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Radiomics strategies for risk 
assessment of tumour failure in 
head-and-neck cancer
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Hugo J. W. L. Aerts  6, Nader Khaouam5, Phuc Felix Nguyen-Tan4, Chang-Shu Wang3,  

Khalil Sultanem2, Jan Seuntjens1 & Issam El Naqa  7

Quantitative extraction of high-dimensional mineable data from medical images is a process known 

as radiomics. Radiomics is foreseen as an essential prognostic tool for cancer risk assessment and the 

quantification of intratumoural heterogeneity. In this work, 1615 radiomic features (quantifying tumour 
image intensity, shape, texture) extracted from pre-treatment FDG-PET and CT images of 300 patients 
from four different cohorts were analyzed for the risk assessment of locoregional recurrences (LR) and 
distant metastases (DM) in head-and-neck cancer. Prediction models combining radiomic and clinical 
variables were constructed via random forests and imbalance-adjustment strategies using two of the 

four cohorts. Independent validation of the prediction and prognostic performance of the models was 

carried out on the other two cohorts (LR: AUC = 0.69 and CI = 0.67; DM: AUC = 0.86 and CI = 0.88). 
Furthermore, the results obtained via Kaplan-Meier analysis demonstrated the potential of radiomics 

for assessing the risk of specific tumour outcomes using multiple stratification groups. This could 
have important clinical impact, notably by allowing for a better personalization of chemo-radiation 
treatments for head-and-neck cancer patients from different risk groups.

Precision oncology promises to tailor the full spectrum of cancer care to an individual patient, notably in terms 
of personalization of cancer prevention, screening, risk strati�cation, therapy and response assessment. With 
su�cient infrastructure support and concerted e�orts from the di�erent stakeholders, it is possible to foresee 
that personalized therapy would become the standard of care in oncology1. Cancer mechanisms are increasingly 
elucidated as functions of di�erent biomarkers or tumour genetic mutations, thereby changing the way we design 
clinical trials to achieve better cancer management e�cacy in speci�c patient sub-populations2. On the other 
hand, rapid learning paradigms (i.e., knowledge-driven healthcare) consisting of reusing routine clinical data to 
develop knowledge in the form of models that can predict treatment outcomes for a larger portion of the popula-
tion have also gained popularity in the oncology community3, 4. Although most research approaches to precision 
oncology are centered on genomics technologies5, 6, it is thought that only the integration of multiple-omics, i.e., 
panomics data (genomics, transcriptomics, proteomics, metabolomics, etc.) could e�ciently unravel biological 
mechanisms7, 8.

�e importance of panomics integration for cancer risk assessment emerges from the tremendous extent of 
heterogeneous characteristics expressed at multiple levels of tumours. Genes, proteins, cellular microenviron-
ments, tissues and anatomical landmarks within tumours exhibit considerable spatial and temporal variations 
that could potentially yield valuable information about tumour aggressiveness. Tumours are generally composed 
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of multiple clonal sub-populations of cancer cells forming complex dynamic systems that exhibit rapid evolution 
as a result of their interaction with their microenvironment and therapy perturbations9. Di�ering properties 
can be attributed to the di�erent sub-populations in terms of growth rate, expression of biomarkers, ability to 
metastasize and immunological characteristics10. �ese properties could be described by di�erences in meta-
bolic activity, cell proliferation, oxygenation levels, pH, blood vasculature and necrotic areas observed within the 
tumour. Such intratumoural di�erences are related to the concept of tumour heterogeneity, a characteristic that 
can be observed with signi�cantly di�erent extents even amongst tumours of the same histopathological type. 
Tumours exhibiting such heterogeneous characteristics are thought to be associated with high risk of resistance 
to treatment, progression, metastasis or recurrence11–13.

Nowadays, medical imaging plays a central role in the investigation of intratumoural heterogeneity, as radi-
ological images are acquired as routine practice for almost every patient with cancer. Medical images such as 
2-deoxy-2-[18F]�uoro-D-glucose (FDG) positron emission tomography (PET) and X-ray computed tomograph 
(CT) are minimally invasive and they carry an immense source of potential data for decoding tumour pheno-
types14. �e quantitative extraction of high-dimensional mineable data from all types of medical images and 
whose subsequent analysis aims at supporting clinical decision-making is a process coined with the term “radi-
omics”15–18. �e demonstration that gene-expression signatures and clinical phenotypes could be inferred from 
tumour imaging features19–21 has led to an exponential growth of this �eld in the past few years22, 23. �e under-
lying hypothesis of radiomics is that the genomic heterogeneity of aggressive tumours could translate into heter-
ogeneous tumour metabolism and anatomy, thereby envisioning the quantitative analysis of diagnostic medical 
images as an essential prognostic tool for cancer risk assessment and as an integral part of panomic tumour 
signature pro�ling.

�e translation of radiomics analysis into standard cancer care to support treatment decision-making involves 
the development of prediction models integrating clinical information that can assess the risk of speci�c tumour 
outcomes24 (Fig. 1). In this work, our main objective is to construct prediction models using advanced machine 
learning to evaluate the risk of locoregional recurrences and distant metastases prior to chemo-radiation of 
head-and-neck (H&N) cancers, a group of biologically similar neoplasms originating from the squamous cells 
that line the mucosal surfaces in the oral cavity, paranasal sinuses, pharynx or larynx. �e locoregional control of 
H&N cancers is usually good, but this is, however, not matched by improvements in survival, as the development 
of distant metastases and second primary cancers are the leading causes of treatment failure and death25, 26. In 
order to improve patient survival and outcomes, the importance of identifying relevant prognostic factors that 
can better assess the aggressiveness of tumours at the moment of diagnosis is crucial.

We hypothesize that radiomic features are important prognostic factors for the risk assessment of speci�c 
H&N cancer outcomes27. �e machine learning strategy employed in this work involves the extraction of 1615 
di�erent radiomic features from a total of 300 patients from four di�erent institutions. Two cohorts are used 
to construct the prediction models by combining radiomics (intensity, shape, textures) and clinical attributes 
(patient age, H&N type, tumour stage) via random forests classi�ers and imbalance-adjustments of training sam-
ples, and the remaining two cohorts are reserved to evaluate the prediction (binary assessment of outcome) and 
prognostic (time-to-event assessment) performance of the corresponding models (Fig. 2). �roughout this study, 
results obtained for locoregional recurrences and distant metastases are also compared against prediction models 
constructed for the general risk assessment of overall survival in H&N cancer. A comprehensive comparison 
of the prediction/prognostic performance of radiomics versus clinical models and volumetric variables is also 
performed. Our results suggest that the integration of radiomic features into clinical prediction models has con-
siderable potential for assessing the risk of speci�c outcomes prior to treatment of H&N cancer. Accurate strati�-
cation of locoregional recurrence and distant metastasis risks could eventually provide a rationale for adapting the 
radiation doses and chemotherapy regimens that the patients receive. Overall, combining quantitative imaging 
information with other categories of prognostic factors via advanced machine learning could have a profound 
impact on the characterization of tumour phenotypes and would increase the possibility of translation of outcome 
prediction models into the clinical environment as a means to personalize treatments.

