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Abstract

Positron (β+) emission tomography (PE) is a powerful, noninvasive tool for the in vivo, three-
dimensional imaging of physiological structures and biochemical pathways. The continued growth
of PET imaging relies on a corresponding increase in access to radiopharmaceuticals (biologically
active molecules labeled with short-lived radionuclides such as fluorine-18). This unique need to
incorporate the short-lived fluorine-18 atom (t1/2 = 109.77 min) as late in the synthetic pathway as
possible has made development of methodologies that enable rapid and efficient late stage
fluorination an area of research within its own right. In this review we describe strategies for
radiolabeling with fluorine-18, including classical fluorine-18 radiochemistry and emerging
techniques for late stage fluorination reactions, as well as labeling technologies such as
microfluidics and solid-phase radiochemistry. The utility of fluorine-18 labeled
radiopharmaceuticals is showcased through recent applications of PET imaging in the healthcare,
personalized medicine and drug discovery settings.
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1. Introduction

1.1 General Introduction

With the discovery of X-rays in 1895 by Wilhelm Röntgen, the field of diagnostic radiology
emerged. Today medical professionals still utilize X-rays in addition to modern computed
tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US) to yield
structural information and diagnose various medical conditions. However, whilst these
techniques provide valuable anatomical information, they provide little functional
information about complex biological systems. In order to visualize a particular biological
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structure or metabolic process, targeted probes consisting of a receptor ligand attached to a
reporter group provide more detail. Fluorescent reporter groups are utilized best for cellular
and small animal imaging due to poor tissue depth penetration [1, 2], while radioactive
tracers for positron (β+) emission tomography (PET) and single-photon emission computed
tomography (SPECT) have achieved routine clinical usage [3]. Development of new
imaging probes is not trivial and a rapidly expanding area of research. Application of PET
tracers for use in oncology, neurology, psychiatry, and cardiology continues to expand and
is moving us to an age of truly personalized medicine (recent reviews: [4, 5]). More
recently, in the pharmaceutical industry setting, PET has been used to provide a wealth of
information for drug development including data on target engagement, as well as
pharmacokinetic and pharmacodynamic properties of drug candidates (recent reviews: [6]).

PET has many advantages in that of sensitivity by approximately two to three order of
magnitude over that of SPECT [7]. Also PET imaging allows one to obtain quantitative 2D
and 3D biochemical and physiological information through the use of positron emitting
radioelements such as 11C, 13N, 15O, and 18F (Table 1). Each have relative low molecular
weights and can label molecules of interest with little or no change in biological activity
from their non-labeled counterparts. PET radionuclides decay by positron emission, and in
the case of fluorine-18, it decays to oxygen-18 releasing a neutrino (ν) and a positron (β+).
Each positron then travels through surrounding tissue up to 1 mm, where it can encounter its
antiparticle, the electron (e-), thus causing an annihilation event. The event produces two
gamma ray photons (γ) of 511 keV each, which progress away from the annihilation at 180°
in opposite directions (Figure 1). PET scanners have detectors that are set in rings that
encircle the patient and can identify the photon pair simultaneously in a coincidence event.
Allowing for the location of the radiopharmaceutical to be accurately determined. PET
scanners can also be coupled with CT to provide additional structural detail. Moreover, the
usefulness of PET expands well beyond disease monitoring for early detection and can be
applied to the development of personalized medicine, drug discovery, in addition to
allowing for a large population of clinical trials, and easy monitoring of patient response to
therapy.

The isotopes 13N and 15O have very short half-lives of 9.96 and 2.04 min, respectively, and
therefore are predominantly used as [15O]H2O, [15O]CO2, and [13N]NH3. These products
can be acquired directly from the cyclotron and readily used, but require an on site
radiochemistry facility. The half-life of 11C is longer at 20.3 min, which allows for the
synthesis of a wide variety of compounds by the addition of an [11C]CH3 in place of a
methyl group. Substitution does not change the carbon skeleton and thus many chemical and
biological properties of the probe remain the same, which is extremely desirable. Yet
synthesis of 11C-containing molecules is hindered by the half-life being too short to allow
for the multi-step synthesis of complex products. Miller and colleagues have
comprehensively reviewed the chemistry of carbon-11, nitrogen-13 and oxygen-15 in their
review of strategies for radiopharmaceutical synthesis [8].

