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Radion and holographic brane gravity
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The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis

on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a

low energy expansion method. This allows us, through the junction conditions, to deduce the effective equa-

tions of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a

quasi-scalar-tensor theory with a specific coupling function v(C)53C/2(12C) on the positive tension brane

and v(F)523F/2(11F) on the negative tension brane, where C and F are nonlinear realizations of the

radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity,

the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and

negative tension branes, with different effective gravitational coupling constants. In particular, the radion

disguised as the scalar fields C and F couples with the sum of the traces of the energy-momentum tensor on

both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting

the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For complete-

ness, we also derive the effective action for our theory by substituting the bulk solution into the original action.

It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk

geometry can be reconstructed from the solution of quasi-scalar-tensor gravity.

DOI: 10.1103/PhysRevD.66.083506 PACS number~s!: 98.80.Cq, 04.50.1h, 98.80.Hw

I. INTRODUCTION

Motivated by the recent development of superstring

theory, the brane world scenario has been studied intensively.

In particular, the warped compactification mechanism pro-

posed by Randall and Sundrum ~RS! has given birth to a new
picture of the universe @1#. The single brane model ~RS2! has
been well studied so far because of its simplicity and the
absence of a stability problem of the radion mode @2–5#. As
for the two-brane model ~RS1!, Garriga and Tanaka have
shown that the gravity on the brane behaves as in Brans-
Dicke theory at a linearized level @6#. Thus, the conventional
linearized Einstein equations do not hold even on scales
large compared with the curvature scale l in the bulk. Char-
mousis et al. have clearly identified the Brans-Dicke field as
the radion mode @7#. Subsequent research has been focused
on the role of the radion in the brane world scenario @8–10#.

However, the above-mentioned works are restricted to lin-
ear theory or to homogeneous cosmological models. It is
important to study nonlinear gravity for applications to as-
trophysical and cosmological problems. Recently, Wiseman
has analyzed a special two-brane system with the negative
tension brane taken to be in vacuum and has shown that the
low energy effective theory becomes a scalar-tensor theory
with a specific coupling function @11#. Here, we consider the
general case including matter on the negative tension brane
and derive the effective equations of motion for this system
using a low energy expansion method developed by us @12#.

To further illuminate the role of the radion in the brane
world, let us pose the issue in the following way. In our
previous paper, we derived the low energy effective equation
on the brane as @12# ~see also @13#!

G n
m

5

k2

l
T n

m
2

2

l
x n

m ~xm!, ~1!

where G n
m , k , and T n

m denote the four-dimensional Ein-

stein tensor, the five-dimensional gravitational constant, and
the energy-momentum tensor on the brane, respectively.
Here, the ‘‘constant of integration’’ xmn(x) is transverse and
traceless. When we impose maximal symmetry on the spatial
part of the brane world, Eq. ~1! reduces to the Friedmann
equation with dark radiation:

H2
5

8pGr

3
1

C

a0
4

~2!

where H, a0, and r are, respectively, the Hubble parameter,
the scale factor, and the total energy density of each brane,
while C is a constant of integration associated with the mass
of a black hole in the bulk. Hence, xmn(x) can be regarded as
a generalization of the dark radiation appearing in Eq. ~2!.
The point is that Eq. ~1! holds irrespective of the existence of
other branes. The effect of the bulk geometry comes into the
brane world only through xmn .

On the other hand, as we have noted, a scalar-tensor
theory emerges in the two-brane system. How can we recon-
cile these seemingly incompatible pictures? In this paper, we
reveal a mechanism to convert the Einstein equations with
generalized dark radiation to quasi-scalar-tensor gravity.
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Eventually, it turns out that the radion disentangles the non-
locality in the nonconventional Einstein equations and leads
to local quasi-scalar-tensor gravity.

This paper is organized as follows. In Sec. II, our iteration
scheme to solve the Einstein equations at low energy is ex-
plained. In Sec. III, the background solution is presented. In
Sec. IV, we derive the brane effective action from the junc-
tion conditions at leading order. We see that the effective
theory is described by quasi-scalar-tensor gravity with a spe-
cific coupling function. The relation to holography is also
discussed. In Sec. V, a systematic method for computing the
higher order corrections is discussed. Section VI is devoted
to discussion and conclusions. In Appendix A, we explain the
physical meaning of our method, especially the relation to
the zero mode and Kaluza-Klein modes in linear theory, by
using a simple scalar field model. In Appendix B, linearized
gravity is analyzed in detail using our method.

II. LOW ENERGY APPROXIMATION

A. RS1 model and basic equations

The model is described by the action

S5

1

2k2E d5xA2gS R1

12

l2 D2 (
i5A ,B

s iE d4xA2g i brane

1 (
i5A ,B

E d4xA2g i brane
Lmatter

i , ~3!

where R, gmn
ibrane , and k2 are the scalar curvature, the in-

duced metric on the branes, and the gravitational constant in
five-dimensions, respectively. We consider an S1 /Z2 orbifold
spacetime with the two branes as the fixed points. In the RS1
model, two flat three-branes are embedded in the five-
dimensional asymptotically anti–de Sitter ~AdS! bulk with
curvature radius l with the brane tensions given by sA

56/(k2l) and sB526/(k2l).
For general nonflat branes, we cannot keep both the two

branes straight in the Gaussian normal coordinate system.
Hence, we use the following coordinate system to describe
the geometry of the brane model:

ds2
5e2f(y ,xm)dy2

1gmn~y ,xm!dxmdxn. ~4!

We place the branes at y50 (A-brane! and y5l (B-brane! in
this coordinate system. The proper distance between the two
branes with fixed x coordinates can be written as

d~x !5E
0

l

ef(y ,x)dy . ~5!

Hence, we call f the radion ~see Fig. 1!. In this coordinate
system, the five-dimensional Einstein equations become

e2f~e2fK n
m ! ,y2~e2fK !~e2fK n

m !1R n
m

~4 !

2¹m¹nf2¹mf¹nf

52

4

l2 dn
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3
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1

3
dn

mTAD e2fd~y !

1k2S 1

3
dn

msB1T̃ n
Bm

2

1

3
dn

mT̃BD e2fd~y2l !,

~6!

e2f~e2fK ! ,y2~e2fKab!~e2fKab!

2¹a¹af2¹af¹af

52

4

l2 2

k2

3
~24sA1TA!e2fd~y !

2

k2

3
~24sB1T̃B!e2fd~y2l !, ~7!