Results
Summary of presentation of results. To ease reading and the understanding of this study, a summary of 
how results are presented in the text is provided in Supplementary Fig. S1.

Association of variables with tumour outcomes. In order to assess the value of quantitative 
pre-treatment imaging to predict speci�c tumour outcomes in H&N cancer, we performed a comprehensive 
univariate analysis of the association of radiomic features with locoregional recurrences (“LR” or “Locoregional”), 
distant metastases development (“DM” or “Distant”) and overall survival (“OS” or “Survival” or “Death”). A total 
of 1615 radiomic features (Fig. 1b and Supplementary Methods section 2.5 for complete description) were �rst 
extracted from the gross tumour volume (GTVprimary + GTVlymph nodes) of the FDG-PET and CT images (Fig. 1a), 
for all 300 patients from the four H&N cancer cohorts (Fig. 2): (I) 10 �rst-order statistics features (intensity); II) 
5 morphological features (shape); and III) 40 texture features each extracted using 40 di�erent combinations of 
parameters. We also compared these results to the predictive power of the tumour volume (“Volume”) and of 
the following clinical variables: Age, T-Stage, N-Stage, TNM-Stage and human papillomavirus status (HPV sta-
tus), where HPV status was available for 120 of the 300 patients (Supplementary Tables S5–S8). �e association 
of the di�erent variables with the di�erent H&N cancer outcomes (binary endpoints) was then analyzed using 
Spearman’s rank correlations (rs) computed on all patients, and signi�cance was assessed by applying multiple 
testing corrections using the Benjamini-Hochberg procedure28 with a false discovery rate of 10%.

Overall, we found that 0%, 63% and 12% of the total radiomic features extracted from PET scans, and that 0%, 
61% and 34% of the total radiomic features extracted from CT scans were signi�cantly associated with LR, DM 
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and OS, respectively (a�er multiple testing corrections). �e radiomic features (PET or CT) with the highest asso-
ciations with LR, DM and OS were LZHGEGLSZM from CT scans (rs = −0.15, p = 0.007), ZSNGLSZM from CT scans 
(rs = −0.29, p = 2 × 10−7) and GLVGLRLM from CT scans (rs = 0.24, p = 4 × 10−5), respectively (Supplementary 
Table S1). Tumour volume was not found to be signi�cantly associated with LR (rs = −0.04, p = 0.48), but was 
signi�cantly associated with DM (rs = 0.24, p = 3 × 10−5) and OS (rs = −0.18, p = 2 × 10−3). Finally, we found 
that {Age, T-Stage, N-Stage, HPV status}, {N-Stage} and {Age, T-Stage, HPV status} were signi�cantly associ-
ated with LR, DM and OS, respectively. �e clinical variables with the highest associations with LR, DM and 
OS were HPV − (rs = 0.39, p = 8 × 10−6), higher N-Stage (rs = 0.18, p = 1 × 10−3) and higher T-Stage (rs = 0.21, 
p = 3 × 10−4), respectively (Supplementary Table S2).

Construction of prediction models. �e construction of prediction models for LR, DM and OS was car-
ried out using a training set consisting of the combination of 194 patients from the H&N1 and H&N2 cohorts 
(Fig. 2). �ree initial radiomic feature sets were considered: I) the 1615 radiomic features extracted from PET 
scans (“PET” feature set); II) the 1615 radiomic features extracted from “CT” scans (“CT” feature set); and III) a 
combined set containing all “PET” and “CT” radiomic features used in feature sets I and II (“PETCT” feature set).

Prediction models consisting of radiomic information only were �rst constructed for each of the three H&N 
outcomes and the three initial radiomic feature sets. Feature set reduction, feature selection, prediction performance 

Figure 1. From radiomics analysis to treatment personalization. (a) Example of diagnostic FDG-PET and 
CT images of two head-and-neck cancer patients with tumour contours. �e patient that did not respond 
well to treatment (right) has a more heterogeneous intratumoural intensity distribution in both FDG-PET 
and CT images than the patient that responded well to treatment (le�). (b) �e radiomics analysis strategy 
involves the extraction of features di�erentiating responders from non-responders to treatment. Features are 
extracted from the FDG-PET and CT tumour contours and quantify tumour shape, intensity, and texture. 
(c) Advanced machine learning combines radiomic features and patient clinical information via a random 
forest algorithm. �e classi�er is trained to di�erentiate between responders and non-responders to treatment 
(prediction model). (d) �e output probability of the random forest classi�er computed on new patients can be 
used to assess the risk of non-response to treatment via probabilities of occurrence of outcome events and time 
estimates. Eventually, accurate risk assessment of speci�c tumour outcomes via radiomics analysis could help to 
better personalize cancer treatments.
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Figure 2. Models construction strategy and analysis work�ow. Four di�erent cohorts were used to demonstrate 
the utility of radiomics analysis for the pre-treatment assessment of the risk of locoregional recurrence and 
distant metastases in head-and-neck cancer. �e H&N1 and H&N2 cohorts were combined and used as a single 
training set (n = 194), whereas the H&N3 and H&N4 cohorts were combined and used as a single testing set 
(n = 106). �e best combinations of radiomic features were selected in the training set using imbalance-adjusted 
logistic regression learning and bootstrapping validations. �ese radiomic features were combined with selected 
clinical variables in the training set using imbalance-adjusted random forest learning and strati�ed random sub-
sampling validations. Independent prediction analysis was performed in the testing set for all classi�ers fully 
constructed in the training set. Independent prognosis analysis and Kaplan-Meier risk strati�cation was carried 
out in the testing set using the output probability of occurrence of events of random forests fully constructed in 
the training set.
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estimation, choice of model complexity (Supplementary Fig. S2) and �nal model computation processes were car-
ried out using logistic regression and bootstrap resampling, similarly to the methodology developed in the study 
of Vallières et al.29. To account for the disproportion of occurrence of events and non-occurrence of events in 
the training set (15% LR, 13% DM, 16% deaths), an imbalance-adjustment strategy adapted from the study of 
Schiller et al.30 was also applied during the training process. Overall for the PET, CT and PETCT feature sets, the 
number of variables forming the �nal radiomic models for each outcome were, respectively: I) 8, 3 and 3 radiomic 
variables for the LR outcome; II) 6, 3 and 3 radiomic variables for the DM outcome; and III) 4, 3 and 6 radiomic 
variables for the OS outcome.

