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Imaging is an important technology in medical sci-
ence and is used in clinical practice to aid decision 
making1. The role of medical imaging, however, is 
swiftly evolving from being primarily a diagnos-
tic tool to also include a central role in the context 
of personalized precision medicine2. In radiomics3,4, 
digitally encrypted medical images that hold infor-
mation related to tumour pathophysiology are trans-
formed into mineable high-dimensional data1. This 
information can be harnessed through quantitative 
image analyses5 and leveraged via clinical-decision 
support systems (CDSS)6 to improve medical decision- 
making. Radiomics builds upon several decades of 
computer-aided diagnosis, prognosis, and thera peutics 
research7,8. The process used in radiomics involves the 
identification of vast arrays of quantitative features 
within digital images, storage of such data in federated 
databases (that is, a system in which several independ-
ent databases function as a single entity) and the sub-
sequent mining of the data for knowledge extraction 
and application9. Innumerable quantitative features 
can now be extracted using high-throughput comput-
ing from medical images such as CT, MR, and/or PET. 
The creation of databases that link immense volumes 

of radiomics data (ideally with all other pertinent data) 
from millions of patients to form vast, rapid learn-
ing healthcare (RLHC) networks is conceivable, but  
presents a considerable data management hurdle10–13.

Radiomics is not a panacea for clinical decision- 
making. Radiomic features (such as intensity, shape, 
texture or wavelet) offer information on cancer pheno-
type as well as the tumour microenvironment that is 
distinct and complementary to other pertinent data 
sources (including clinically obtained, treatment- related 
or genomic data)14. Radiomics-derived data, when  
combined with other pertinent data and correlated  
and/or inferred with outcomes data, can produce  
accurate robust evidence-based CDSS.

The potential of radiomics to improve CDSS is 
beyond doubt15 and the field is evolving rapidly. The 
principal challenge is the optimal collection and 
integration of diverse multimodal data sources in a 
quantitative manner that delivers unambiguous clin-
ical predictions that accurately and robustly enable 
outcome prediction as a function of the impending 
decisions16. Many published prediction models that 
account for factors related to both disease and treat-
ment are available, but these models lack standardized 
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Abstract | Radiomics, the high-throughput mining of quantitative image features from 

standard-of-care medical imaging that enables data to be extracted and applied within 

clinical-decision support systems to improve diagnostic, prognostic, and predictive accuracy,  

is gaining importance in cancer research. Radiomic analysis exploits sophisticated image analysis 

tools and the rapid development and validation of medical imaging data that uses image-based 

signatures for precision diagnosis and treatment, providing a powerful tool in modern medicine. 

Herein, we describe the process of radiomics, its pitfalls, challenges, opportunities, and its 

capacity to improve clinical decision making, emphasizing the utility for patients with cancer. 

Currently, the field of radiomics lacks standardized evaluation of both the scientific integrity and 

the clinical relevance of the numerous published radiomics investigations resulting from the 

rapid growth of this area. Rigorous evaluation criteria and reporting guidelines need to be 

established in order for radiomics to mature as a discipline. Herein, we provide guidance for 

investigations to meet this urgent need in the field of radiomics.
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evaluation of their performance, reproducibility,  
and/or clinical utility17. Consequently, these models 
might not be appropriate for CDSS.

In this Review, we describe the process of radiomics 
along with latest developments in the field. The pitfalls, 
challenges, and opportunities presented by radiomics 
to improve CDSS for personalized precision oncology 
are highlighted, with an emphasis on the methodo-
logical aspects of radiomics prediction model devel-
opment and validation. We explore the advanced and 
innovative information technologies that are essential 
for the data management of diverse multimodal data 
sources. Finally, we offer a vision of the necessary 
steps to ensure continued progression and widespread 
acceptance of both radiomics and CDSS.

The workflow of radiomics

Radiomics is defined as the quantitative mapping, that 
is, extraction, analysis and modelling of many medical 
image features in relation to prediction targets, such as 
clinical end points and genomic features. A radiomics 
study can be structured in five phases: data selection, 
medical imaging, feature extraction, exploratory ana-
lysis, and modelling (FIG. 1). To assess the quality of  
radiomics studies, we propose the radiomics quality 
score (RQS).

Data selection

Radiomic analyses begins with the choice of an imaging 
protocol, the volume of interest (VOI) and a prediction 
target — the event one wishes to predict. Typically, the 
entire primary tumour is analysed and linked to available 
data on treatment outcomes, such as survival. Radiomic 
analyses can be performed on subregions of the tumour 
(habitats), metastatic lesions, as well as in normal tis-
sues. Analysis of these regions might yield radiosensitive  
phenotypes, which has implications for treatment plan-
ning strategies. Radiomics analysis, however, is not 
restricted to radiotherapy and can be applied to any 
image generated in the clinical setting (FIG. 2).

The importance of using standardized imaging proto-
cols to eliminate unnecessary confounding variability is 
recognized9,18; however, nonstandardized imaging proto-
cols are commonplace. Therefore, reproducibility and 

Key points

• Radiomics is becoming increasingly more important in medical imaging

• The explosion of medical imaging data creates an environment ideal for 

machine-learning and data-based science

• Radiomics-based decision-support systems for precision diagnosis and treatment can 

be a powerful tool in modern medicine

• Large-scale data sharing is necessary for the validation and full potential that 

radiomics represents

• Standardized data collection, evaluation criteria, and reporting guidelines are 

required for radiomics to mature as a discipline

Figure 1 | Flowchart depicting the workflow of radiomics and the application of the RQS. The workflow includes the 

necessary steps in a radiomic analysis. The RQS both rewards and penalizes the methodology and analyses of a study, 

consequently encouraging the best scientific practice. RSQ, radiomics quality score; VOI, volume of interest.
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Cardiac CT Radiomics MACE Analysis

Phantom studies

An artificial structure that 

imitates human tissue 

properties is scanned on 

multiple machines to 

characterize scan output 

against a known physical 

standard.

comparability of radiomic studies can be achieved only 
by extensive disclosure of imaging protocols. We wish 
to emphasize this point, and provide examples of how 
protocols should be reported in future radiomics studies 
(Supplementary information S1).