¹n~e2fK m
n !2¹m~e2fK !50, ~8!

where R n
m

(4)

is the curvature on the brane, ¹m denotes the

covariant derivative with respect to the metric gmn , and we
introduced the tensor Kmn52gmn ,y/2 for convenience. One
can read off the junction condition from the above equations
as

e2f@Kn
m

2dn
mK#uy505

k2

2
~2sAdn

m
1T n

Am !, ~9!

e2f@Kn
m

2dn
mK#uy5l52

k2

2
~2sBdn

m
1T̃ n

Bm !, ~10!

where Kn
m

5gmaKan and the fact that we are considering a Z2

symmetric spacetime is used. Decompose the extrinsic cur-
vature into the traceless part and the trace part:

FIG. 1. Radion as a distance between two branes.
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e2fKmn5Smn1

1

4
gmnQ , Q52e2f

]

]y
logA2g .

~11!

Then, off the brane, we obtain the basic equations

e2fS n ,y
m

2QS n
m

52FR n
m

~4 !

2

1

4
dn

m R

~4 !

2¹m¹nf2¹mf¹nf

1

1

4
dn

m~¹a¹af1¹af¹af !G , ~12!
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4
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2S b
a S a

b
5

F R

~4 !G
1
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l2 , ~13!

e2fQ ,y2

1

4
Q2

2SabSab5¹a¹af1¹af¹af2

4

l2 ,

~14!

¹lSm
l

2

3

4
¹mQ50. ~15!

The junction conditions are

FSn
m

2

3

4
dn

mQGU
y50

5

k2

2
~2sAdn

m
1T n

Am !, ~16!

FSn
m

2

3

4
dn

mQGU
y5l

52

k2

2
~2sBdn

m
1T̃ n

Bm !. ~17!

The problem now is separated into two parts. First, we must
solve the bulk equations of motion with the Dirichlet bound-
ary condition at the A-brane, gmn(y50,xm)5hmn(xm). Then,
the junction condition is imposed at each brane. As the junc-
tion conditions constrain the induced metrics on both branes,
they naturally give rise to the effective equations of motion
for gravity on the branes.

B. Low energy expansion scheme

Unfortunately, it is a formidable task to solve the five-
dimensional Einstein equations exactly. However, notice that
typically the length scale of the internal space is l!0.1 mm.
On the other hand, the usual astrophysical and cosmological
phenomena take place at scales much larger than this scale.
Thus we need only the low energy effective theory to ana-
lyze a variety of problems, for example, the formation of a
black hole, the propagation of gravitational waves, the evo-
lution of cosmological perturbations, and so on. It should be
stressed that low energy does not necessarily implies weak
gravity on the branes.

Along the normal coordinate y, the metric varies with the
characteristic length scale l; gmn ,y;gmn /l . Denote the char-
acteristic length scale of the curvature on the brane as L.
Then we have R;gmn /L2. For the reader’s reference, let us
take l51 mm, for example. Then the relations in the RS1
model

k2sA5

6

l
,

k2

l
58pGN ~18!

give k2;(108 GeV)23 and us iu;1 TeV4.
In this paper, we will consider the low energy regime in

the sense that the energy density of the matter, r i , on a brane
is smaller than the brane tension, i.e., r i /us iu!1. In this
regime, a simple dimensional analysis

r i

us iu
;

l

k2us iu

k2r i

l
;S l

L
D 2

!1 ~19!

implies that the curvature on the brane can be neglected
compared with the extrinsic curvature at low energies. Thus,
the anti-Newtonian or gradient expansion method used in the
cosmological context @14# is applicable to our problem.

Our iteration scheme is to write the metric gmn as a sum
of local tensors built out of the induced metric on the brane,
with the number of derivatives increasing with the order of
iteration, that is, O„(l/L)2n…, n50,1,2, . . . . Hence, we seek
the metric as a perturbative series

gmn~y ,xm!5a2~y ,x !@hmn~xm!1gmn
(1)~y ,xm!

1gmn
(2)~y ,xm!1•••# , ~20!

gmn
(n)~y50,xm!50, n51,2,3, . . . , ~21!

where the factor a2(y ,x) is extracted for a reason explained
later and we use the Dirichlet boundary condition gmn(y

50,x)5hmn(x) at the A-brane. We do not need to know the
geometry of the B-brane when we focus on the effective
equations on the A-brane. In other words, from a viewpoint
on the A-brane, the junction condition at the B-brane simply
gives the boundary condition for the bulk geometry. Other
quantities are also expanded as

S n
m

5S n
(0)m

1S n
(1)m

1S n
(2)m

1••• . ~22!

In Appendix A, we illustrate our method using a simple sca-
lar field example to clarify the relation of the low energy
expansion to the zero mode and Kaluza-Klein modes in lin-
earized theory.

III. BACKGROUND GEOMETRY

As we can ignore the matter at the lowest order, we obtain
a vacuum brane; namely, we have an almost flat brane com-
pared with the curvature scale of the bulk spacetime. At the
zeroth order, we can neglect the curvature term. Then we
have

e2fS n ,y
(0)m

2Q (0)S n
(0)m

50, ~23!

3

4
Q (0)2

2S b
(0)a S a

(0)b
5

12

l2 , ~24!

e2fQ ,y
(0)

2

1

4
Q (0)2

2S (0)abSab
(0)

52

4

l2 , ~25!
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¹lS m
(0)l

2

3

4
¹mQ (0)

50. ~26!

The junction condition is

FS n
(0)m

2

3

4
dn

mQ (0)GU
y50

52

k2

2
sAdn

m , ~27!

FS n
(0)m

2

3

4
dn

mQ (0)GU
y5l

5

k2

2
sBdn

m . ~28!

Using Eq. ~11!, Eq. ~23! can be readily integrated,

S n
(0)m

5

C n
m ~xm!

A2g
, C m

m
50, ~29!

where C n
m is a ‘‘constant’’ of integration. This term is not

allowed to exist because of the junction conditions ~27! and
~28!. Thus, it is easy to solve the remaining equations. The
result is

S n
(0)m

50, Q (0)
5

4

l
. ~30!

Using the definition

Kmn
(0)

52

1

2

]

]y
gmn

(0)
5

1

l
efgmn

(0) , ~31!

we get the zeroth order metric as

ds2
5e2f(y ,x)dy2

1a2~y ,x !hmn~xm!dxmdxn,

a~y ,x !5expF2

1

l
E

0

y

dyef(y ,x)G , ~32!

where the tensor hmn is the induced metric on the positive
tension brane. Note that the metric derived by Charmousis
et al., ef

5112 f (x)e2y /l/l , is consistent with this solution
@7#. To proceed further, we take the coordinate system to be
f(y ,x)5f(x). Then we have a(y ,x)5exp@2yef/l#. Al-
though this choice of the coordinate system is generally pos-
sible at least locally, there may be a global obstruction. How-
ever, as we show below, we can consistently get nontrivial
solutions. Moreover, we explicitly demonstrate the validity
of our choice at the level of linear theory in Appendix B.

Given the zeroth order solution, junction conditions ~27!
and ~28! lead to the well known relations

k2sA5

6

l
, k2sB52

6

l
. ~33!