�e construction of prediction models combining radiomic and clinical variables was then carried out for 
the nine identi�ed radiomic models (3 feature sets × 3 outcomes). By estimating prediction performance via 
strati�ed random sub-sampling in the training set, the following group of clinical variables were �rst selected 
for each outcome: I) {Age, H&N type, T-Stage, N-Stage} for LR prediction; II) {Age, H&N type, N-Stage} for DM 
prediction; and III) {Age, H&N type, T-Stage, N-Stage} for OS prediction. Final prediction models were ultimately 
constructed for each radiomic feature set and H&N outcome by combining the selected radiomic and clinical 
variables via random forests and imbalance adjustments.

Performance of prediction models. �e performance of the radiomic prediction models constructed 
using logistic regression and of the prediction models constructed by combining radiomic and clinical variables 
via random forests was validated in a testing set consisting of the combination of 106 patients from the H&N3 and 
H&N4 cohorts (Fig. 2) using receiver operating characteristic (ROC) metrics (binary endpoints).

Figure 3 presents the performance results (AUC: area under the ROC curve) obtained in the testing set for the 
radiomics and radiomics + clinical models, where the signi�cance of the increase in AUC when combining clinical 
to radiomic variables is assessed using the method of DeLong et al.31. Sensitivity, speci�city and accuracy of pre-
dictions are also presented in Supplementary Fig. S3. Overall, it can be observed that there is a general increase in 
prediction performance for many of the di�erent categories of models that we constructed in this work. For LR 
prediction, the increase in AUC is signi�cant for prediction models from the PET (p = 0.03) and the CT (p = 0.01) 
radiomic feature sets. For DM prediction, none of the radiomics models show a signi�cant AUC increase when 
combined with clinical variables. For OS (death) prediction, the increase in AUC is signi�cant for prediction 
models from the PET (p = 0.01) and the PETCT (p = 0.006) radiomic feature sets. Furthermore, we veri�ed that 
the increase in performance is not explained by the use of a more complex and potentially more predictive learn-
ing algorithm: random forests classi�ers constructed with radiomic variables alone preserved the predictive prop-
erties obtained by logistic regression models constructed with the same variables, but without improving them 
(Supplementary Table S3). �ese results point to the potential of random forests in successfully combining the 
complementary value of di�erent categories of prognostic factors such as radiomic and clinical variables.

In Fig. 3, the highest performance for LR prediction was obtained using the model combining the PETCT 
radiomic and clinical variables, with an AUC of 0.69. For DM prediction, the highest performance was obtained 

Figure 3. Prediction performance of selected models. All prediction models were selected and built using the 
training set (H&N1 and H&N2; n = 194) for three initial radiomic feature sets: I) PET radiomic features (PET); 
II) CT radiomic features (CT); and III) PET and CT radiomic features (PETCT). �e prediction performance is 
evaluated here in terms of the area under the receiver operating characteristic curve (AUC) for patients of the 
testing set (H&N3 and H&N4; n = 106), for two types of prediction models: I) Radiomic models constructed 
using logistic regression (Radiomics); and II) Radiomic models combined with clinical variables via random 
forests (Radiomics + clinical). Signi�cant increase in AUC from Radiomics to Radiomics + clinical models 
is identi�ed with an asterisk (*), and non-signi�cant increase is identi�ed by n.s. �e radiomic feature sets 
providing the prediction models with highest performance in this study are identi�ed with an arrow for each 
outcome.
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using the CT radiomic model, with an AUC of 0.86. �ese results demonstrate that di�erent radiomic-based 
models could successfully be used to predict speci�c outcomes such as locoregional recurrences and distant 
metastases in H&N cancer. Finally, the highest performance for OS (death) prediction was obtained using the 
model combining the PET radiomic and clinical variables, with an AUC of 0.74. For subsequent analysis in the 
next section, only the prediction models (radiomics and radiomics + clinical) constructed from these radiomic 
features sets (PETCT for LR, CT for DM, PET for OS) are used. �e complete description of these identi�ed 
radiomic models (speci�c features, texture extraction parameters, logistic regression coe�cients) is given in 
Supplementary Results section 1.4.2.

Comparison with other prognostic factors. �e performance of the best radiomic prediction models 
and the best prediction models combining radiomic and clinical variables identi�ed in this study (shown with 
arrows in Fig. 3) were further compared against other prognostic factors: I) Volume; II) “clinical-only” models; 
III) combination of Volume and clinical variables; and IV) a validated radiomic signature developed for the prog-
nosis assessment of overall survival21, 32. In addition to the prediction performance evaluated using ROC metrics, 
the prognostic performance of the models was also assessed using: I) the concordance index (CI)33 between 
the output probability of occurrence of an event (LR, DM, death) of prediction models and the time-to-event, 
de�ned as the time elapsed between the date the treatment ended and the date when an event occurred or the date 
of last-follow-up; and II) the p-value obtained from Kaplan-Meier analysis using the log-rank test between two 
risk groups. �e models consisting of only radiomic or the Volume variables were optimized using logistic or cox 
regression, and all models involving clinical variables were optimized using random forest classi�ers, still using 
the de�ned training set of this work (H&N1 and H&N2 cohorts; n = 194). Fully independent results are then 
presented in Table 1 for models evaluated in the testing set (H&N3 and H&N4 cohorts; n = 106).

For locoregional recurrences, we found that the model combining the PETCT radiomic and clinical variables 
provided the best performance in terms of predictive/prognostic power and balance of classi�cation of occur-
rence and non-occurrence of events, notably with an AUC of 0.69, a sensitivity of 0.63, a speci�city of 0.68, an 
accuracy of 0.67, a CI of 0.67 and a Kaplan-Meier p-value of 0.03. Using random permutation tests, each variable 