Medical imaging

Segmentation. VOIs are segmented manually or (semi-)
automatically19. This segmentation determines which vox-
els within an image are analysed, thus, the variability in seg-
mentation can introduce bias in the evaluation of derived 
radiomic features20. Multiple-segmentation is a method to 
limit the extent of this bias. Examples that enable robust 
features to be observed21 include: evaluation by multiple 
clinicians, perturb segmentations with noise, combination 
of diverse algorithms, or use different stages of the breath-
ing cycle. Key considerations are how the segmentation was 
performed, and how sensitive the radiomics analysis is to 
different segmentation methods22. For example, a semi- 
automatic segmentation method can result in different 
radiomic features than a manual delineation.

Phantom studies. The determination of inter-scanner and 
inter-vendor variability of features is important in radi-
omics23. In cases in which radiomic studies rely on data 
from multiple scanners, neglecting this variability can 
jeopardize the analysis of studies — that is, the proposed 
radiomic-based prediction model might not perform ade-
quately on external datasets if new data are acquired on 
different scanners. As data from patients scanned on mul-
tiple devices is scarce and subject to uncertainties (such as 
organ motion, or different imaging protocols), phantom 

studies are a suitable means to gauge these uncertainties 
and identify features that rely on the vendor. In essence, 
phantom studies provide a risk-mitigation strategy to help 
navigate from the current clinical imaging scenario to the 
desired optimal imaging scenario.

Imaging at multiple time points. Additional sources 
of variability in radiomics features are organ motion or 
expansion or shrinkage of the target volume. Radiomics 

features that are strongly dependent on these factors can 
have limited applicability. To account for these sources of 
variability, available test-retest data24–26 can be exploited 
to measure radiomics feature stability. For example, two 
datasets of images acquired within a small period of time 
from a patient cohort.

Feature extraction

The essence of radiomics is the high-throughput extrac-
tion of quantitative image features to characterize VOIs. 
Feature values are dependent upon factors that can 
include image pre-processing (for example, filtering, or 
intensity discretization) and reconstruction (for exam-
ple, filtered back projection, or iterative reconstruction). 
Furthermore, variation exists in feature nomenclature, 
mathematical definition, methodology, and software 
implementation of the applied feature extraction  
algorithms27–29. In order to facilitate inter- operability 
of radiomic features, differences in nomenclature,  
algorithms, software implementations, as well as other 
methodological aspects must be elucidated.

Exploratory analysis

Radiomic and non-radiomic features should be com-
bined with the prediction target to create a single 
dataset. This approach enables the investigation of 
relationships between features. Groups of highly cor-
related radiomics features can be identified via clus-
tering, and these features can be reduced to single 
archetypal features per cluster. Radiomic features that 
are well-correlated with routine clinical features (such 
as tumour stage) do not provide additional information. 
Auxiliary feature data collected from multiple segmen-
tations, multiple imaging, and phantom studies, can be 
exploited to assess feature robustness. Volatile or robust 
features can be identified and subsequently excluded 
from model development. For example, a feature that 
is robust for the prediction of overall survival for lung 
cancer (that is, imaged and segmented in a certain way) 
for a given dataset could be volatile for the prediction of 
pneumonitis in lung cancer (imaged and segmented in 
an alternative way) for a given dataset. Thus, the pro-
cess of feature reduction and/or exclusion should be 
described clearly.

Modelling

Radiomic modelling involves three major aspects: fea-
ture selection, modelling methodology, and validation. 
Feature selection should be data-driven owing to the 
vast in- human range of possible radiomics features; such 
analysis should be performed in a robust and transparent 
manner. To achieve holistic models, features beyond radi-
omics (such as data from clinical records, data obtained 
during treatment or biological and/or genetic) should 
also be incorporated. Regarding the choice of modelling 
methodology, the identification of optimal machine- 
learning methods for radiomic applications is a crucial 
step towards stable and clinically relevant CDSS; thus, in 
the ideal scenario, multiple machine-learning methods 
should be employed30 and the implementation should be 
comprehensively documented. A non-validated model is 

Figure 2 | Radiomics in cardiology. The current gold standard 

for quantification of coronary calcifications visible on CT is the 

‘Agatston’ method (based upon intensity and volume). 

Radiomic features can improve quantification, differentiation 

between calcified and non-calcified plaques, and thus the 

prediction of Major Adverse Cardiac Events (MACE).
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Calibration-in-the-large

Describes whether the 

predictions deviate 

systematically (intercept), 

whereas the calibration slope 

should ideally be equal to 1.

The independence 

assumption

The definition in terms of 

conditional probabilities is that 

the probability of B is not 

changed by knowing that A has 

occurred. Statistically 

independent variables are 

always uncorrelated, but the 

converse is not necessarily 

true.

Feature discretization

The process of converting 

continuous features to discrete 

binned interval features.

Bootstrapping

Measures the accuracy 

(defined in terms of bias, 

variance, confidence intervals, 

prediction error, etc.) to 

characterize the sample 

distribution by way of repeated 

random sampling methods.

of limited value; validation is an indispensable compo-
nent of a complete radiomic analysis. Models must be  
internally validated and, ideally, should be externally 
validated.

Feature selection. Depending on the number of filters, 
feature categories, and other adjustable parameters, the 
possible number of radiomic features that can be extracted 
from images is virtually unlimited. The inclusion of 
all possible features in a model would inevitably result  
in overfitting, which jeopardizes model performance in 
patients not previously evaluated. To avoid overfitting, 
features that lack robustness against sources of variability 
should be eliminated, and archetypal features selected via 
dimensionality reduction techniques (such as principal 
component analysis or clustering). For example, a feature 
that is archetypal for the prediction of overall survival 
in patients with lung cancer for a given dataset (imaged 
and segmented in a certain way) could be redundant for 
the prediction of pneumonitis in lung cancer for a given  
dataset (imaged and segmented in an alternative way).