Note that f(x) and hmn(x) are arbitrary functions of x at
zeroth order.

IV. HOLOGRAPHIC QUASI-SCALAR-TENSOR GRAVITY

A. Bulk geometry

The next order solution is obtained by taking into account
the terms neglected at zeroth order. It is at this order that the
effect of matter comes in. At the first order, Eqs. ~12!–~15!
become

e2fS n ,y
(1)m

2

4

l
S n

(1)m
52@R n

m
~4 !

2¹m¹nf

2¹mf¹nf# trace less
(1) , ~34!

6

l
Q (1)

5F R

~4 ! G ~1 !

, ~35!

e2fQ ,y
(1)

2

2

l
Q (1)

5@¹a¹af1¹af¹af# (1),

~36!

¹lS m
(1)l

2

3

4
¹mQ (1)

50, ~37!

where the subscript ‘‘traceless’’ represents the traceless part
of the quantity in square brackets. The junction conditions
are given by

FS n
(1)m

2

3

4
dn

mQ (1)GU
y50

5

k2

2
T n

Am , ~38!

FS n
(1)m

2

3

4
dn

mQ (1)GU
y5l

52

k2

2
T̃ n

Bm ,

~39!

where the superscript (1) represents the order of the gradient

expansion. Here, @R n
(4)m # (1) means the Ricci tensor of

a2hmn . Note that now a5exp@2yef/l#. It is convenient to

introduce the Ricci tensor of hmn , denoted by Rn
m(h), and

express @R n
(4)m # (1) in terms of Rn

m and f;

FR n
m

~4 !

~g !G ~1 !

5

1

a2 FR n
m ~h !12

y

l
ef~f un

um
1f umf un!

1dn
m

y

l
ef~f ua

ua
1f uaf ua!12

y2

l2 e2ff umf un

22dn
m

y2

l2 e2ff uaf uaG , ~40!

where u denotes the covariant derivative with respect to hmn .
Similarly, it is convenient to express the second derivatives
of f as

@¹m¹nf# (1)
5

1

a2Ff un
um

12
y

l
eff umf un2

y

l
efdn

mf uaf uaG .

~41!

Substituting the trace of Eq. ~40! into the right-hand side
of Eq. ~35!, we obtain
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Q (1)
5

l

a2 F1

6
R~h !1

yef

l
~f ua

ua
1f uaf ua!2

y2e2f

l2
f uaf uaG .

~42!

Note that Eq. ~36! is trivially satisfied now. Hereafter, we
omit the argument of the curvature for simplicity. Substitut-
ing Eqs. ~40! and ~41! into Eq. ~34! and integrating it, we
obtain the traceless part of the extrinsic curvature as

S n
(1)m

5

l

a2 F1

2
S R n

m
2

1

4
dn

mR D1

yef

l
S f un

um
2

1

4
dn

mf ua
ua D

1S y2e2f

l2
1

yef

l D S f umf un2

1

4
dn

mf uaf uaD G
1

xn
m~x !

a4
, ~43!

where xn
m is an integration constant with the property x m

m

50. And x n
m must be transverse, x num

m
50, in order to sat-

isfy Eq. ~37!. The definition ~11! gives

2

1

2
e2fg (0)am

]

]y
gan

(1)
5S n

(1)m
1

1

4
dn

mQ (1). ~44!

Integrating Eq. ~44!, we obtain the metric in the bulk:

gmn
(1)

52

l2

2
S 1

a2 21 D S Rmn2

1

6
hmnR D

1

l2

2
S 1

a2 212

2yef

l

1

a2D S f umn1

1

2
hmnf uaf uaD

2

y2e2f

a2 S f umf un2

1

2
hmnf uaf uaD2

l

2
S 1

a4 21 Dxmn ,

~45!

where we have imposed the boundary condition gmn
(1)(y

50,xm)50. From these results, one can calculate the Weyl
tensor as

Cymyn5

2xmn

la4
. ~46!

Hence, the term xmn is essentially the Weyl tensor at this
order. Note that we have obtained the bulk metric in terms of
f(x), hmn(x), and xmn(x).

B. Quasi-scalar-tensor gravity

We shall deduce the equations for f(x),hmn(x), and
xmn(x) from the junction conditions. Using Eqs. ~42! and
~43!, one gets the junction conditions. The junction condition
at the A-brane is written as

l

2
G n

m ~h !1x n
m

5

k2

2
T n

Am . ~47!

This equation is nothing but the Einstein equation with gen-
eralized dark radiation xmn . It should be noted that xmn is
undetermined at this level, exhibiting the nonlocal nature of
Eq. ~47!.

The junction condition at the B-brane is given by

l

2V2 G n
m

1

lef

V2
~f un

um
2dn

mf ua
ua

1f umf un2dn
mf uaf ua!

1

le2f

V2 S f umf un1

1

2
dn

mf uaf uaD1

x n
m

V4
52

k2

2V2 T n
Bm ,

~48!

where V(x)5a(y5l ,x)5exp@2ef#. Here, the index of

T n
Bm is the energy-momentum tensor with the index raised

by the induced metric hmn on the A-brane, while T̃ n
Bm is the

one raised by the induced metric on the B-brane. At the
present order, we have the following relations:

Tmn
B

5T̃mn
B , T n

Bm
5V2T̃ n

Bm . ~49!

To reveal the role of the radion field, we must write Eq. ~48!
using the induced metric on the B-brane, gmn

Bbrane
5V2(hmn

1gmn
(1))[ f mn1V2gmn

(1) . At this order, the Ricci tensor Rn
m of

the induced metric on the B-brane is equal to that of f mn .
Using this fact, we rewrite Eq. ~48! to obtain the effective
equations on the B-brane:

l

2
G n

m ~ f !1

x n
m

V4
52

k2

2
T̃ n

Bm . ~50!

Again, we have the nonconventional ~nonlocal! Einstein
equations, as in the case of the A-brane.

Although Eqs. ~47! and ~50! are nonlocal individually,
with undetermined xmn , one can combine the two equations
to reduce them to local equations for each brane. This hap-
pens to be possible since xmn appears only algebraically; one
can easily eliminate xmn from Eqs. ~47! and ~48!. Defining a
new field C512V2, we find

G n
m ~h !5

k2

lC
T n

Am
1

k2~12C !

lC
T n

Bm
1

1

C
~C un

um

2dn
mC ua

ua !1

v~C !

C2 S C umC un2

1

2
dn

mC uaC uaD ,

~51!

where the coupling function v(C) takes the following form:

v~C !5

3

2

C

12C
. ~52!

We can also determine xn
m by eliminating Gn

m from Eqs. ~47!
and ~48!. Then,
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x n
m

52

k2~12C !

2C
~T n

Am
1T n

Bm !2

l

2C
F ~C un

um
2dn

mC ua
ua !

1

v~C !

C
S C umC un2

1

2
dn

mC uaC uaD G . ~53!