Outcome Variables

Prediction Prognosis

AUCa Sensitivitya Speci�citya Accuracya CIb p-valuec

Locoregional

RadiomicsPETCT 0.64 0.56 0.67 0.65 0.63 0.28

Volume 0.43 0.31 0.58 0.54 0.40 0.80

Clinical 0.72 0.50 0.76 0.72 0.69 0.05

RadiomicsPETCT + Clinical 0.69 0.63 0.68 0.67 0.67 0.03

Volume + Clinical 0.71 0.50 0.76 0.72 0.68 0.06

Distant

RadiomicsCT 0.86 0.79 0.77 0.77 0.88 0.0001

Volume 0.80 0.86 0.65 0.68 0.83 0.10

Clinical 0.55 0.64 0.46 0.48 0.60 0.61

RadiomicsCT + Clinical 0.86 0.86 0.76 0.77 0.88 0.000003

Volume + Clinical 0.78 1 0.50 0.57 0.80 0.0004

Survival

RadiomicsPET 0.62 0.58 0.66 0.64 0.60 0.03

Volume 0.68 0.67 0.57 0.59 0.67 0.29

Clinical 0.78 0.92 0.57 0.65 0.76 0.00003

RadiomicsPET + Clinical 0.74 0.79 0.57 0.62 0.71 0.002

Volume + Clinical 0.79 0.88 0.52 0.60 0.76 0.0006

Survivald

RadiomicsCTcompleteSign
e — — — — 0.66 0.70

RadiomicsCTsign
f 0.68 0.71 0.50 0.55 0.66 0.05

RadiomicsCTsign
g + Clinical 0.80 0.96 0.38 0.51 0.75 0.001

Table 1. Comparison of prediction/prognostic performance of models constructed in this work with other 
combinations of variables. → Performance is shown for models constructed in the training set (H&N1 and 
H&N2; n = 194) and independently evaluated in the testing set (H&N3 and H&N4; n = 106). → Models 
involving Radiomic variables only or the Volume variable only were optimized using logistic/cox regression. 
All models involving Clinical variables were optimized using random forests. → �e best predictive/
prognostic and balanced models for each outcome (�nal models) are identi�ed in italic and are fully described 
in Supplementary Table S4. aBinary prediction of outcomes using logistic regression/random forest output 
responses. bConcordance-index between cox regression/random forest output responses and time to events. 
cLog-rank test from Kaplan-Meier curves with a risk strati�cation into two groups (thresholds: median hazard 
ratio for cox regression, output probability of 0.5 for random forests). dRadiomic signature variables as de�ned 
in the study of Aerts & Velazquez et al.21. eUsing the original de�nition of the radiomic signature variables, and 
the original cox regression coe�cients and median hazard ratio trained from the Lung1 cohort in the study of 
Aerts & Velazquez et al.21. fUsing a revised version of the radiomic signature variables (Supplementary Methods 
section 2.6.2) and new cox/logistic regression coe�cients trained using the current training set of this work. 
gUsing a revised version of the radiomic signature variables (Supplementary Methods section 2.6.2) and a 
random forest classifer trained using the current training set of this work.

http://1.4.2
http://S4
http://2.6.2
http://2.6.2


www.nature.com/scientificreports/

7SCIENTIFIC REPORTS | 7: 10117  | DOI:10.1038/s41598-017-10371-5

was calculated to be approximately of equal importance in the random forest model (Supplementary Table S4). 
Similarly to univariate analysis, Volume was not found to be a signi�cant prognostic factor for LR. On the other 
hand, clinical variables alone had high performance with an AUC of 0.72 and a CI of 0.69, but this type of mode-
ling did not provide su�cient balance between the prediction of occurrence and non-occurrence of events (sen-
sitivity of 0.50, speci�city of 0.76).

For distant metastases, we found that the model combining the CT radiomic and clinical variables provided 
the best overall performance, notably with an AUC of 0.86, a sensitivity of 0.86, a speci�city of 0.76, an accuracy 
of 0.77, a CI of 0.88 and a Kaplan-Meier p-value of 3 × 10−6. However, radiomic variables were found to be of 
much higher importance than the clinical variables in the random forest model (Supplementary Table S4). In fact, 
the model composed of clinical variables alone did not perform well. Volume was again found to be a signi�cant 
prognostic factor for DM, but radiomic variables outperformed it.

For overall survival, we found that the model composed of clinical variables alone provided the best overall 
performance, notably with an AUC of 0.78, a sensitivity of 0.92, a speci�city of 0.57, an accuracy of 0.65, a CI of 
0.76 and a Kaplan-Meier p-value of 3 × 10−5. Furthermore, the H&N type variable had the highest and N-Stage 
the lowest importance in the model (Supplementary Table S4). Another important �nding was that Volume alone 
provided similar or better prognosis assessment of OS than any of the following radiomic-based models: I) the 
best radiomic model for OS constructed in this work; II) the original radiomic signature using the cox regression 
coe�cients employed in the work of Aerts & Velazquez et al.21; and III) a revised version of the radiomic signature 
computation (Supplementary Section 2.6.2) using new sets of regression coe�cients trained with the current 
training set of this work.

Risk assessment of tumour outcomes. �e work performed in this study leads to the identi�cation of 
three prediction models based on three �nal random forest classi�ers, one for each of the three outcomes studied 
here (identi�ed with italic fonts in Table 1): I) {PET-GLNGLSZM, CT-CorrelationGLCM, CT-LGZEGLSZM, Age, H&N 
type, T-Stage, N-Stage} for LR; II) {CT-LRHGEGLRLM, CT-ZSVGLSZM, CT-ZSNGLSZM, Age, H&N type, N-Stage} for 
DM; and III) {Age, H&N type, T-Stage, N-Stage} for OS. A property of a random forest is that the binary prediction 
of each of its decision trees can be averaged to serve as an output probability of occurrence of a given event (pro-
bRF). �is output probability, similarly to other machine learning algorithms, can constitute one of the tools to be 
used for the risk assessment of speci�c tumour outcomes. For example, the �nal random forest classi�ers con-
structed with the training set (H&N1 and H&N2 cohorts; n = 194) can be used to stratify the risk of occurrence 
of the outcome events for each patient of the testing set (H&N3 and H&N4 cohorts; n = 106) into three groups 
(Fig. 4a): I) low-risk group → ≤ <prob0 RF

1

3
; II) medium-risk group → ≤ <prob

1

3 RF

2

3
; and III) high-risk 

group → ≤ <prob 1
2

3 RF
. Thereafter, this stratification scheme can be used to evaluate the probability of 

non-occurrence of the events a�er a given time for the di�erent risk groups via Kaplan-Meier analysis. Standard 
Kaplan-Meier analysis using two risk groups (probRF ≤ 0.5, probRF > 0.5) is �rst shown in Fig. 4b for all patients of 
the testing set. �ese curves demonstrate the possibility of prognostic risk assessment of speci�c outcomes in 
H&N cancer such as locoregional recurrences (p = 0.03) and distant metastases (p = 3 × 10−6) using speci�c pre-
diction models combining di�erent radiomic and clinical variables, but also of the general outcome of overall 
survival (p = 3 × 10−5) using a prediction model composed of clinical variables only. More accurate prognostic 
risk assessment can then be further performed using Kaplan-Meier analysis with three risk groups (as de�ned 
above: low-risk, medium-risk, high-risk) as shown in Fig. 4c for all patients of the testing set. For the risk assess-
ment of LR, the developed prediction model is, however, not powerful enough to signi�cantly separate the 
patients between the high/medium (p = 0.62) and medium/low (p = 0.10) risk groups. In the case of DM, the 
developed prediction model allows to signi�cantly separate the patients between the high/medium (p = 0.05) and 
medium/low (p = 0.03) risk groups. For OS, the developed prediction model does not signi�cantly separate the 
patients between the high/medium risk groups (p = 0.07), but it does signi�cantly separate the patients between 
the medium/low risk groups (p = 0.02).