The most predominate isotope for PET imaging is undoubtedly 18F with a half-life of 109.77
min that allows for complex multi-step synthesis of one to three half-lives that is not
possible with 11C, 13N, and 15O. Another distinct advantage of 18F-labeled compounds is
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their ability to be transported off-site to facilities or used in studies of slow physiological
processes, which can require scanning times of up to half a day [9]. Additionally,
fluorine-18 has low positron energy corresponding to the average distance the positron
travels before the annihilation - whereby the lower the energy, the lower the travel distance
and thus a better spatial resolution for imaging physical characteristics. [18F]Sodium
fluoride can be used directly for bone imaging (particularly during recent shortages of
technetium-99m, the more traditional isotope for bone scans) [10], but it is much more
common to tag bioactive molecules with fluorine-18. The resulting radiopharmaceuticals are
then used in PET imaging studies. Though it is not generally associated with bioactive
molecules, fluorine is often the choice substitute in place of a hydrogen atom or hydroxyl
group because F-for-H substitutions are often well tolerated (F and H share similar van der
Waal's radii and steric perturbations are of minimal concern) [11]. The unique need to
incorporate the short-lived fluorine-18 atom as late in the synthetic pathway as possible has
made development of methodologies that enable rapid and efficient late stage fluorination an
area of research within its own right (recent reviews: [8, 12-17]). It is not our intent to
duplicate these reviews. Rather, herein we provide an overview of fluorine-18
radiochemistry and highlight classical approaches, but focus primarily upon newly
developed methodologies and technologies that have been reported in recent years. An
overview of some of the newer applications of PET imaging beyond traditional diagnostic
imaging is also provided.

1.2 Production of Fluorine-18

Fluorine-18 generation can be accomplished using charged particle accelerators, both
cyclotron and linear, in addition to nuclear reactors. A list of nuclear reactions for the
production of fluorine-18 is given in Table 2. The majority of PET facilities obtain
fluorine-18 via cyclotron irradiation of target molecules. Gaseous [18F]F2 for direct
electrophilic labeling is generated by bombardment of neon-20 with deuterons via the
nuclear reaction 20Ne(d,α)18F . While proton bombardment of oxygen-18 enriched water by
the nuclear reaction 18O(p,n)18F, followed by trapping of newly generated [18F]F- in an ion-
exchange chromatography with potassium carbonate, or another base, to afford [18F]KF.
Unfortunately aqueous fluoride is a poor nucleophile and must be desolvated and activated
by treatment with a chelator such as Kryptofix 2.2.2 (K222) to bind up the potassium and
release free [18F]fluoride ions for direct nucleophilic labeling reactions [18, 19].
Electrophilic and nucleophilic reactions are explored in more detail in each of their
respective sections of this review.

1.3 Synthesis Considerations with Fluorine-18

With radiochemical reactions, there are many considerations with specific activity and
radiochemical yield being the most essential. Radiochemical yield deals with the
radioactivity of the purified fluorine-18 labeled compound in comparison to its initial
radioactivity. Radioactivity for PET is given in the SI unit Becquerel (Bq) or the older non-
SI unit of Curie (Ci); for reference, 1 Ci is equal to 37 GBq. It is important to consider both
the overall radioactive dose a subject receives in addition to possible toxic effects of
radiochemical byproducts and overall probe concentration of “hot” and “cold” probe. For
this reason, yields are reported as radiochemical yields rather than overall chemical reaction
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yields. In literature, radiochemical yields are derived by several different methods: they may
be corrected or uncorrected for radioactive decay, in addition to being calculated based upon
the amount of radioactivity in the final product, in relation to the initial amount of radiation
produced in the cyclotron target, or the reactivity of a given intermediate. Due to these
inconsistences in radiochemical yields, this review will not focus on yields unless to
demonstrate a particular advantage or disadvantage of a given synthetic route when there are
large differences noted. Specific activity is a measure of the amount of “hot” fluorine-18 in
relation to “cold” fluorine-19 in the final radiopharmaceutical to be administered, and is also
inconsistently estimated or measured in literature. Fluorine-18 chemicals are primarily
analyzed by high-performance liquid chromatography (HPLC) or gas chromatography (GC)
with the addition of a standard of known mass. Due to instrumentation and operator
differences resulting data can vary. Most fluorine-18 radiopharmaceuticals are optimally
prepared by a no-carrier-added (N.C.A.) method in which no carrier fluorine-19 has been
added during the generation of the radionuclide or radiochemical synthesis. This does not
mean that there is no cold fluorine in the system, just that none was added deliberately.
There are a few methods that use carrier-added fluorine-18 radiochemical syntheses, but
they are increasingly rare in modern literature.

2. [18F]Fludeoxyglucose ([18F]FDG): the Workhorse of PET Imaging

The most ubiquitous PET tracer is the glucose analogue 2-[18F]fluoro-2-deoxy-D-glucose
([18F]FDG) with multiple modalities for application. Glucose is the predominant biological
energy source for many biological systems ranging from bacterial to human cells. Glucose
transporters (GluT) traffic glucose into cells and across the blood brain barrier (BBB) where
it is phosphorylated by the enzyme hexokinase utilizing adenosine-5′-triphosphate (ATP) as
a phosphate source. These same GluT also bring [18F]FDG into cells with high metabolic
activity to be phosphorylated, but the product [18F]FDG-6-phosphalate is not a substrate for
the enzyme that metabolizes glucose, glucose-6-phosphate isomerase, and thus becomes
metabolically trapped in the cell. Radioactive decay of fluorine-18 into oxygen-18 produces
2-[18O]-deoxyglucose-6-phosphate, which can then reenter the metabolic pathway while
[18F]FDG that is not phosphorylated is excreted [21]. There are many applications of
[18F]FDG in cardiology, neurology, and oncology [22].