Modelling methodology. The modelling methodology 
chosen is often a single technique, selected according to 
the preference and experience of those conducting the 
study. Different techniques are associated with distinct 
inherent limitations, which include the independence 

assumption for features in logistic regression, the need for 
feature discretization in Bayesian networks, or the network 
configuration dependency in deep learning. The choice of 
modelling technique has been shown to affect prediction 
performance in radiomics30. Thus, multiple- modelling 
methodology implementations are desirable, but not 
essential. The key aspect in the selection of a modelling 
methodology is that, when reported, the work must be 
entirely reproducible. This goal can be achieved, ideally, 
by making the software code available (for example,  
via github31). (See Supplementary information S1 material 
for an overview of machine learning techniques).

Validation. Validation techniques are useful tools 
to assess model performance, and thus, internal  
and/or preferably external validation must be performed. 
Researchers must assess whether the model is predic-
tive for the target patient population or just for a par-
ticular subset of samples analysed. Model performance 
is typically measured in terms of discrimination and 
calibration. Discrimination can be reported in terms of  
the receiver operating characteristic (ROC) curve, or the 
area under the ROC curve (AUC). The AUC quantifies 
the sensitivity and specificity of the model and repre-
sents the probability that a randomly selected patient 
matching an outcome is assigned that outcome by the 
prediction model with a larger event-probability than 
a randomly chosen patient who does not match the 
outcome. Calibration refers to the agreement between 
observed outcomes and model predictions, typically 
based on grouping of predictions. For example, the 
predictions are grouped according to high, medium or 
low prob ability. If the mean prediction of tumour recur-
rence in the high-probability group is 25%, the observed 

frequency of tumour recurrence in this group should ide-
ally be 25 out of 100 patients. Calibration can be reported 
using a calibration plot and calibration-in-the-large/slope. 
A measure of overall performance is the Brier score, 
the mean squared prediction error. All statistical meth-
ods should be reported for training data and validation 
data. Valid models should exhibit statistical consistency 
between the training and validation sets. Bootstrapping 
techniques can be used to estimate confidence intervals 
for the abovementioned statistics and should be reported. 
An externally validated model has more credibility than 
an internally validated model, because data obtained with 
the former approach are considered more independent, 
which reinforces the validation. A large body of literature 
on validation techniques is available32–35.

Reporting open-access scientific data

Validation is the first step towards a model being 
accepted in both the scientific and clinical communi-
ties. Independent verification of the results is a necessary 
additional step. Reproduction means verification of the 
results by independent researchers repeating the ana-
lysis using an identical technique and the same dataset  
and/or patient cohort, ensuring that the analysis is con-
ducted without error. Replication means independent 
verification of the results by independent researchers 
repeating the analysis using the same technique and 
different (but appropriately selected) datasets and/or 
patient cohorts, aiming for a stronger affirmation of the 
findings36–39. Radiomic studies involve multiple complex 
subprocesses (such as data selection, image acquisition, 
feature extraction, or modelling), each one affected by a 
wide range of decisions, use of nonstandardized terminol-
ogy, establishment of parameters, and software selection. 
Reproducibility and replicability in radiomics are impos-
sible if researchers do not disclose these intricacies. The 
amount of necessary information far exceeds the limits 
of a traditional manuscript. We propose that future pub-
lications including radiomic results should provide the 
following as supplementary material: disclosure of imag-
ing protocols, analysed scans, segmentations of VOIs, 
detailed accounts of how features were extracted (includ-
ing the formulae), and of the modelling metho dology 
used (ideally, the code). This level of meticulous detail is 
required in order to facilitate reproduction and replica-
tion. Furthermore, multiple radiomics software packages 
are available and are subject to updates or version-control. 
We recognize that the publication of data derived from 
patients might not be feasible in all circumstances. As a 
minimal means of comparison, and to alleviate this lack of 
transparency, we propose that researchers publish numer-
ical values of their investigated features computed on the 
digital phantom described in the supplementary material 
of this manuscript (available online40).

To compare different software implementations for 
radiomic feature-extraction algorithms, we present an 
example, in which CT-obtained data of the primary 
tumour region and the corresponding tumour contours 
of four patients with lung cancer serve as ‘real-life’ digital 
phantoms (FIG. 3). Using the preprocessed image data, we 
calculated a set of commonly used features to serve as a 
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a b
reference feature dataset (See Supplementary informa-
tion S1 for a detailed description of the digital phantom 
image data and calculated features).

The radiomics quality score

There is an urgent need for homogeneous evaluation 
criteria and reporting guidelines in order for radiomics 
to develop as a field. We propose the radiomics quality 
score (RQS)41 to aid assessment of both past and future 
radiomic studies.

Editors, reviewers, and readers should be able to 
easily ascertain whether a radiomic study is compliant 
with best-practice procedures or, alternatively, whether 
the study investigators have sufficiently justified any 
non-compliance with guidelines. Publications should 
clearly state how the study has advanced the field of 
radiomics by specifically identifying an exigent unmet 
need. Overly optimistic claims concerning robustness 
and generalizability diminish scientific and clinical 
impact and should be avoided. Publications should 
extensively report study-design, protocols, detailed 
quality assurance processes, and standard operating 
procedures. Although the minute technical details of 
radiomics are tedious, they can greatly influence robust-
ness, generalizability, and confound meta- analyses. 
Rigorous reporting guidelines are necessary for radi-
omics to mature42–44. Many journals now encourage and 
facilitate extensive supplementary materials.