Discussion
Increasing evidence suggests that the genomic heterogeneity of aggressive tumours could translate into intratu-
moural spatial heterogeneity exhibited at the anatomical and functional scales19–21. �is constitutes the central 
idea of the emerging �eld of “radiomics”, in which large amounts of information via advanced quantitative anal-
ysis of medical images are used as non-invasive means to characterize intratumoural heterogeneity and to reveal 
important prognostic information about the cancer15–18. Ultimately, the objective is to narrow down this extensive 
quantity of information into simple prediction models that can aid in the identi�cation of speci�c tumour pheno-
types for improved treatment management. In this study, we were able via advanced machine learning to develop 
two prediction models combining PET/CT radiomics and clinical information for the early assessment of the risk 
of locoregional recurrences and distant metastases in head-and-neck cancer.

First, we extracted a total of 1615 radiomic features from PET and CT pre-treatment images of 300 patients 
with head-and-neck cancer from four di�erent cohorts. �ese features are composed of 10 intensity features, 5 
shape features and 40 textures computed using 40 di�erent combinations of extraction parameters (�ve isotropic 
voxel sizes, two quantization algorithms and four numbers of gray levels). In general, di�erent texture features 
better represent the underlying tumour biology using di�erent extraction parameters, and the optimal set of 
parameters to use is application-speci�c and depends on many factors such as the clinical endpoint studied and 
the imaging modalities employed. Texture optimization has the potential to enhance the predictive value of the 
extracted features as Vallières et al.29 have previously shown, and we suggest to incorporate this step in the texture 
extraction work�ow of future similar studies.

Univariate analysis showed that the majority of the features extracted from both PET and CT images are 
signi�cantly associated with the development of distant metastases, suggesting that the metastatic phenotype 
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of tumours could be captured via quantitative image analysis. On the other hand, none of the radiomic features 
were signi�cantly associated with locoregional recurrences a�er multiple testing corrections with a FDR of 10%. 
Although combinations of these metrics still proved useful in subsequent multivariable analysis (Table 1: AUC of 
0.64), it does reveal the need of using other types of metrics such as radiation dose characteristics to enhance the 

Figure 4. Risk assessment of tumour outcomes. (a) Probability of occurrence of events (locoregional 
recurrence, distant metastases, death) for each patient of the testing set (H&N3 and H&N4; n = 106) as 
determined by the random forest classi�ers built using the training set (H&N1 and H&N2; n = 194). �e output 
probability of occurrence of events of random forests allows for risk strati�cation; for example, three risk groups 
can be de�ned (low, medium, high) using probability thresholds of 1

3
 and 2

3
. (b) Kaplan-Meier curves of the 

testing set using a risk strati�cation into two groups as de�ned by a random forest output probability threshold 
of 0.5. All curves have signi�cant prognostic performance, thus demonstrating the possibility of outcome-
speci�c risk assessment in head-and-neck cancer. (c) Kaplan-Meier curves of the testing set using a risk 
strati�cation into three groups as de�ned by random forest output probability thresholds of 1

3
 and 2

3
. Some pair 

of curves have signi�cant prognostic performance, thus demonstrating the possibility of risk strati�cation into 
multiple groups for treatment escalation/personalization in head-and-neck cancer.
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predictive properties of the radiomic-based models constructed for locoregional recurrences. In addition to radi-
omic features, we also investigated the association of clinical variables with the di�erent head-and-neck cancer 
outcomes studied in this work. �e most signi�cant association was found between HPV status and locoregional 
recurrences, a currently known result that agrees with other studies34, 35. However, this result was obtained with 
only 120 of the 300 patients with available HPV status, and this variable could not be used in the subsequent 
multivariable analysis. Similarly, the performance of radiation dose metrics for the prediction of locoregional 
recurrences could not be investigated in this study due to the non-availability of radiation plans.

Next, we constructed multivariable prediction models from radiomic information alone using the methodol-
ogy developed by Vallières et al.29. All models were entirely produced from the de�ned training set of this work 
combining two head-and-neck cancer cohorts (H&N1 and H&N2; n = 194). �e best radiomic model for locore-
gional recurrences was found to possess signi�cant predictive properties (Table 1: AUC of 0.64) in the de�ned 
testing set of this work combining two other head-and-neck cancer cohorts (H&N3 and H&N4; n = 106), thereby 
suggesting that radiomics analysis of PET/CT images prior to chemo-radiation treatments could have a role to 
play in decoding the local control tumour phenotype in head-and-neck cancer. �is model is composed of one 
metric extracted from PET images (GLNGLSZM: gray-level nonuniformityGLSZM) and two metrics extracted from 
CT images (correlationGLCM and LGZEGLSZM: low gray-level zone emphasisGLSZM). On the other hand, the best radi-
omic model for distant metastases was found to possess highly signi�cant predictive properties in the testing set 
(Table 1: AUC of 0.86), and is composed of three metrics extracted from CT images (LRHGEGLRLM: long run high 
gray level emphasisGLRLM, ZSVGLSZM: zone size varianceGLSZM and ZSNGLSZM: zone size nonuifomityGLSZM). Overall, 
the prediction results obtained for these two models suggest that radiomics analysis can be speci�c enough to 
assess the risk of di�erent outcomes in head-and-neck cancer. �e models we developed for locoregional recur-
rences and distant metastases are in fact di�erent and they may capture speci�c tumour phenotypes.

Of important note, all the selected radiomic features of the locoregional and distant metastases prediction 
models are textural. Aggressive tumours tend to show increased intratumoural heterogeneity11–13, an e�ect that 
may be captured by the di�erent textural metrics of the models when extracted from PET and CT images. For 
example, the intrinsic de�nitions of the GLNGLSZM, LRHGEGLRLM, ZSVGLSZM and ZSNGLSZM metrics imply that 
these texture features are related (with di�erent extents) to the quantitative description of the size and intensity 
variations of the connected sub-regions of a given region of interest. �ese metrics are thus related to the heter-
ogeneity in size and intensity characteristics of the di�erent tumour sub-regions in PET and CT images, a result 
in agreement with a previous study describing the importance of zone-size nonuniformities for the prognos-
tic assessment of head-and-neck tumours36. Furthermore, the intrinsic de�nitions of the CorrelationGLCM and 
LGZEGLSZM metrics imply that these texture features are related to the extent of the spatial correlation or uni-
formity of gray-levels within a region of interest, and to the emphasis on zones of low gray-levels, respectively. 
In terms of medical imaging of cancer, these features may be capturing the presence of large necrotic regions 
within the core of tumours. Such types of tumours could be rapidly increasing in size and could be more at risk 
to metastasize37–39.

We also attempted in this study to improve the predictive power of our prediction models by combining radi-
omic variables with clinical data. �e �rst step of our method is based on a fast mining of radiomic variables using 
logistic regression. �en, random forests40 are used as a means to combine radiomic (continuous inputs) and 
clinical information (categorical inputs) into a single classi�er. It would also be feasible to only use random for-
ests to mine the radiomic variables, but our method is advantageous in terms of computation speed. Our results 
showed that the combination of clinical variables with the optimal radiomic variables via random forests had a 
positive impact on the prediction and prognostic assessment of locoregional recurrences and distant metastases, 
although with minimal impact in the latter case (Fig. 3, Table 1). As seen in Supplementary Table S4, this can be 
explained from the fact that the identi�ed radiomic features are the strong and dominant variables in the model 
for distant metastases prediction.