The condition x m
m

50 gives rise to the field equation for C:

hC5

k2

l

TA
1TB

2v13
2

1

2v13

dv

dC
C umC um , ~54!

where we have used the explicit form of v(C). This equa-
tion tells us that the trace part of the energy-momentum ten-
sor determines the radion field and hence the relative bend-
ing of the brane, and xmn is determined by the traceless part
of the right-hand side of Eq. ~53!. Remarkably, xmn is now a
secondary entity.

Equations ~51! and ~54! are the basic equations to be used
in cosmological or astrophysical contexts when the charac-
teristic energy density is less than us iu. Notice that the con-
servation law with respect to the metric hmn reads

T num
Am

50, T num
Bm

5

C um

12C
T n

Bm
2

1

2

C un

12C
TB. ~55!

In contrast to the usual scalar-tensor gravity, this theory
couples with two kinds of matter, namely, the matter on both
positive and negative tension branes, with different effective
gravitational coupling constants. For this reason, we call this
theory quasi-scalar-tensor gravity. Thus, the ~nonlocal! Ein-
stein equation ~47! with generalized dark radiation has trans-
formed into the ~local! quasi-scalar-tensor gravity ~51! with
the coupling function v(C).

C. Effective action

Let us consider an effective action for hmn(x) and f(x).

If one wants to calculate the quantum fluctuations in the

inflationary scenario, for example, one needs the action to

determine their magnitude. The action has to be derived from

the original five-dimensional action by substituting the solu-

tion of the equations of motion in the bulk and integrating

out over the bulk coordinate. We shall start with the follow-

ing action:

S5

1

2k2E d5xA2gFR1

12

l2 G1

2

k2E d4xA2hQA

2

2

k2E d4xA2 f QB
2

6

k2l
E d4xA2h1

6

k2l
E d4xA2 f

1E d4xA2hL
A
1E d4xA2 fL B, ~56!

where we have taken into account the boundary term, the

so-called Gibbons-Hawking term, instead of introducing
delta-function singularities in the curvature. The factor 2 in
the Gibbons-Hawking term comes from the Z2 symmetry of
this spacetime. As we substitute the solution of the bulk
equations of motion, we can use the equation R5220/l2

which holds in the bulk. It should be stressed that the bulk
metric is solved without using junction conditions and is
expressed in terms of f , hmn , and xmn . That is why we can
get the effective action on the brane by simple substitution of
the solution. Now, up to first order, we obtain

S52

8

k2l2E d4xA2hE
0

lef

dza4F11

1

2
hmngmn

(1)G1

2

k2E d4xA2hF4

l
1

l

6
RG2

2

k2E d4xA2hV4F11

1

2
hmngmn

(1)G
3F4

l
1

l

6V2 R1

lef

V2 ~hf1f uaf ua!2

le2f

V2
f uaf uaG2

6

k2l
E d4xA2h1

6

k2l
E d4xA2hV4F11

1

2
hmngmn

(1)G
1E d4xA2hL

A
1E d4xA2hV4

L
B. ~57!

Using Eq. ~45! and the definition C512V2, we finally
have the action:

S5

l

2k2E d4xA2hFCR2

v~C !

C
C uaC uaG

1E d4xA2hL
A
1E d4xA2h~12C !2

L
B. ~58!

This is a complete derivation of the action with the correct

normalization, which is important for quantization of the
theory.

Here, it should be noted that xn
m , which appeared in gmn

(1) ,
is a nonlocal quantity. In fact, eliminating C from Eq. ~53!
by solving Eq. ~54! yields a nonlocal expression for xn

m . If
we substitute this nonlocal expression into Eq. ~47!, we ob-
tain a nonlocal theory. Conversely, one can see that introduc-
ing the radion disentangles the nonlocality in the nonconven-
tional Einstein equation ~47! and yields the quasi-scalar-
tensor gravity given by Eqs. ~51! and ~54!. This important
point is more transparent in the derivation of the effective
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action. Indeed, the nonlocal part xn
m disappears because of

the traceless nature, xm
m

50. A similar mechanism is dis-

cussed by Gen and Sasaki @8# in the context of linear theory.

D. Holographic brane gravity

We have obtained four-dimensional quasi-scalar-tensor
gravity from the five-dimensional action. The bulk metric
corresponding to the four-dimensional effective theory is
given by

gmn5~12C !y /l@hmn~x !1gmn
(1)~hmn ,C ,Tmn

A ,Tmn
B ,y !# ,

~59!

where xmn in Eq. ~45! is eliminated by using Eq. ~53!. Here,

the y dependence of gmn
(1) is explicitly known. Thus the bulk

metric is completely determined by the energy-momentum
tensors on the two branes, the radion, and the induced metric
on the A-brane. Therefore, once the four-dimensional solu-
tion of quasi-scalar-tensor gravity is given, one can recon-
struct the bulk geometry from these data. Quasi-scalar-tensor
gravity works as a hologram at low energy. In this sense, one
can call the quasi-scalar-tensor gravity the holographic brane
gravity. Equation ~59! gives a holographic picture of the
brane world. Recalling that the radion specifies the position
of the second brane, the radion can be interpreted as a kind
of ‘‘phase’’ in the holographic picture of the brane world.

E. Effective theory on B-brane

For completeness, we shall derive the effective equations
of motion on the B-brane. To do so, let us simply reverse the
role of the A-brane and that of the B-brane. Substituting
hmn5V22 f mn into the junction conditions yields

l

2
Gn

m~ f !1

xn
m

V4
52

k2

2
Tn

Bm ~60!

and

lV2

2
Gn

m
1lV2S ~ log V ! ;n

;m
2dn

m~ log V ! ;a
;a

1~ log V ! ;m~ log V ! ;n1

1

2
dn

m~ log V ! ;a~ log V ! ;aD1xn
m

5

k2V2

2
Tn

Am , ~61!

where ; denotes the covariant derivative with respect to the
metric f mn . Thus, defining F5V22

21, we obtain the ef-
fective equation on the B-brane:

G n
m ~ f !5

k2

lF
T n

Bm
1

k2~11F !

lF
T n

Am
1

1

F
~F ;n

;m
2dn

mF ;a
;a !

1

v~F !

F2 S F ;mF ;n2

1

2
dn

mF ;aF ;aD , ~62!

where

v~F !52

3

2

F

11F
. ~63!

The equation of motion for the radion becomes

hF5

k2

l

TA
1TB

2v13
2

1

2v13

dv

dF
F ;mF ;m . ~64!

Thus, we have shown that the gravity on the negative tension
brane is described by quasi-scalar-tensor gravity with the
coupling function v(F)523F/2(11F).

It should be noted that the dynamics on the two branes are
not independent. We know the gravity on the B-brane once
we know that on the A-brane, and vice versa. The transfor-
mation rules are

F5

C

12C
, ~65!

gmn
B brane

5~12C !@hmn1gmn
(1)~hmn ,C ,Tmn

A ,Tmn
B ,y5l !# .