The criteria of the RQS

Overwhelming evidence shows that the quality of 
reporting of prediction model studies is currently poor32. 
Full and clear reporting of information is required on 
all aspects of a prediction model to minimize bias and 
enhance the usefulness of prediction models. An excel-
lent example is the Transparent Reporting of a multi-
variable prediction model for Individual Prognosis Or 
Diagnosis (TRIPOD) initiative32. Within this initia-
tive, a set of recommendations was established for the 
reporting of studies developing, validating, or updating 
a prediction model, regardless of whether the model 
serves diagnostic or prognostic purposes. We have 
emulated this approach in a radiomics-specific context, 
and suggest that studies should be assessed via the RQS 
(available online41), for which we identified sixteen key 
components; each assigned a number of points corre-
sponding to the importance of the respective component 
detailed in TABLE 1.

Translational potential of radiomics

Since the beginning of this decade, radiomics research 
has advanced dramatically, revealing the potential of this 
discipline to substantially improve clinical care (TABLE 2). 
Advances in hardware and software have enabled the 
realization of clinically feasible quantitative imaging of 
tissue pathophysiology.

Radiogenomics

Radiogenomics is associated with two closely related 
but distinct scientific questions: one is the study of the 
link between germline genotypic variations and the large 

clinical variability observed in response to radiation ther-
apy45, and the other is the study of the link between specific 
imaging traits and specific gene-expression patterns that 
inform the underlying cellular pathophysiology46. Within 
the radiobiology community, a common hypo thesis is that 
a proportion of the variance in the phenotype of interest 
(for example, radiation toxicity) can be attributed to gen-
otypic variation. In the clinical context, this hypothesis 
materializes in a risk of severe treatment- related toxicity 
for a minority of patients that limits the prescription of 
potentially curative doses to a majority of patients. We 
posit that the overall goal of radiogenomics is to isolate the 
alleles and corresponding radiomic features that underlie 
the inherited differences in phenotype. Gene-expression 
profiling of various human tissues has enriched our 
understanding of cellular pathways and numerous 
pathological conditions. Investigation of different can-
cerous tissues in relation to samples of non malignant 
healthy tissue has elucidated tumorigenic processes and 
assisted in enhanced staging and sub- classification of 
various malignancies. Gene-expression signatures, each 
comprised of dozens to hundreds of genes, can mean-
ingfully improve diagnosis, prognosis, and prediction 
of response to treatment47–52. Seminal radiogenomic 
investigations highlighted the link between radiomic 
features and gene-expression patterns in patients with 
cancer53–55. One study leveraging survival data in publicly 
available gene-expression datasets for patients with non-    
small-cell lung cancer enabled the identification of prog-
nostic imaging biomarkers54. This radiogenomics strat-
egy for identifying imaging biomarkers might enable 
a more-rapid evaluation of novel imaging modalities, 
thereby accelerating their incorporation into personalized 
medicine approaches. Another investigation compared 
clinician- defined features extracted from contrast- 
enhanced CT images in patients with hepatocellular 
carcinoma with gene-expression patterns using machine 
learning with a neural network55. Reported combina-
tions of 28 features could reconstruct 78% of the global 
gene-expression profiles associated with cell prolifera-
tion, liver synthetic function, and prognosis. In another 
study53, features extracted from MR images to predict 
global gene-expression patterns in patients with glio-
blastoma multiforme revealed that an infiltrative pheno-
type was associated with significantly reduced survival. 

Figure 3 | Radiomics digital phantom data.  

a | Representative image of a digital phantom CT image,  

with the tumour delineation shown outlined in green.  

b | A 3D rendering of the tumour region. The reference feature 

data is provided (please see the supplementary material).

REV IEWS

NATURE REVIEWS | CLINICAL ONCOLOGY  VOLUME 14 | DECEMBER 2017 | 753

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

http://www.nature.com/nrclinonc/journal/vaop/ncurrent/full/nrclinonc.2017.141.html#supplementary-information
http://www.nature.com/nrclinonc/journal/vaop/ncurrent/full/nrclinonc.2017.141.html#supplementary-information
http://www.nature.com/nrclinonc/journal/vaop/ncurrent/full/nrclinonc.2017.141.html#supplementary-information


Table 1 | The radiomics quality score: RQS

Criteria Points

1 Image protocol quality - well-documented image protocols (for 
example, contrast, slice thickness, energy, etc.) and/or usage of public 
image protocols allow reproducibility/replicability

+ 1 (if protocols are well-documented) + 1 (if public protocol is used)

2 Multiple segmentations - possible actions are: segmentation by 
different physicians/algorithms/software, perturbing segmentations 
by (random) noise, segmentation at different breathing cycles. Analyse 
feature robustness to segmentation variabilities

+ 1

3 Phantom study on all scanners - detect inter-scanner differences 
and vendor-dependent features. Analyse feature robustness to these 
sources of variability

+ 1

4 Imaging at multiple time points - collect images of individuals at 
additional time points. Analyse feature robustness to temporal 
variabilities (for example, organ movement, organ expansion/
shrinkage)

+ 1

5 Feature reduction or adjustment for multiple testing - decreases the 
risk of overfitting. Overfitting is inevitable if the number of features 
exceeds the number of samples. Consider feature robustness when 
selecting features

- 3 (if neither measure is implemented) + 3 (if either measure is 
implemented)

6 Multivariable analysis with non radiomics features (for example, EGFR 
mutation) - is expected to provide a more holistic model. Permits 
correlating/inferencing between radiomics and non radiomics features

+ 1

7 Detect and discuss biological correlates - demonstration of phenotypic 
differences (possibly associated with underlying gene–protein 
expression patterns) deepens understanding of radiomics and biology

+ 1

8 Cut-off analyses - determine risk groups by either the median, a 
previously published cut-off or report a continuous risk variable. 
Reduces the risk of reporting overly optimistic results

+ 1

9 Discrimination statistics - report discrimination statistics (for example, 
C-statistic, ROC curve, AUC) and their statistical significance 
(for example, p-values, confidence intervals). One can also apply 
resampling method (for example, bootstrapping, cross-validation)