In this work, we also performed a comprehensive comparison of the prediction/prognostic performance of 
radiomics versus clinical models and volumetric variables (Table 1). Metabolic tumour volume has already been 
shown to be an independent predictor of outcomes in head-and-neck cancer41, but it was also suggested by Hatt 
et al.42 that heterogeneity quanti�cation via texture analysis may provide valuable complementary information 
to the tumour volume variable for volumes above 10 cm3. In this study, 85% of the patients had a gross tumour 
volume greater than 10 cm3 and we consequently found that radiomic models performed considerably better than 
tumour volume alone for the prediction of locoregional recurrences and distant metastases. On the other hand, 
clinical variables alone did not perform well on their own for distant metastases, but they had good performance 
for locoregional recurrences by outperforming radiomic models, thus suggesting that our radiomic models need 
to be improved (e.g., by including radiation dose metrics) to better model locoregional recurrences.

In terms of overall survival assessment, our results indicate that the tumour volume variable matched or 
outperformed all radiomic models thus far we developed or tested in this work, including a previously validated 
radiomic signature21, 32. For one, it is unsurprising that the original radiomic signature21 did not perform better 
than tumour volume, as it can be veri�ed that all its feature components are very strongly correlated with tumour 
volume: the Pearson linear coe�cients between tumour volume and the four features of the signature21 were 
calculated to be 0.62 (Energy), 0.80 (Compactness), 0.99 (GLNGLRLM) and 0.94 (GLNGLRLM HLH) using the whole 
set of 300 patients of this study, all with p ≪ 0.001. On the other hand, all the features forming the other radiomic 
models developed in this work showed potential complementarity value to tumour volume: all the features of the 
revised version of the radiomic signature (Supplementary Section 2.6.2) had a Pearson linear coe�cient lower 
than 0.5 except one (Energy), and all the variables forming the �nal radiomic models constructed in this work 
(italic fonts in Table 1, including those for locoregional recurrences and distant metastases) had linear coe�cients 
lower than 0.40. �is suggests that overall survival may be harder to model than speci�c tumour outcomes due 
to a larger number of confounding factors being involved, and it may thus be more prone to over�tting. As a 
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consequence, tumour volume may currently be a more robust and reproducible metric than imaging features for 
modeling this general outcome. In the end, the best global performance for overall survival was however obtained 
with clinical variables alone. �is would emphasize that clinical data remains the important source of information 
to consider for the evaluation of overall survival, and that more work is required to understand how to adequately 
model this outcome using radiomic features.

Overall, our results demonstrate the possibility of using radiomics for decoding speci�c tumour phenotypes 
for the risk assessment of speci�c outcomes in head-and-neck cancer. As seen in Fig. 4, the output probability of 
occurrence of events of our prediction models allow to signi�cantly separate (testing) patients into two locore-
gional recurrence risk groups and into three distant metastases risk groups. �e clinical impact of these results 
could be substantial, as it could allow for a better personalization of head-and-neck cancer treatments. For exam-
ple, higher radiation doses could be considered for patients at higher risks of locoregional recurrences. For dis-
tant metastases, the chemotherapy regimens could be strengthened for patients in the high risk group to reduce 
potential metastatic invasion, and lessened for patients in the low risk group to improve quality of life. �ese are 
hypothetical scenarios that, at the moment, are not ready to be implemented in the clinical environment, as our 
models �rst need to be constructed and validated on larger patient cohorts, and robust clinical trials are required 
to validate their bene�ts on patient survival.

In conclusion, we showed in this study that radiomics provide important prognostic information for the risk 
assessment of locoregional recurrences and distant metastases in head-and-neck cancer. �e combination of radi-
omics data into clinically-integrated prediction models should allow to more comprehensively assess cancer risks 
and could improve how we adapt treatments for each patient. As the standardization e�orts of radiomics analysis 
continue to rapidly progress43, 44, we can envision the clinical implementation of radiomic-based decision-support 
systems. Full transparency on data and methods is the key for the progression of the �eld, and our research e�orts 
need to include large-scale collaborations and reproducibility practices to accelerate the translation of radiomics 
into the clinical environment45.

Methods
Data sets availability. Our analysis was conducted on imaging and clinical data of a total of 300 H&N 
cancer patients from four di�erent institutions who received radiation alone (n = 48, 16%) or chemo-radiation 
(n = 252, 84%) with curative intent as part of treatment management. �e median follow-up period of all patients 
was 43 months (range: 6–112). �e Institutional Review Boards of all participating institutions approved the study. 
Retrospective analyses were performed in accordance with the relevant guidelines and regulations as approved 
by the Research Ethics Committee of McGill University Health Center (Protocol Number: MM-JGH-CR15-50).

•	 �e H&N1 data set consists of 92 head-and-neck squamous cell carcinoma (HNSCC) patients treated at 
Hôpital général juif (HGJ) de Montréal, QC, Canada. During the follow-up period, 12 patients developed a 
locoregional recurrence (13%), 16 patients developed distant metastases (17%) and 14 patients died (15%). 
�is data set was used as part of the training set of this work.

•	 �e H&N2 data set consists of 102 head-and-neck squamous cell carcinoma (HNSCC) patients treated 
at Centre hospitalier universitaire de Sherbrooke (CHUS), QC, Canada. During the follow-up period, 17 
patients developed a locoregional recurrence (17%), 10 patients developed distant metastases (10%) and 18 
patients died (18%). �is data set was used as part of the training set of this work.

•	 �e H&N3 data set consists of 41 head-and-neck squamous cell carcinoma (HNSCC) patients treated at 
Hôpital Maisonneuve-Rosemont (HMR) de Montréal, QC, Canada. During the follow-up period, 9 patients 
developed a locoregional recurrence (22%), 11 patients developed distant metastases (27%) and 19 patients 
died (46%). �is data set was used as part of the testing set of this work.

•	 �e H&N4 data set consists of 65 head-and-neck squamous cell carcinoma (HNSCC) patients treated at Cen-
tre hospitalier de l’Université de Montréal (CHUM), QC, Canada. During the follow-up period, 7 patients 
developed a locoregional recurrence (11%), 3 patients developed distant metastases (5%) and 5 patients died 
(8%). �is data set was used as part of the testing set of this work.

All patients underwent FDG-PET/CT imaging scans within a median of 18 days (range: 6–66) before treat-
ment. For 93 of the 300 patients (31%), the radiotherapy contours were directly drawn on the CT of the PET/
CT scan by expert radiation oncologists and therea�er used for treatment planning. For 207 of the 300 patients 
(69%), the radiotherapy contours were drawn on a di�erent CT scan dedicated to treatment planning and were 
propagated/resampled to the FDG-PET/CT scan reference frame using intensity-based free-form deformable 
registration with the so�ware MIM (MIM so�ware Inc., Cleveland, OH).