~66!

This relation is useful when we consider concrete applica-
tions.

V. KALUZA-KLEIN CORRECTIONS

As explained in Appendix A, our analysis so far to first
order in the gradient expansion corresponds to the zero mode
truncation in the language of a linearized theory. Although it
is obscure to use the words ‘‘Kaluza-Klein corrections’’ in a
nonlinear theory, we shall call their nonlinear counterpart
simply Kaluza-Klein corrections in this paper.

In principle, we can continue our analysis up to a desired
order using the following recursive formulas:

S n
(n)m

52

1

a4E dya4H FR n
m

~4 !

2¹m¹nf2¹mf¹nf G
traceless part

~n !

2 (
p51

n21

Q (p)Sn
(n2p)mJ , ~67!

Q (n)
5

l

6 (
p51

n21 F2

3

4
Q (p)Q (n2p)

1S b
(p)a S a

(n2p)b
1

F R

~4 !G (n)G ,

~68!

Q ,y
(n)

2

2

l
Q (n)

5 (
p51

n21 H 1

4
Q (p)Q (n2p)

1S (p)abSab
(n2p)J

1@¹a¹af1¹af¹af# (n), ~69!

Sm
~n !

ul
l

2

3

4
Q um

(n)
1 (

p51

n21

$Gla
(p)aS m

(n2p)l

2Gam
(p)lS l

(n2p)a %50. ~70!
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These equations give the solution as an infinite sum. The
existence of an infinite series is a manifestation of the non-
locality of the brane model @15#.

To get the effective equations of motion with second order
corrections using the above formula is straightforward. How-
ever, carrying out the calculation is laborious and the result-
ant expression is too long to write down. As for the linear
theory, we will obtain the explicit effective equations of mo-
tion with Kaluza-Klein corrections in Appendix B. Here, we
will only sketch how the Kaluza-Klein corrections appear
using an easy method.

Although we need the explicit y dependence of the bulk to

obtain the action, as long as we are interested only in the

effective equations on the brane, we do not have to solve the

bulk explicitly. The reason is as follows. We can write down

the nonlocal Einstein equations corresponding to Eqs. ~47!
and ~50! without knowing the bulk geometry. Then, since we

know how the nonlocal term, i.e., the generalized dark radia-

tion term, behaves in the bulk, we may eliminate it just as in

the first order case.

The nonlocal Einstein equations on the branes are @12#

Gmn
(4)~h !52

2

l
~xmn1tmn!1

k2

l
Tmn

A
2

l2

2
Smn2

l2

12
S RRmn2

1

2
hmnR2

1

3

4
hmnRb

aRa
bD1

l

2
@x muna

a
1x numa

a
2xmnua

ua#

2lxmaR n
a

1

l

6
Rxmn2

1

4
hmnxb

axa
b , ~71!

Gmn
(4)~gB brane!52

2

lV4 ~xmn1tmn!2

k2

l
Tmn

B
2l2S 11

V2

2
DSmn2

l2

12
V2S RRmn2

3

2
gmn

B braneRb
aRa

bD1

l

4
S 11

1

V4D @x m;na
a

1x n;ma
a

2xmn;a
;a#2

l

2
S 11

1

V4D S xmaRn
a
2

1

4
gmn

B branexabRabD1

l

6V4 Rxmn2

3

4
gmn

B braneF l2

4
S Rb

aRa
b
2

2

9
R2D

1

l

2V4 xb
aRa

b
2

l

6
xb

aRa
b
1

1

3V8 xb
axa

bG , ~72!

where tmn is an integration constant at second order and we
have defined the quantity

S n
m

5Ra
mRn

a
2

1

3
RRn

m
2

1

4
dn

mS R b
a R a

b
2

1

3
R2D

2

1

2
S R una

am
1R n

a
ua

um
2

2

3
R un

um
2hRn

m
1

1

6
dn

m
hR D .

~73!

Here, ; represents the covariant derivative with respect to f mn

and all the curvatures in Eq. ~72! are calculated from

gmn
B brane . What we should do is to eliminate tmn from Eqs.

~71! and ~72! and substitute the relation gmn
B brane

5V2@hmn

1gmn
(1)# into the resulting equation. Then we obtain a higher

derivative but local theory on the brane.
Noticeably, the same is true for all higher order correc-

tions. Thus, one can infer that the radion disentangles the
nonlocality in the system to all orders at the expense of in-
troducing higher derivative terms.

VI. CONCLUSION

We have developed a method to deduce a low energy
effective theory for a two-brane system. The five-
dimensional equations of motion in the bulk are solved using
a low energy expansion method. This allows us, through the

junction conditions, to deduce the effective equations of mo-

tion for gravity on the brane. As a result, we have shown that

gravity on the brane world is described by a quasi-scalar-

tensor theory with a specific coupling function v(C)

53C/2(12C) on the positive tension brane and v(F)5

23F/2(11F) on the negative tension brane, where C and

F are Brans-Dicke-like scalars on the positive and negative

tension branes, respectively. In contrast to the usual scalar-

tensor theory, the quasi-scalar-tensor theory couples with

matter on both branes but with different effective gravita-

tional coupling constants. In particular, the radion disguised

as the scalar fields C and F couples with the sum of the

traces of the energy-momentum tensors on both branes.

Moreover, we have derived the effective action by substitut-

ing the solution of the bulk equations of motion into the

original action. This direct method determines the normaliza-
tion of the effective action, which is indispensable for quan-
tizing the theory.

In the process of derivation of the effective equations of
motion, we have clarified how quasi-scalar-tensor gravity
emerges from Einstein’s theory with a generalized dark ra-
diation term described by xmn . A brane can feel the nonlocal
effect of the bulk geometry only through xmn , irrespective of
the existence of another brane. This is the picture given to us
by Einstein equations with generalized dark radiation. Then,
what is the role of the radion? In order to make the connec-
tion between the radion and xmn , we have to know the bulk
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geometry. In the case of a single brane, xmn is determined by
the boundary conditions at the Cauchy horizon. If we require
that the geometry is asymptotically anti–de Sitter there, then
xmn must vanish @16#. In the two-brane case, we have no
asymptotic region; instead we have the second brane in the
bulk. The radion determines the location of the second brane
where the junction conditions are imposed. The junction con-
ditions give xmn as a function of the energy-momentum ten-
sor and the radion. The resultant equation is nothing but the
holographic quasi-scalar-tensor gravity. Thus, the difference
between the Einstein equations with generalized dark radia-
tion and quasi-scalar-tensor gravity is just superficial. The
radion has converted the nonlocal nonconventional Einstein
equations to local quasi-scalar-tensor gravity.