+ 1 (if a discrimination statistic and its statistical significance are 
reported) + 1 (if a resampling method technique is also applied)

10 Calibration statistics - report calibration statistics (for example, 
Calibration-in-the-large/slope, calibration plots) and their statistical 
significance (for example, P-values, confidence intervals). One 
can also apply resampling method (for example, bootstrapping, 
cross-validation)

+ 1 (if a calibration statistic and its statistical significance are 
reported) + 1 (if a resampling method technique is also applied)

11 Prospective study registered in a trial database - provides the highest 
level of evidence supporting the clinical validity and usefulness of the 
radiomics biomarker

+ 7 (for prospective validation of a radiomics signature in an 
appropriate trial)

12 Validation - the validation is performed without retraining and without 
adaptation of the cut-off value, provides crucial information with 
regard to credible clinical performance

- 5 (if validation is missing) + 2 (if validation is based on a dataset 
from the same institute) + 3 (if validation is based on a dataset from 
another institute) + 4 (if validation is based on two datasets from two 
distinct institutes) + 4 (if the study validates a previously published 
signature) + 5 (if validation is based on three or more datasets from 
distinct institutes)

*Datasets should be of comparable size and should have at least 
10 events per model feature

13 Comparison to ‘gold standard’ - assess the extent to which the model 
agrees with/is superior to the current ‘gold standard’ method (for 
example, TNM-staging for survival prediction). This comparison shows 
the added value of radiomics

+ 2

14 Potential clinical utility - report on the current and potential application 
of the model in a clinical setting (for example, decision curve analysis).

+ 2

15 Cost-effectiveness analysis - report on the cost-effectiveness of the 
clinical application (for example, QALYs generated)

+ 1

16 Open science and data - make code and data publicly available. Open 
science facilitates knowledge transfer and reproducibility of the study

+ 1 (if scans are open source) + 1 (if region of interest 
segmentations are open source) + 1 (if code is open source)  
+ 1 (if radiomics features are calculated on a set of representative 
ROIs and the calculated features and representative ROIs are 
open source)

Total points (36 = 100%)
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Table 2 | Radiomics in practice

Utility Modality Features Cancer #Pts Result Conclusion Ref

Tumour 
prognosis

CT Intensity, 
shape, 
texture, 
and 
wavelet

Lung and head 
& neck

1,019 Lung: (C-index = 0.65, 
P = 2.9 × 10−09, Wilcoxon test), and 
a high performance in H&N1 
(C-index = 0.69, P = 8.0 × 10−07, 
Wilcoxon test) and H&N2 
(C-index = 0.69, P = 3.5 × 10−06, 
Wilcoxon test).

Could predict survival in two 
entirely independent external 
cohorts of patients, outperforming 
the current gold standard of TNM 
status (radiation or concurrent 
chemoradiation)

1

Tumour 
prognosis

PET Texture 
and shape

Oesophageal 217 A clinical prediction model 
(C-index = 0.67) was improved 
by adding radiomic features 
(C-index = 0.77); however, at a 
decision threshold of ≥0.9 there was 
no clear incremental value

Demonstrated that a radiomic 
PET signature provided statistical 
incremental value for predicting 
pathological complete response after 
preoperative chemoradiation

118

Tumour 
prognosis

CT Intensity, 
texture, 
and 
Laplacian 
of 
Gaussian 
filters

Colorectal 326 Training: showed good 
discrimination (C-index = 0.74) and 
calibration. Validation: showed 
good discrimination (C-index = 0.78) 
and good calibration

Decision curve analysis demonstrated 
that a final nomogram consisting of 
the radiomic portal venous-phase CT 
signature, CT-reported lymph-node 
status, and carcinoembryonic antigen 
level was clinically useful

119

Distant 
metastasis

CT Texture, 
Laplacian 
of 
Gaussian 
and 
wavelet 
filters

Lung 182 Could predict distant metastasis in 
an independent validation dataset 
(C-index = 0.61, P = 1.79 × 10−17). 
Adding this radiomic-signature 
to a clinical model resulted 
in a significant improvement 
(P = 1.56 × 10−11)

Provided superior information than 
clinical data capturing detailed 
information of the tumour phenotype 
and can be used as a prognostic 
biomarker for distant metastasis

120

Distant 
metastasis

CT Wavelet 
filters

Lung 113 Significantly prognostic for 
distant metastasis (C-index = 0.67, 
q-value <0.1), while none of 
the conventional and clinical 
parameters were prognostic. Three 
conventional and four radiomic 
features were prognostic for overall 
survival

Demonstrates that radiomic features 
have potential to be prognostic for 
some outcomes that conventional 
imaging metrics cannot predict in 
patients receiving stereotactic body 
radiation therapy

121

Efficacy CT Intensity 
and 
texture

Oesophageal 106 Significant change in radiomics 
feature values was observed with 
increasing radiation dose (pre and 
post radiotherapy scans). AUC = 0.75 
using multiple features in a classifier

Demonstrated the ability to 
individualize the measurement 
of patient lung tissue reaction to 
radiotherapy and assess radiation 
pneumonitis development

122

Staging CT Intensity, 
texture, 
Laplacian 
of Gaussian 
filters

Colorectal 494 Training: AUC = 0.79, P = <0.0001. 
Validation: AUC = 0.71, P = <0.0001. 
The radiomics signature was an 
independent predictor for staging

Demonstrated the ability to 
discriminate between stage I–II 
from III–IV, which may serve as 
a complementary tool for the 
preoperative tumour staging

123

Screening CT Intensity 
and 
texture

Lung 196 AUC = 0.83, P = <0.05. Radiomics 
performance was commensurate 
with the McWilliams 
risk-assessment model

Demonstrated that radiomics at 
baseline can be used to assess risk for 
the development of cancer

124

Survival MR Volumetric Brain 141 C-Index = 0.60, P = 4 × 10−4. 
Volumetric features were 
significantly associated with 
diverse sets of biological processes, 
FDR <0.05

Demonstrated the ability to derive 
the biological state of a glioblastoma 
tumour that can be used to develop 
personalized treatment strategies

125

Survival CT Texture Lung 282 C-Index = 0.72, improved 
accuracy of calibration and the 
classification of survival outcomes 
(net reclassification improvement: 
0.182, P = 0.02).