Further information speci�c to each patient cohort (e.g., treatment details) is presented in Supplementary 
Methods section 2.4 and Supplementary Tables S5–S8. Pre-treatment FDG-PET/CT imaging data, clinical data, 
radiotherapy contours (RTstruct) and MATLAB routines allowing to read imaging data and their associated 
region-of-interest (ROI) are made available for all patients on �e Cancer Imaging Archive (TCIA)46 at: http://
www.cancerimagingarchive.net. �e Research Ethics Committee of McGill University Health Center approved 
online publishing of clinical and imaging data following patient anonymisation.

Sample size and division of cohorts. Patients with recurrent H&N cancer or with metastases at pres-
entation, and patients receiving palliative treatment were excluded from the study. Patients that did not develop a 
locoregional recurrence or distant metastases during the follow-up period and that had a follow-up time smaller 
than 24 months were also excluded from the study. �e four patient cohorts were then divided into two groups to 
create one combined training set (H&N1 and H&N2; n = 194) and one combined testing set (H&N3 and H&N4; 
n = 106). Bootstrap resampling and strati�ed random sub-sampling were always performed with patients from 
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the training set to estimate the relevant performance metrics of interest and to construct the �nal prediction 
models, and fully independent validation results were computed with patients from the testing set. �is precise 
type of division of patient cohorts allowed to: I) Train on a combined set of di�erent cohorts to allow the models 
to take into account some institutional variability; II) Reduce the number of testing results reported; III) Create 
a training set size to testing set size ratio of approximately 2:1; and IV) Conduct partition sampling such that the 
proportions of occurrence of events (locoregional recurrences, distant metastases) are approximately the same in 
the training and testing sets.

Extraction of radiomic features. Starting from the original FDG-PET/CT imaging data and associated 
radiotherapy contours in DICOM format, the complete set of data was read and transferred into MATLAB 
(MathWorks, Natick, MA) format using in-house routines. PET images were converted to standard uptake value 
(SUV) maps and CT images were kept in raw Houns�eld Unit (HU) format. In this work, we then extracted 
a total of 1615 radiomic features for both the PET and CT images from the tumour region defined by the 
“GTVprimary + GTVlymph nodes” contours as delineated by the radiation oncologists of each institution. �ese fea-
tures can be divided into three di�erent groups: I) 10 �rst-order statistics features (intensity); II) 5 morpholog-
ical features (shape); and III) 40 texture features each computed using 40 di�erent combinations of extraction 
parameters.

Intensity features are computed from histograms (nbins = 100) of the intensity distribution of the ROI. �e 
features extracted in this work were the variance, the skewness, the kurtosis, SUVmax, SUVpeak, SUVmean, the 
area under the curve of the cumulative SUV-volume histogram47, the total lesion glycolysis, the percentage of inactive 
volume and the generalized e�ective total uptake48. Shape features describe geometrical aspects of the ROI. �e 
features extracted in this work were the volume, the size (maximum tumour diameter), the solidity, the eccentricity 
and the compactness.

Texture features measure intratumoural heterogeneity by quantitatively describing the spatial distributions of 
the di�erent intensities within the ROI. In this work, 9 features from the Gray-Level Co-occurrence Matrix 
(GLCM)49, 13 features from the Gray-Level Run-Length Matrix (GLRLM)50–52, 13 features from the Gray-Level 
Size Zone Matrix (GLSZM)50–53 and 5 features from the Neighbourhood Gray-Tone Difference Matrix 
(NGTDM)54 were computed. All texture matrices were constructed using 3D analysis/26-voxel connectivity of 
the tumour region resampled to a de�ned isotropic voxel size. For each of the four texture types, only one matrix 
was computed per scan by simultaneously taking into account the neighbouring properties of voxels in the 13 
directions of 3D space. However, the 6 voxels at a distance of 1 voxel, the 12 voxels at a distance of 2  voxels, and 
the 8 voxels at a distance of 3  voxels around center voxels were treated di�erently in the calculation of the matri-
ces to take into account discretization length di�erences.

All 40 texture features from the ROI of both PET and CT volumes were extracted using all possible combina-
tions (40) of the following parameters:

•	 Isotropic voxel size (5): Voxel sizes of 1 mm, 2 mm, 3 mm, 4 mm and 5 mm.
•	 Quantization algorithm (2): Equal-probability (equalization of intensity histogram) and Uniform (uniform 

division of intensity range) quantization algorithms with �xed numbers of gray levels.
•	 Number of gray levels (4): Fixed numbers of gray levels of 8, 16, 32 and 64 in the quantized ROI.

Detailed description with supplementary references and methodology used to extract all radiomic features is 
further provided in Supplementary Methods section 2.5.

Construction of radiomic models. �e construction of prediction models from the total set of radiomic 
features for each of the three initial feature sets (I: PET features; II: CT features; and III: PET and CT features) 
and three H&N cancer outcomes was performed from the de�ned training set of this work (H&N1 and H&N2 
cohorts; n = 194) using the methodology developed in the work of Vallières et al.29. �e process of combining 
radiomic features into a multivariable model was achieved using the logistic regression utilities of the so�ware 
DREES55. �e general work�ow is presented in Supplementary Fig. S5.

First, feature set reduction was performed for each of the initial feature sets via a stepwise forward feature 
selection scheme in order to create reduced feature sets containing 25 di�erent features balanced between predic-
tive power (Spearman’s rank correlation) and non-redundancy (maximal information coe�cient56). �is proce-
dure was carried out using the Gain equation29, which is detailed in Supplementary Methods section 2.2.2.

From the reduced feature sets, stepwise forward feature selection was then performed by maximizing the 
0.632+ bootstrap AUC57, 58 (100 samples). For each of the reduced feature sets, combinations of features were 
selected for model orders (i.e., number of combined variables) of 1 to 10. �e whole feature selection process is 
detailed in Supplementary Methods section 2.2.3 and in Supplementary Fig. S6.

Once optimal combinations of features were identi�ed for model orders of 1 to 10 for all feature sets, predic-
tion performance was estimated using the 0.632+ bootstrap AUC (100 samples). By inspecting the prediction 
estimates shown in Supplementary Fig. S2, a single combination of features (i.e., model order) potentially pos-
sessing the best parsimonious properties was then chosen for each feature set and each outcome (identi�ed as 
circles in Supplementary Fig. S2). �e �nal logistic regression coe�cients of these selected radiomic prediction 
models (3 feature sets × 3 outcomes) were then found by averaging all coe�cients computed from another set of 
100 bootstrap samples. �ese prediction models in their �nal form were therea�er directly tested in the de�ned 
testing set of this work (H&N3 and H&N4 cohorts; n = 106).