We have also given a systematic method to calculate the
corrections due to Kaluza-Klein massive modes. It is conjec-
tured that all of the nonlocality arising from the integration is
disentangled by the radion in the two-brane system. We have
also emphasized the holographic aspect of our result. It turns
out that the effect of bulk gravity on low energy physics in
the brane world can be described solely in four-dimensional
language. Conversely, the bulk geometry can be recon-
structed from knowledge of the four-dimensional data. In
this sense, the quasi-scalar-tensor gravity we have found in
this paper works as a hologram and hence can be called
holographic brane gravity.

Let us discuss some implications of our results. Cosmol-
ogy is usually formulated on the basis of local field theory.
However, superstring theory suggests that nonlocal field
theories are ubiquitous. Although a nonlocal field theory is
not easy to treat properly, the holographic description opens
a new possibility for studying cosmology with nonlocal
terms. Brane world cosmology can be regarded as a realiza-
tion of a nonlocal field theoretic approach to cosmology. In
the single brane picture, nonlocal terms due to the integration
constant appear @12#. Furthermore, there are infinite series of
higher derivative terms in the low energy expansion scheme.
This is also a manifestation of the nonlocality of brane world
gravity @12,15#. In the two-brane system, the above two
types of nonlocality exist also. Intriguingly, the radion disen-
tangles the nonlocality of the homogeneous solutions and
leads to quasi-scalar-tensor gravity. Hence, the quasi-scalar-
tensor theory is a nonlocal theory disguised as a local theory.
In fact, integrating out the scalar field yields a nonlocal field
theory. In addition, the nonlocality due to Kaluza-Klein type
corrections remains as an infinite series in the low energy

expansion even in the two-brane system. Cosmology with
nonlocal fields from this point of view deserves further in-
vestigation.

As we have succeeded in obtaining the effective action for
nonlinear brane gravity, various problems can now be inves-
tigated. Two-brane inflation is under investigation using our
method @17#. Astrophysical applications such as gravitational
waves from binary stars are also intriguing. Extension of our
formalism to more general models that include bulk scalars
or vector fields might be interesting.
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APPENDIX A: SCALAR FIELD EXAMPLE

In order to illustrate the method used in the main text, we
examine a toy model in this appendix. Let us consider a
massless scalar field f in the background

ds2
5dy2

1expF22
y

l
Ghmndxmdxn, ~A1!

where the branes are located at y50 and y5d . The equation
of motion for f with a source on the branes becomes

h
(5)f5e4y /l]y@e24y /l]yf#1e2y /l

hf

5JA~x !d~y !1JB~x !d~y2d !. ~A2!

From this equation, one can deduce the junction conditions

]yfuy505

1

2
JA~x !, ~A3!

]yfuy5d52

1

2
JB~x !. ~A4!

Let us focus on the A-brane at y50 and put

f~y50,x !5f0~x !. ~A5!

The Green’s function with the Neumann boundary condition
is easily calculated as

D5~0,x;0,x8!5E d4p

~2p !4 exp@ ip•~x2x8!#
1

q

J1~qled/l!H2
(1)~ql !2J2~ql !H1

(1)~qled/l!

J1~qled/l!H1
(1)~ql !2J1~ql !H1

(1)~qled/l!

5E d4p

~2p !4exp@ ip•~x2x8!#
2

q2l~12e22d/l!
F11q2l2S 3

8
2

1

8
e22d/l

2

1

2~12e22d/l!

d

l D 1•••G , ~A6!

and
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D5~0,x;d ,x8!52

2ied/l

pl
E d4p

~2p !4 exp@ ip•~x2x8!#
1

q2

1

J1~qled/l!H1
(1)~ql !2J1~ql !H1

(1)~qled/l!

5E d4p

~2p !4exp@ ip•~x2x8!#
2

q2l~12e22d/l!
F11q2l2S 1

8
1

1

8
e2d/l

2

1

2~12e22d/l!

d

l D 1•••G ,

~A7!

where q2
52hmnpmpn. Thus, the standard Green’s function method gives the solution for Eq. ~A2! as

f0~x !5

1

2
E d4x8D5~0,x;0,x8!JA~x8!1

1

2
E d4x8e24d/lD5~0,x;d ,x8!JB~x8!. ~A8!

This gives

hf0~x !5

1

2
E d4x8hD5~0,x;0,x8!JA~x8!1

1

2
E d4x8e24d/l

hD5~0,x;d ,x8!JB~x8!

5

1

l~12e22d/l!
JA~x !1

e24d/l

l~12e22d/l!
e24d/lJB~x !1

1

l~12e22d/l!

3F3

8
2

1

8
e22d/l

2

1

2~12e22d/l!

d

l G l2
hJA~x !1

e24d/l

l~12e22d/l!
e24d/l

3F1

8
1

1

8
e2d/l

2

1

2~12e22d/l!

d

l G l2
hJB~x !1••• . ~A9!

Note that the first two terms come from the zero mode and
the rest are Kaluza-Klein corrections. Now we shall compare
the above result Eq. ~A9!,with our method.

1. Zeroth order

At zeroth order, we ignore gradients on the brane; thus we
get

e4y /l]y@e24y /l]yf
(0)#50. ~A10!

The solution of Eq. ~A10! is given by

f (0)
5f01e4y /lc0 . ~A11!

However, as we are regarding the source terms as first order
quantities, the junction conditions ~A3! and ~A4! imply c0

50. Hence, we simply obtain f (0)
5f0.

2. First order

At first order, we must solve

e4y /l]y@e24y /l]yf
(1)#52e2y /l

hf0~x !. ~A12!

The result is

f (1)
5

l2

4
e2y /l

hf01

l

4
e4y /lC~x !1D~x ! ~A13!

where C and D are homogeneous solutions. The junction
conditions ~A3! and ~A4! become

]yfuy505

l

2
hf01C5

1

2
JA~x !, ~A14!

]yfuy5d5

l

2
e2d/l

hf01Ce4d/l
52

1

2
JB~x !.

~A15!

Eliminating C from these equations, we obtain

hf05

1

l~12e22d/l!
JA

1

e24d/l

l~12e22d/l!
JB. ~A16!

This agrees with the zero mode part of Eq. ~A9!. Thus our
method to first order corresponds to the zero mode truncation
when linearized. The homogeneous part is also determined
as

C~x !5

1

2~12e2d/l!
@JA

1e22d/lJB# . ~A17!

3. Second order

At the second order, we have

e4y /l]y@e24y /l]yf
(2)#52e2y /l

hf (1)~x !. ~A18!

Equation ~A18! can be integrated as
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]yf
(2)

52

l2

4
S ye4y /l

1

l

2
e2y /lDh

2f0

2

l2

8
~e6y /l

1e2y /l!hC~x !1e4y /lD~x !.

~A19!

