–1.005 0.946 \ \ \ \ \ \

AFP, ng/ml 1.000 1.000–1.000 0.189 \ \ \ \ \ \

ALB, g/L 1.020 0.964–1.079 0.495 \ \ \ \ \ \

GGT, U/L 1.004 1.003–1.006 < 0.0001 1.004 1.002–1.006 < 0.0001 \ \ 0.249

Abbreviations: ALB Albumin, ALT Alanine aminotransferase, AST Aspartate aminotransferase, DBIL Direct Bilirubin, TBIL Total bilirubin, GGT, γ-Glutamyltransferase,

AFP alpha-fetoprotein
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Fig. 2 Development of rad-score based nomograms and calibration curves of the rad-score based nomogram for recurrence in both training and

validation cohorts. a The prognostic nomogram for recurrence. b Calibration curves for 3 years TTR in the training cohort. c Calibration curves for

3 years TTR in the validation cohort. d Calibration curves for 5 years TTR in the training cohort. e Calibration curves for 5 years TTR in the validation cohort

Zheng et al. BMC Cancer         (2018) 18:1148 Page 7 of 12



edition of the American Joint Committee on Cancer

(AJCC) TNM staging criteria, BCLC staging system

[32], Japan Integrated Staging (JIS) [33] score and

Hong Kong Liver Cancer (HKLC) staging score [34].

In the training cohort, the C-index of these staging

systems in predicting postoperative survival was 0.575

(95% CI: 0.515–0.635) for AJCC staging system,

0.574(95% CI: 0.511–0.637) for BCLC staging system,

0.601(95% CI: 0.533–0.669) for JIS staging system and

0.628(95% CI: 0.548–0.708) for HKLC staging system,

respectively (Table 4). When being compared to

C-indices of our new nomogram including the

rad-score, the C-indices of these staging systems were

significantly lower in both training and validation co-

horts. As for recurrence, the C-index of four staging

systems was 0.552 (95% CI: 0.513–0.581) for AJCC

TNM staging system, 0.547 (95% CI: 0.506–0.588) for

BCLC staging system, 0.554 (95% CI: 0.508–0.600) for

JIS staging system and 0.575 (95% CI: 0.529–0.631) for

HKLC staging system, respectively, significantly lower

than the C-index of our nomogram including the rad-

score in both training and validation cohorts (Table 4).

All these results suggested that our rad-score based no-

mograms had a better discrimination performance than

traditional staging system for solitary HCC patients.

Assessment of incremental value of rad-score

To investigate the incremental value of rad-score in in-

dividual postoperative recurrence and survival predic-

tion, we compared the discrimination performance of

clinicopathological nomograms and rad-score based

nomograms. The clinicopathological nomograms were

established based on independent clinicopathological

risk factors, with the C-index of 0.633 (95% CI: 0.571–

0.695) for recurrence and 0.554 (95% CI: 0.485–0.623)

for postoperative survival in the training cohort. The

discrimination performance of the nomogram im-

proved when the rad-score was integrated (recurrence:

C-index, 0.639, 95%CI: 0.577–0.701; survival: C-index,

0.714, 95%CI: 0.635–0.793), significantly higher than

the discrimination performance of clinicopathological

nomogram in the training cohort (Table 4). In the val-

idation cohort, similar results were observed for post-

operative survival. The C-index of clinicopathological

nomogram was 0.642 (95%CI: 0.532–0.752), while the

C-index (0.710, 95%CI: 0.602–0.818) improved after in-

corporating the rad-score into nomogram (Table 4). These

results suggested that the rad-score was a good comple-

mentary to clinicopathological factors in individual post-

operative recurrence and survival prediction.

The similar analysis was performed for traditional

staging systems. An improvement in evaluating post-

operative recurrence and survival was observed after

combining the rad-score with the TNM staging system

and BCLC staging system (Table 4). Hence, the

rad-score is complementary to the TNM and BCLC

staging system, demonstrating the valuable prognostic

role of rad-score.

Discussion

In this study, a multi-CT-texture feature based rad-

score was proposed, which successfully stratified pa-

tients into groups with significant differences in TTR

and OS, and may be complementary to traditional

staging systems.