Decision curve analysis demonstrated 
that in terms of clinical usefulness, the 
radiomics nomogram outperformed 
the traditional staging system and the 
clinical-pathologic nomogram

126

Tumour 
prognosis

CT Intensity, 
shape, 
texture, 
and 
wavelet

Oropharyngeal 542 C-Index = 0.63, P = 2.72 × 10−9. 
Kaplan-Meier survival curves were 
significantly different (P <0.05) 
between high and low radiomic 
signature model predictions for all 
cohorts

Demonstrated external validation 
of the signature, the signature 
had significant prognostic power 
irrespective of the presence or 
absence of CT artifacts

127
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Nevertheless, gene-expression profiling relies on surgical 
procurement of sampled tissue specimens associated 
with multiple risks and potential complications, conse-
quently rendering it unfeasible for many patients with 
cancer. In stark contrast to genetic profiling studies, radi-
omic features53,55–59 capture intratumoural heterogeneity 
in a non-invasive three-dimensional manner, and can 
be obtained as part of routine clinical care. For exam-
ple, approximately 15% of triple-negative breast cancers 
diagnosed globally are associated with poor outcomes 
after treatment60. Reliable techniques for the assess-
ment of HER2 expression (typically fluorescence in situ 
hybridization (FISH)) are expensive and time- consuming. 
In a study that considered the tumour as well as its sur-
rounding parenchyma, DCE–MRI radiomic image 
phenotyping provided useful information for the diag-
nosis of triple-negative breast tumours61. Currently, the  
radiogenomics landscape is evolving rapidly from an 
effort to screen a limited number of candidate genes 
towards an open-discovery approach into the powerful, 
but challenging, era of RLHC62–66.

Radiogenomic features provide valuable biomarkers 
for CDSS67–70; these include prognostic and predictive 
factors for outcomes71, such as tumour response to treat-
ment as well as nonmalignant-tissue tolerance to the 
same treatment. Notwithstanding these virtues, trials 
of radiogenomics biomarkers are susceptible to experi-
mental and imaging inconsistency; therefore, standard-
ization of assay criteria, image acquisition, segmentation, 
trial design, and an analytical approach is vital if radio-
genomics biomarkers are to be effective diagnostic, 
prognostic, and predictive tools in oncology72.

Radiosensitivity and the tumour habitat

Tumour control following radiotherapy is governed by 
the following criteria: the quantity of cancer stem cells 
present in the tumour (which is characteristically asso-
ciated with pretreatment tumour volume), the innate 
radio sensitivity of the stem cells, the hypoxic fraction, re -
oxygenation of the tumour vicinity and/or repopulation 
capacity throughout the course of therapy73–75.

Radiogenomic analysis of tumour micro environments 
has the capacity to unlock knowledge with respect 
to the aforementioned criteria76,77. An example is the 
strong correlation between microvascular density 
and PET–MR-derived radiomics features reported in 
patients with primary clear-cell-renal-cell-carcinoma78. 
In general, tumours display considerable variability in 

radiosensitivity, which even affects tumour cells of ana-
logous origin or histological type79–81. The quantification 
of the radiosensitivity of human tumours is presently per-
formed on the basis of the ex vivo tumour survival frac-
tion, and the detection of unrepaired DNA double-strand 
breaks82,83. Preclinical (including prostate, lung, and 
brain cancers) and clinical (such as cervical, and head-
and-neck cancers) studies have proven that tumour-cell 
radiosensitivity is a key feature for the prediction of out-
comes to radiotherapy in patients with prostate, lung, 
brain, cervical, or head-and-neck cancers84–88. These 
data, however, were built on results from colony assays 
that involved technical deficiencies, such as poor plating 
efficiency (<70%) for human tumours or protracted time 
required to produce data (up to several weeks).

Overall, these approaches have been undermined 
by the presence of substantial experimental variability 
rather than by the existence of interpatient variations 
in radiosensitivity. Non-malignant tissue toxicity is the 
dose-limiting factor in radiation oncology; therefore, a 
comprehensive CDSS should be built upon predictors 
of dose, tumour-control versus non-malignant-tissue- 
complication probability ratio, as well as cost- 
effectiveness89, in order to facilitate improved escalated 
or de-escalated individualized treatments for patients.

Immunotherapy

In the field of oncology, a promising research area is that 
of biomarkers — in particular, biomarkers for immuno-
therapy and imaging biomarkers90,91. The stimulation of 
an antitumour immune response in response to radio-
therapy has been well documented92. For a robust and 
vigorous immune response to be elicited, the activation 
of antigen-specific T-cells coupled with memory effects 
is required93. Such an immune response is dependent 
on the expression of specific antigens on tumour cells 
(neoantigens), which are subsequently identified by the 
immune system. Neoantigens arise from mutated pro-
teins within the tumour cell. Research results demon-
strate that the success rate of immunotherapies relies  
on the presence of neoantigen-specific T-cells94. 
Moreover, the mutational load of many human tumour 
types correlates with the cytolytic activity of natural 
killer cells and T-cells95. When a tumour has the poten-
tial to be identified by the immune system, a suitable 
immune response can be coordinated. Importantly, 
neoantigens must be taken up by antigen-presenting 
cells (APCs) or dendritic cells (DCs) and subsequently 

Table 2 (cont.) | Radiomics in practice

Utility Modality Features Cancer #Pts Result Conclusion Ref

Overall 
survival

PET Shape, 
intensity, 
and 
texture

Pancreatic 139 C-Index = 0.66, significantly better 
than competing prognostic indices 
(0.48–0.64, Wilcoxon rank sum test 
P = 1 × 10−6)