Hence, the junction conditions ~A3! and ~A4! yield

l

2
hf01C~x !2

l3

8
h

2f02

l2

4
hC~x !1D~x !5

1

2
JA~x !,

~A20!

l

2
e2y /l

hf01C~x !e4y /l
2

l2

4
S de4y /l

1

l

2
e2y /lDh

2f0

2

l2

8
~e6y /l

1e2y /l!hC~x !1e4y /lD~x !52

1

2
JB~x !.

~A21!

Combining both Eqs. ~A20! and ~A21!, we get

hf05

1

l~12e22d/l!
@JA

1e24d/lJB#

1F l2

4
2

ld

2

1

~12e22d/l!
Gh

2f0

2

l

4
e2d/l@12e22d/l#hC . ~A22!

Substituting Eqs. ~A16! and ~A17! into the right-hand side of
Eq. ~A22! yields Eq. ~A9!. Thus, we have shown that the
second order equations in our method correspond to taking
into account the Kaluza-Klein corrections when the equa-
tions are linearized.

APPENDIX B: LINEARIZED GRAVITY

Let us now turn to our case of interest, that is, linearized
gravity. In linearized gravity, following the method in @5#, the
solution is explicitly given in terms of the scalar Neumann
Green’s function D5 in Eqs. ~A6! and ~A7!:

h̄mn
A ~xm!52k2E d4x8D5~0,xm;0,xm8!FTmn

A ~x8!2

1

6
hmnTA~x8!G2

1

3

k2

l
hmnE d4x8D4~xm,xm8!TA~x8!

2k2E d4x8e22d/lD5~0,xm;d ,xm8!FTmn
B ~x8!2

1

6
hmnTB~x8!G , ~B1!

where h̄mn
A is the small fluctuation in the metric on the A-brane. Applying h to this equation and expanding D5 as Eqs. ~A6!

and ~A7!, we obtain

h h̄mn
A

52

2k2

l

1

12e22d/l

S Tmn

A

1e22d/lTmn

B D
1

1

3

k2

l

e22d/l

12e22d/l
hmn

S T

A

1T

B D
22

k2

l

1

12e22d/l F3

8
2

1

8
e22d/l

2

d/l

2~12e22d/l!
G l2

hS Tmn

A

2

1

6
hmnT

A D 22
k2

l

e22d/l

12e22d/l F1

8
1

1

8
e2d/l

2

d/l

2~12e22d/l!
G l2

hS Tmn

B

2

1

6
hmnT

B D . ~B2!

This may be regarded as the effective Einstein equation cor-
rected to O„(l/L)4…. Now we demonstrate that our low en-
ergy expansion scheme leads to linearized quasi-Brans-Dicke
gravity. Then we will show that our method correctly repro-
duces Eq. ~B2!.

Our solution for the bulk metric is

ds2
5e2f(y ,x)dy2

1expF2

2

l
E dyef(y ,x)Ghmn~xm!dxmdxn.

~B3!

Here, two branes are located at y50 and y5l . We will
assume that f(y ,xm)[f(xm) for simplicity. After some ob-
vious changes of variables and rescalings of coordinates,
small fluctuations in the metric can be represented as

ds2
5~112df !dy2

1e2(2/l)yS hmn1hmn~xm!2

2y

l
hmndf~xm! D dxmdxn;

~B4!

thus

dgmn

~0 !

~x ,y !5a2Fhmn~x !2

2y

l
hmndf~x !G , a5e2y /l,

~B5!

where hmn and df represent tensor and scalar fluctuations,
respectively. Now the two branes are located at y50 and y

5d , because of the relation ef
5d/l . Decomposing the ex-
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trinsic curvature into the traceless part and the trace part, the
small fluctuations of each part are

Sn
m

5dSn
m , Q5

4

l
1dQ . ~B6!

Here we used our results in Eq. ~30!. The equations off the
brane, Eqs. ~12!–~15!, are linearized to become

dSn ,y
m

2

4

l
dSn

m
52FRn

m
2

1

4
dn

mR2¹m¹ndf

1

1

4
dn

m¹a¹adfG , ~B7!

dQ5

l

6
@R# , ~B8!

dQ ,y2

2

l
dQ5¹a¹adf , ~B9!

¹ldSm
l

2

3

4
¹mdQ50. ~B10!

The junction conditions become

FdS n
m

2

3

4
dn

mdQGU
y50

5

k2

2
T n

m
A

, ~B11!

FdS n
m

2

3

4
dn

mdQGU
y5d

52

k2

2
T̃ n

m

B

. ~B12!

We now work with our low energy iteration scheme. The
goal is to construct the metric fluctuation as

dgmn~x ,y !5a2Fhmn~x !2

2y

l
hmndf~x !1dgmn

~1 !

~x ,y !

1dgmn

~2 !

~x ,y !1•••G . ~B13!

1. First order

The solution at the first order is

dQ

~1 !

5

l

6a2
R~h !1

y

a2
hdf , ~B14!

dS n
m

~1 !

5

l

2a2 S Rn
m

2

1

4
dn

mR D1

y

a2 S df un
um

2

1

4
dn

m
hdf D

1

x n
m

a4
, x m

m
50, ~B15!

dK n
m

~1 !

5

l

2a2 S Rn
m

2

1

6
d n

m R D1

y

a2
df un

um
1

x n
m

a4
,

~B16!

dgmn

~1 !

52

l2

2 S 1

a2
21 D S Rmn2

1

6
hmnR D

2S ly

a2
2

l2

2a2
1

l2

2 D df umn2

l

2 S 1

a4
21 D xmn .

~B17!

From Eq. ~B10!, we obtain the constraint x num
m

50 for the

homogeneous solution. The junction conditions are

FdS n
m

~1 !

2

3

4
dn

mdQ

~1 ! GU
y50

5

l

2
G n

m
1x n

m
5

k2

2
T n

m
A

,

~B18!

FdS n
m

~1 !

2

3

4
dn

mdQ

~1 ! GU
y5d

5

l

2V2
G n

m
1

l

V2
~df un

um

2dn
m

hdf !1

x n
m

V4

52

k2

2V2
T n

m
B

. ~B19!

Here, we used the relation ~49! between T̃ n
m
B

and T n
m
B

. The

homogeneous solution x n
m can be eliminated from Eqs.

~B18! and ~B19! to yield

G n
m

5

k2

l

1

12V2
S T n

m
A

1V2T n
m
B D

1

2V2

12V2
~df un

um

2dn
m

hdf !. ~B20!

We now introduce a linearized version of the field C in-
troduced in Eq. ~51! by C5(12V2)12V2df[C01dC .
The linearized effective equations can then be written as

G n
m

5

k2

lC0

S T n
m
A

1~12C0!T n
m
B D

1

1

C0
~dC un

um
2dn

m
hdC !.

~B21!