Radiomics, a promising field of oncological research,

assume that image features could predict the prognosis

of patients, as they are associated with tumor bio-

logical characteristics [11, 35]. Previous studies have

supported this hypothesis [17, 36]. For instance,

Table 4 C-indices of rad-score based nomograms, clinicopathological nomograms and traditional staging systems

Training cohort Validation cohort

TTR OS TTR OS

C-index 95%CI C-index 95%CI C-index 95%CI C-index 95%CI

Rad-score 0.563 0.516–0.610 0.541 0.488–0.594 0.555 0.491–0.619 0.629 0.529–0.729

Rad-score based nomograms 0.639 0.577–0.701 0.714 0.635–0.793 0.587 0.479–0.695 0.710 0.602–0.818

Clinical-pathological nomograms 0.633 0.571–0.695 0.554 0.485–0.623 0.601 0.592–0.610 0.642 0.532–0.752

Rad-score-TNM nomogram 0.584 0.531–0.637 0.626 0.549–0.703 0.601 0.530–0.672 0.617 0.507–0.727

Rad-score-BCLC nomogram 0.580 0.526–0.634 0.627 0.549–0.705 0.601 0.523–0.679 0.622 0.509–0.735

Traditional staging system

TNM 0.552 0.513–0.581 0.575 0.515–0.635 0.553 0.499–0.607 0.521 0.453–0.589

BCLC 0.547 0.506–0.588 0.574 0.511–0.637 0.548 0.485–0.611 0.506 0.420–0.592

JIS 0.554 0.508–0.600 0.601 0.533–0.669 0.564 0.503–0.625 0.574 0.504–0.644

HKLC 0.575 0.529–0.631 0.628 0.620–0.636 0.582 0.507–0.657 0.596 0.487–0.701

Abbreviation: TNM Tumor–node–metastasis, BCLC Barcelona Clinic Liver Cancer stage system, JIS Japan Integrated Staging, HKLC Hong Kong Liver Cancer

staging score
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Banerjee et al. proposed an image features of venous

invasion, consisting of three semantic features (internal

arteries, hypodense halo, and tumor liver difference),

were closely associated with early recurrence and poor

survival for HCC [37]. Similarly, the rad-score identi-

fied in our study was closely associated with patho-

logical factors of HCC, like larger tumor size and

vascular invasion and could be predictive of recurrence

and survival.

Previously, several staging systems have been pro-

posed for HCC patients, including TNM, BCLC, and

HKLC [38]. Our rad-score based nomograms yielded a

better discriminative ability than these traditional sta-

ging systems for solitary HCC patients. In addition,

our results suggested that the rad-score could comple-

ment the TNM and BCLC staging systems in prognos-

tic stratification as the C-index value increased when

the rad-score was added to them. This incremental

ability indicated the clinical importance of our finding

for solitary HCC patients.

In our study, lasso-logistic regression model was per-

formed to select texture features to establish the

rad-score, as features obtained from lasso were gener-

ally accurate and the regression coefficients of most

features were shrunk toward zero during overfitting

[39], making the model easier to interpret and allowing

the identification of the most valuable features [40]. In-

deed, this method had been widely used in similar

studies [14, 19].

Of note, the C-index values were relatively low for

traditional staging systems, this phenomenon may be

attributed to the study design. In our study, only soli-

tary HCC patients were included. According to the

traditional staging systems, these patients belong to

the early or intermediate stages and are appropriate for

surgery. Although they share the same or similar stage,

a great deal of heterogeneity exists among them and

they have a diverse postoperative prognosis. Thus,

traditional staging systems could not actually predict

recurrence and survival for these patients. In addition,

the rad-score proposed also shared a relatively low

C-index, but this couldn’t affect the clinical signifi-

cance of rad-score, as it could stratify these patients

into groups with different prognosis and improved the

prognostic performance of traditional staging systems

when being added into them for these patients.

The current study had several limitations. On one

hand, the data in this study were derived from only

one hepatobiliary center. On the other hand, only

solitary HCC patients were included in this study, which

may influence the generalization of the conclusion. In

addition, this is a retrospective research. Therefore, fur-

ther perspective multicenter analyses including HCC pa-

tients as various tumor stages were needed to validate the

prognostic significance of this rad-score.

Conclusions

In summary, a rad-score derived from CT texture fea-

tures was proposed in this study, which was an inde-

pendent prognostic factor for tumor recurrence and

survival of solitary HCC patients. In addition, this

image score was complementary to the current staging

systems of HCC patients. Finally, prognostic nomo-

grams combining this score and clinicopathological

features were proposed, which outperformed trad-

itional staging systems and provided a convenient way

to predict prognosis for solitary HCC patients, and

may influence decision-making on the possible benefit

of surgery.
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