Demonstrated external validation 
of the signature if validated in large, 
prospective cohorts, the signature 
might be used to identify patients for 
individualized risk-adaptive therapy

128

Recurrence MR Shape, 
intensity, 
and 
texture

Breast 89 AUC = 0.88, 0.76, and 0.68 for 
MammaPrint, Oncotype DX, and 
PAM50 risk of relapse based on 
subtype respectively, all statistically 
significant, P = ≤0.05

Demonstrates that breast MR 
imaging radiomics shows promise 
for image-based phenotyping in 
assessing the risk of breast cancer 
recurrence

129
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CT scan Biopsy
Mutation
detection CT scan Radiomics

Mutation
probability

Current model Radiomics model

cross-presented to naive T-cells96. T cells are then con-
verted into tumour-killing cytotoxic T cells. The capac-
ity of radiation to boost immune responses seems to be 
crucially dependent on the quantity and quality of DCs 
present in the tumour local environment97,98.

Tumours have diverse means to shield from ample 
cytotoxic T-cell responses; for example, by interfering 
with several immune checkpoints, such as PD-L1, a pro-
tein with biomarker potential. The mutational load of 
the tumour has been correlated with clinical responses 
to anti-PD-1-mediated immunotherapy, for example, 
in patients with non-small-cell lung cancer99,100. Such 
biological and genetic features hold potential; radio-
genomic analysis will undoubtedly have an important 
role in leveraging this information in future CDSS. The 
basic hypo thesis, still to be tested, is that tumours with 
high mutational loads have more neoantigens and, con-
sequently, will be more heterogeneous on radiomic ana-
lysis and more sensitive to immunotherapy than tumours 
with low mutational loads. The exact opposite scenario 
is noted in response to radiotherapy or chemotherapy; 
in these situations enhanced radiomics-assessed tumour 
hetero geneity is an adverse prognostic factor. Regarding 
the combination of radiotherapy and/or chemotherapy 
and immunotherapy, no clear indication exists as to which 
effect will dominate.

Technical aspects

Accredited radiogenomic centres should be established. 
Stakeholders in the academic, clinical, industry, and 
regulatory spheres must collaborate to create, sustain, 
and standardize the required best-practice framework. 
Radiomic studies are difficult to perform consistently, 
and thus, accreditation is vital to the advancement of radi-
omics. Techniques for the workflow of radiomics ought 
to be independent of vendors and upgrades to hardware  
and/or software. Radiomic studies should incorporate 
reproducibility assessments owing to the beneficial eth-
ical, economic and logistical effects they have (such as 

informing power calculations and required samples sizes, 
multicentric trial duration and trial cost). Optimal repro-
ducibility and stability enables multicentre studies to 
maximize the likelihood of a validated radiomic signature 
being fit-for-purpose in routine clinical use. Prospective 
studies sufficiently powered to relate radiomics data to 
clinical outcomes in appropriate patient populations are 
pivotal. Indeed, numerous studies are underpowered for 
sensitivity and specificity; however, study populations 
should not be skewed by selecting only those patients 
who are more capable of adhering to complex imag-
ing protocols than the general population. All findings 
should be published, including true-negatives, false- 
negatives and false-positives, and the perceived adver-
sity to negative results tempered because the inclusion of 
substantial bias risks distorting the radiomics landscape.

Economic elements

Multicentric, collaborative and federated efforts are 
required to share, store, and curate data. Data-sharing 
enables initiation of highly powered prospective stud-
ies and accelerates the development and validation of 
radiomic signatures derived from new and existing data. 
Trials conducted in centres that are part of a network can 
quickly recruit sufficient patient numbers to drive dis-
covery and innovation. Outcome studies should include 
health economic considerations. Moreover, cost-  per-
quality-adjusted-life-year comparisons should be con-
ducted with and without radiomics to more accurately 
determine the economic potential of such studies101.

The way forward for radiomics

Virtual biopsy

In patients with cancer, different parts of the tumour 
have distinct molecular characteristics; such differences 
change over time. As it is not possible to biopsy every 
part of each tumour at multiple time points, the optimal 
characterization of tumours is not achieved using biopsy 
samples (FIG. 4).

Figure 4 | Radiogenomics analysis can reveal relationships between imaging phenotypes and gene-expression 

patterns. Such relationships can include expressions of individual genes as well as measures that summarize expressions 

of specific gene subsets.
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Pretreatment Week 1 Week 2 Week 3

Radiomics Radiomics Radiomics Radiomics

-Radiomics

Post-treatment 

Radiomics

Delta radiomics

Published work mainly focused on imaging data 
acquired at a single time point, mostly imaging tumours 
before the start of treatment. Delta-radiomics introduces 
a time component and comprises extraction of quanti-
tative features from image sets acquired over the course 
of treatment102–104, which provides information on the 
evolution of feature values105 (FIG. 5). Delta-radiomics 
promises to improve diagnosis, prognosis, prediction, 
monitoring, image-based intervention, or assessment of 
therapeutic response.

Infrastructure for radiomics

Radiomics demonstrates huge potential to deepen 
knowledge and broaden the horizons of imaging, in 
order to achieve greater precision and extraction of 
in vivo biological information. To fully harness the 

potential of radiomics, research and clinical commu-
nities must embrace an interdisciplinary shared vision 
of precision medicine. Extracted radiomic features 
must be stored in searchable databases in order to real-
ize the unprecedented potential for RLHC that routine 
standard-of-care imaging represents. Hence, RLHC 
networks can dynamic ally capture multimodal data and 
share knowledge across departmental and institutional 
boundaries, in order to accumulate sufficient datasets 
for significant statistical power in model development 
and validation.