Combination of radiomic and clinical variables. �e construction of prediction models combining 
radiomic and clinical variables was also carried out using the training set consisting of the combination of 194 
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patients from the H&N1 and H&N2 cohorts (Fig. 2). First, random forest classi�ers40 containing only the fol-
lowing clinical variables were constructed for the LR, DM and OS outcomes: I) Age; II) H&N type (orophar-
ynx, hypopharynx, nasopharynx or larynx); and III) Tumour stage. �e selection of the following best groups 
of tumour stage variables to be incorporated into the clinical-only random forest classi�ers was performed: I) 
T-Stage; II) N-Stage; III) T-Stage and N-Stage; and IV) TNM-Stage. Estimation of prediction performance for 
feature selection and subsequent random forest training was performed in the training set using strati�ed ran-
dom sub-sampling and imbalance adjustments to account for the disproportion between the occurrence and 
non-occurrence of events. Overall, the following staging variables were estimated to possess the highest pre-
diction performance in the training set when combined into random forest classi�ers with Age and H&N type, 
and were therea�er used for the rest of the work accordingly for each outcome: (I) T-Stage and N-Stage for LR 
prediction; (II) N-Stage for DM prediction; and (III) T-Stage and N-Stage for OS prediction. Finally, the variables 
of the previously identi�ed radiomic prediction models (3 feature sets × 3 outcomes) were incorporated with the 
corresponding clinical variables identi�ed for each outcome via the separate construction of �nal random forest 
classi�ers.

Imbalance-adjustment strategy. To obtain models with predictive power equally balanced between the 
prediction of occurrence and non-occurrence of events, an imbalance adjustment strategy adapted from the work 
of Schiller et al.30 was used in this work (Supplementary Fig. S4). Imbalance adjustments become an essential part 
of the training process when the proportion of instances (e.g., patients) of a given class (e.g., occurrence of an 
event) is much lower than the proportion of instances of the other class (e.g., non-occurrence of an event). �is 
is the case in this work for the proportion of locoregional recurrences, distant metastases and death events in the 
training and testing sets (Fig. 2).

In this work, every time a di�erent bootstrap sample was drawn from the training set to construct a logistic 
regression or a random forest classi�er, a di�erent ensemble of multiple balanced classi�ers was used in the train-
ing process instead of using only one unbalanced classi�er. �e ensemble classi�er is composed of a number of 
P = [N−/N+] partitions, where N− is the number of instances from the majority class and N+ the number of 
instances from the minority class in a particular bootstrap sample. �e N+ instances are copied and used in every 
partition, and the N− instances are randomly sampled without replacement in the P partitions such that the num-
ber of instances of the majority class is either −⌊ ⌋N P/  or −⌈ ⌉N P/  in each partition. For example, for N− = 168 and 
N+ = 32, �ve partitions would be created: two would contain 33 instances from the majority class, three would 
contain 34 instances from the majority class, and all would contain the 32 instances from the minority class.

For the logistic regression training process, a di�erent classi�er (i.e., di�erent coe�cients) is then trained 
for each of the created partitions, and the �nal ensemble classi�er consists in the average of the corresponding 
coe�cients from each partition. For random forest training, each partition is used to create a decision tree to be 
appended to a �nal forest instead of creating only one tree per bootstrap sample.

Random forest training. �e process of random forest training inherently uses bootstrapping in order 
to train the multiple decision trees of the forest. Conventionally, one di�erent decision tree is trained for each 
bootstrap sample. In this work, we used 100 bootstrap samples to train each random forest constructed from the 
training set (H&N1 and H&N2 cohorts; n = 194). For each bootstrap sample, the imbalance-adjustment strategy 
detailed above was used such that each bootstrap sample produced multiple decision trees (one per partition) to 
be appended to a random forest. �erefore, the �nal number of decision trees per random forest was dependent 
on the actual proportion of events in each bootstrap sample for each outcome studied. �e three �nal random 
forest models developed in this work (italic fonts in Table 1, Supplementary Table S4) were constructed using 582, 
661 and 518 decision trees for LR, DM and OS, respectively.

In addition to the imbalance-adjustment strategy adopted in this work, under/oversampling of the instances 
in each partition of an ensemble was used to further correct for data imbalance in the random forest training 
process. Under/oversampling weights of the minority class of 0.5 to 2 with increments of 0.1 were tested in this 
work. Strati�ed random sub-sampling was used to estimate the optimal weight for a given training process (and 
also to estimate the optimal clinical staging variables to be used) in terms of the maximal average AUC, a process 
randomly separating the training set of this work into multiple sub-training and sub-testing sets (n = 10) with 
2:1 size ratio and equal proportion of events. �e �nal random forest models developed in this work (italic fonts 
in Table 1, Supplementary Table S4) used oversampling weights of 1.4, 1.6 and 1.7 (in conjunction with the pre-
viously described imbalance-adjustment strategy) to train the decision trees of the forests for LR, DM and OS, 
respectively. �e overall random forest training process is pictured in Supplementary Fig. S7.

Calculation of prediction/prognostic performance metrics. In this work, all prediction models were 
fully trained in the de�ned training set of this work (H&N1 and H&N2 cohorts; n = 194). Models were then inde-
pendently tested in the de�ned testing set of this work (H&N3 and H&N4 cohorts; n = 106). Prediction perfor-
mance was assessed using ROC metrics in terms of the AUC, sensitivity, speci�city and accuracy of classi�cation 
of binary clinical endpoints (locoregional recurrences, distant metastases, deaths). Prognostic performance in 
terms of time estimates of clinical endpoints was assessed using the concordance-index (CI)33 and the p-value 
obtained from Kaplan-Meier analysis using the log-rank test between two risk groups.

For prediction performance, the output of the linear combination of features of logistic regression models was 
directly used to calculate the AUC with binary outcome data. �e multivariable response was then transformed 
into the posterior probability of occurrence of an event using a logit transform to calculate the sensitivity, speci�c-
ity and accuracy of prediction using a probability threshold of 0.5. Similarly, the output probability of occurrence 
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of an event of random forest models was directly used to calculate the AUC with binary outcome data, and an 
output probability threshold of 0.5 was also used to calculate the remaining metrics.

For prognostic performance, the output of the linear combination of features of cox proportional hazard 
regression models was directly used to calculate the CI with time-to-event data (time elapsed between the date the 
treatment ended and the date when an event occurred or the date of last-follow-up). �e median of the output of 
the cox regression models found in the training set was used to separate the patients of the testing set into two risk 
groups for Kaplan-Meier analysis. For random forests, the output probability of occurrence of an event was 
directly used to calculate the CI with time-to-event data, and a probability threshold of 0.5 was used to separate 
the patients of the testing set into two risk groups (or 1

3
 and 2

3
 for three risk groups) for Kaplan-Meier analysis.

Code availability. All so�ware code including a single organized script allowing to run the experiments used 
to produce all the results presented in this work is freely shared under the GNU General Public License on the 
GitHub website at: https://github.com/mvallieres/radiomics.
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