Equations ~B11! and ~B12! determine the homogeneous so-

lution x n
m as

xn
m

52

k2

2

12C0

C0

S T n
m
A

1T n
m
B D

2

l

2C0
~dC un

um
2dn

m
hdC !.

~B22!

The traceless condition of xn
m leads to
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hdC5

k2

l

T

A

1T

B

2v13
. ~B23!

Thus we found that linearizing our method leads to ‘‘linear-
ized quasi-Brans-Dicke gravity’’ with the Brans-Dicke pa-
rameter

v5

3

2 S 1

V2
21 D 5

3

2
~e2d/l

21 !. ~B24!

By linearizing G n
m in Eq. ~B20! and defining

h̄mn5hmn2

1

2
hmnh , ~B25!

one gets

1

2
~ h̄ una

am
1 h̄ n

a
ua

um
2h h̄ n

m
2dn

mh̄ uab
ab !

5

2V2

12V2
~df un

um
2dn

m
hdf !1

k2

l

1

12V2

3
S T n

m
A

1V2T n
m
B D . ~B26!

Note that h n
m (x) is the fluctuation of the induced metric on

the A-brane located at y50. The gauge freedom can be used
to set

h̄ ua
am

5

2V2

12V2
df um, ~B27!

and then Eq. ~B26! becomes

h h̄n
m

52

2k2

l

1

12V2
S T n

m
A

1V2T n
m
B D

1

k2

3l

V2

12V2
dn

mS T

A

1T

B D . ~B28!

This is in agreement with the leading order term in Eq. ~B2!
and of course is the same as the one derived by Garriga and
Tanaka @6#.

2. Second order

Next we compute the second order solution. The basic
equations become

dS n ,y
m

~2 !

2

4

l
dS n

m
~2 !

52FR n
m

2

1

4
dn

mRG (2)

, ~B29!

dQ

~2 !

5

l

6
@R# (2), ~B30!

dQ ,y

~2 !

2

2

l
dQ

~2 !

50, ~B31!

¹ldS m
l

~2 !

2

3

4
¹mdQ

~2 !

50. ~B32!

The junction conditions are

FdS n
m

~2 !

2

3

4
dn

mdQ

~2 ! GU
y50

5

k2

2
T n

m
A~2 !

, ~B33!

FdS n
m

~2 !

2

3

4
dn

mdQ

~2 ! GU
y5d

52

k2

2V2
T n

m
B~2 !

.

~B34!

From Eqs. ~B29! and ~B30!, the solution is

dQ

~2 !

50 ~B35!

and

dS n
m

~2 !

5

l2

4 S y

a4
1

l

2a2D S n
m

2

l2

8 S 1

a6
1

1

a2D hx n
m

1

C n
m

a4
,

C m
m

50. ~B36!

Here we have introduced the tensor S n
m ,

S n
m

5

1

3
R un

um
2hRn

m
1

1

6
d n

m
hR , ~B37!

with the properties S num
m

5S m
m

50.

Equation ~B31! is trivially satisfied by dQ
(2)

in Eq. ~B35!.

To satisfy Eq. ~B32!, the homogeneous solution in dSn
m

(2)

is

constrained as C num
m

50. The junction conditions ~B33! and

~B34! then give

l3

8
S n

m
2

l2

4
hx n

m
1C n

m
5

k2

2
T n

m
A~2 !

, ~B38!

l2

4 S d

V4
1

l

2V2D S n
m

2

l2

8 S 1

V6
1

1

V2D hx n
m

1

C n
m

V4
52

k2

2V2
T n

m
B~2 !

. ~B39!

By combining Eqs. ~B38! and ~B39! with the junction con-
ditions at first order, we obtain the following equations:

l

2
G n

m
1x n

m
1

l3

8
S n

m
2

l2

4
hx n

m
1C n

m
5

k2

2
T n

m
A

,

~B40!
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l

2
G n

m
1

x n
m

V2
1

l2

4 S d

V2
1

l

2 D S n
m

2

l2

8 S 1

V4
11 D hx n

m

1l~df un
um

2dn
m

hdf !1

C n
m

V2
52

k2

2
T n

m
B

. ~B41!

Eliminating C n
m from the above two equations, we obtain

the effective four-dimensional theory of gravity with correc-
tion terms:

G n
m

5

k2

l

1

12V2
S T n

m
A

1V2T n
m
B D

1

2V2

12V2
~df un

um

2dn
m

hdf !1

l2

2~12V2!
S d

l
2

12V2

2
DS n

m

2

l

4

12V2

V2
hx n

m . ~B42!

If we rewrite this equation using C , we get

G n
m

5

k2

lC0

S T n
m
A

1~12C0!T n
m
B D

1

1

C0
~dC un

um
2dn

m
hdC !

1

l2

2C0
S d

l
2

C0

2
DS n

m
2

l

4

C0

12C0

hx n
m . ~B43!

Note that xn
m , given by the traceless part of Eq. ~B22!, sat-

isfies the transverse-traceless condition. Thus we have ob-

tained the linearized quasi-Brans-Dicke theory with Kaluza-

Klein corrections. Using h̄mn defined by Eq. ~B25!, Eq.

~B42! leads to

1

2
~ h̄ una

am
1 h̄ n

a
ua

um
2h h̄ n

m
2dn

mh̄ uab
ab !5

k2

l

1

12V2
S T n

m
A

1V2T n
m
B D

1

2V2

12V2
~df un

um
2dn

m
hdf !

1

l2

2~12V2!
S d

l
2

12V2

2
D S 1

3
h̄ uab

ab
un

um
1

1

6
h h̄ un

um
2

1

2
h h̄ una

ma
2

1

2
h h̄ n

a
ua

um

1

1

2
h

2h̄ n
m

1

1

6
dn

m
h h̄ab

uab
2

1

6
dn

m
h

2h̄ D
1

l

4

12V2

V2 F lV2

12V2
~hdf un

um
2dn

m
h

2df !2

k2

2

V2

12V2
h~T n

m
A

1T n
m

B

!G .

~B44!

Imposing the gauge condition

h̄ ua
am

5

2V2

12V2
df um

2F4l2

3

V2

12V2 S d/l

2~12V2!
2

1

4 D 2

l2

4 Ghdf um
1

l2

6 F d/l

2~12V2!
2

1

4Gh h̄ um, ~B45!

we get the following equation:

h h̄ n
m

52

2k2

l

1

12V2
S T n

m
A

1V2T n
m
B D

1

k2

3l

V2

12V2
dn

mS T

A

1T

B D
2

2lk2

12V2 F3

8
2

1

8
V2

2

d/l

2~12V2!
GhS T n

m
A

2

1

6
dn

mT

A D
2

2lk2V2

12V2 F1

8
1

1

8

1

V2
2

d/l

2~12V2!
GhS T n

m
B

2

1

6
dn

mT

B D . ~B46!

This result coincides with the result of the standard linear theory given in Eq. ~B2!.
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