Big data

Ideal RLHCs necessitate the 4Vs of ‘big data’: volume, 
variety, velocity, and veracity of data. The volume of data 
is important: firstly, the quality of knowledge gained 
from a study is correlated with the number of patients 

Figure 5 | Schematic overview of a clinical decision-support system graphical user interface illustrating the 

concept of delta-radiomics. In this example, a clinician requests the radiomic analysis of a patient on the basis of 

combined longitudinal PET–CT images, potentially enabling improved diagnosis, early response prediction, improved 

clinical decision-making and, consequently, a better prognosis.
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Radiomics

from whom data were obtained. Secondly, a greater data 
volume enables the acquisition of more variables in the 
model development phase. Thirdly, knowledge related 
to patients with rare disease variants is more easily 
gained from larger datasets. The variety of data, both 
in terms of treatment and of patient characteristics, is 
critical for deciding which treatment is optimal for each 
individual patient. The velocity of data acquisition is 
important to guarantee that knowledge is gathered as 
swiftly and perpetually as possible, while the veracity 
of data is critical to the amount of confidence that can 
be ascribed to the knowledge gained.

Data sharing

Procuring data of sufficient quality with regard to the 
4Vs is central to RLHCs. A pressing need to embrace 
knowledge and data-sharing technology 106, which 
transcends institutional and national boundaries107, 
drives both the research and clinical communities. The 
following established obstacles to data sharing108 are 
apparent in the medical domain: insufficient human 
resources or insufficient time, cultural and language 
difficulties, data recording methods, the political and 
academic value of data, hazards to reputation, or legal 
and privacy considerations, to name a few. These issues, 
although not easy to overcome, must be addressed.

One init iat ive to accomplish this goal is 
CancerLinQ109, the ASCO data centralization approach. 
Another initiative is worldCAT that consists of a 

novel data-federated approach that successfully links 
radio therapy institutes in the Netherlands, Germany, 
Belgium, Italy, Denmark, Australia, China, India, 
South Africa, Ireland, UK, USA and Canada (FIG. 6)110. 
In addition, universal streamlined solutions through 
advanced information communication technologies 
have been central to the realization of this endeavor, 
readily facilitating synchronized RLHC in each centre 
without inclusion of sensitive data, which overcomes 
the classic barriers to data sharing. Other important 
links include The Cancer Imaging Archive (TCIA)111,  
The Quantitative Imaging Network (QIN)112, the 
Quantitative Imaging Biomarkers Alliance (QIBA)113, 
and Quantitative Imaging in Cancer: Connecting  
Cellu lar Processes with Therapy (QuIC-ConCePT)114.

Ontologies for learning

For RLHCs to succeed, the creation of data with seman-
tic interoperability, also known as ‘machine-readable’ 
data115 is needed, in which local terms are harmonized 
from concepts of well-defined ontologies (such as 
the NCI Thesaurus or ICD-10). Exploiting this tech-
nique, the ontology terms serve as a common reference  
for the data at each institutional site, permitting a unified 
process for information retrieval enabled by a semantic 
gateway to the data. A benefit of this approach is that it 
promotes standardization with respect to data manage-
ment (such as disease-specific ‘umbrella’ protocols: 
NCT01855191)116,117.

Figure 6 | Schematic diagram of the CAT system. Multiple centres are linked via learning connectors. The connector is the 

interface where machine learning algorithms (sent from the learning coordinator) learn models from local data. Of note, 

privacy-sensitive information remains in the institute. Partner sites exist in the Netherlands, Germany, Belgium, Italy, Denmark, 

Australia, China, India, South Africa, Ireland, UK, USA and Canada. The system is built from a combination of open-source 

information communication technologies and can deliver data locally via SQL query, or to the wider CAT network via a 

SPARQL end point. CAT; Computer-assisted theragnostic EMR; electronic medical record; PACS, picture archiving and 

communication system; SPARQL; simple protocol and RDF query language.
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Role of radiomics in the future

Picture archiving and radiomics knowledge systems 
(PARKS) of the future will identify, segment, and extract 
features from regions of interest. If previous images 
associated with the same patient are accessible, the ear-
lier identified regions of interest will be automatically 
identified by the PARKS software. Quantitative image 
features that are uploaded to a shared database and 
compared with previous images will be automatically 
extracted by the PARKS to enhance CDSS for diagno-
sis, prognosis, and treatment, resulting in improved 
personalization and precision medicine (FIG. 7). Such 
capabilities are on the technological, scientific, and 
clinical horizons, as most current picture archiving 
and communication systems have the capability to 
co-register current images with previous images and 
perform user-interactive segmentation. For the imme-
diate future, the field of radiomics will focus on the 
creation of suitable infrastructures for powerful RLHC 
networks that will facilitate the development and  
validation of models.

Figure 7 | Overview of the methodological processes for RLHC and how the radiomics workflow fits into the 

development of a CDSS. Data selection, discovery, collection and preparation, model(s) development/validation and 

implementation, assessment of clinical utility and ultimately refinement through continuous repetition of the process 

(quality control and assurance protocols are requisite throughout the process).

Conclusions

Our vision for radiomics is expansive and bold. In the 
reasonably near future, we envision that CDSS that apply 
knowledge leveraged from radiomic features mined from 
global RLHC networks populated by standard-of-care 
imaging will enable increased personalized delivery of 
medicine. For this vision to be updated within the rou-
tine clinical setting, clinicians and medical physicists must 
be incentivized to participate in the process. Moreover, 
standardization is crucial to this endeavor, principally 
in the acquisition of high-quality data. Standardization 
underpins coherent clinical guidelines with agreed 
standards for image acquisition and analysis, as well as 
data-sharing techniques that exploit matching ontolo-
gies. Continuous re-evaluation and demonstration of 
the clinical utility of a CDSS is as significant as stand-
ardizing the development and validation of the design of 
clinical trials. These crucial steps are the foundation of a 
successful CDSS. Simultaneous and synergistic advances 
in RLHC and radiomics will empower the next major  
breakthroughs in personalization and precision medicine.
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