2.1 Electrophilic Syntheses of [18F]FDG

Though laboratory synthesis of [18F]FDG had been accomplished in the late 1960s [23], it
was not until 1976 when Wolf et al., in a collaboration between the National Institutes of
Health, Brookhaven National Laboratory, and the University of Pennsylvania, produced the
first [18F]FDG for human study [24, 25]. It was designed specifically for investigating
glucose metabolism in a living human brain [26]. Their synthesis utilized direct electrophilic

substitution of the precursor 3,4,6-tri-O-acetyl-D-glucal 1 with [18F]F2. This reaction
produced a 3:1 ratio of the desired difluoro-glucose and difluoro-mannose isomers that
could be separated by preparative gas chromatography. Then proceeding to hydrolysis for
the production of [18F]FDG with low specific activity and low radiochemical yield of
around 8% (Scheme 1a). The next decade provided great advancements of both diagnostic
and synthetic strategies for [18F]FDG. Replacement of [18F]F2 with [18F]acetyl hypofluorite

Cole et al. Page 4

Curr Top Med Chem. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



([18F]AcOF) more than doubled the radiochemical yield to around 40% [27-29], in addition

to eliminating the need for protection of the hydroxyl groups of the precursor 2 (Scheme 1b)
[30, 31]. It was observed that the stereoselectivity of the fluorination reaction by [18F]F2 and
[18F]AcOF was highly solvent dependent [32-35]. Another approach utilized [18F]xenon
difluoride ([18F]XeF2) as an electrophilic fluorinating reagent [36, 37]. Unfortunately all
electrophilic synthetic routes produced varying amounts of labeled and unlabeled mannose
isomers [32], which resulted in underestimation of glucose metabolic rates in kinetic studies
[38], causing in this route to be abandoned by radiochemical facilities in favor of
nucleophilic aliphatic substitution with substantially higher radiochemical yields and
specific activity [19].

2.2 Nucleophilic Syntheses of [18F]FDG

Several nucleophilic fluorination methods have been published making use of Cs[18F] [39,
40], Et4N[18F] [41, 42] and KH[18F]F2 [43, 44], in the production of [18F]FDG. The most
significant advancement in nucleophilic production was the reaction of [18F]KF·K222 with

1,3,4,6-tetra-O-acetyl-2-O-triflate-β-D-mannose 3 published in 1986 [19]. With the reaction
proceeding by nucleophilic fluorine displacing the 2-triflate leaving group, creating an
inversion of stereochemistry at the C-2 carbon center of the acetyl-protected mannose
precursor forming the glucose derivative (Scheme 1c). This reaction is then followed by
base-catalyzed hydrolysis of acetyl protecting groups with controlled to conditions to reduce
epimerization, which is faster and milder than acid hydrolysis [45]. Currently [18F]FDG
production is an everyday routine synthesis involving computer-controlled production
instruments with radiochemical yields greater than 60% (corrected for radioactive decay)
and an overall synthesis time of less than 26 minutes, from cyclotron product to final
radiopharmaceutical. It is by far the most refined and efficient radiochemical synthesis of
any fluorine-18 probe to date [46].

3. Strategies for Direct Electrophilic Fluorination

3.1 General Considerations

Many historically relevant radiopharmaceuticals were prepared by electrophilic fluorination
reactions, and whilst such reactions have predominantly been replaced by newer
nucleophilic fluorination reactions over time, certain radiopharmaceuticals are still best
prepared (or can only be prepared) by using electrophilic techniques. The simplest
fluorination reagent is fluorine gas ([18F]F2), although it can be problematic to handle due to
its high reactivity, resulting in reduced radiochemical yields and selectivity. It can be
obtained from the nuclear reaction 20Ne(d,α)18F, that facilitates the exchange of fluorine-18
and fluorine-19 atoms resulting in carrier-added [18F]F2 production. Conditions were
developed to counter the reactivity issues resulting from dilution of [18F]F2 in an inert gas at
low temperature, such as 0.1 to 2% [18F]F2 in Ne [47, 48]. A second production method
involves a sequential two-step procedure by the irradiation of oxygen-18 (18O(p,n)18F)
followed by a second irradiation in a gaseous mixture of carrier fluorine gas to produce
[18F]F2 [49, 50]. Due to carrier-added production, radiochemical products have low specific-
activity in addition to complicated purification conditions to isolate the desired
radiopharmaceutical.
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Production of intermediate electrophilic fluorination reagents derived from [18F]F2 have
been used to increase yield and selectivity. They include [18F]XeF2 [51, 52], and [18F]AcOF
[31, 53, 54], discussed prior for the synthesis of [18F]FDG. While these reagents they have a
theoretical maximum radiochemical yield of 50% and actual yields that are often much
lower, they remain an important synthetic tool and have been used to prepare fluorine-18
labeled radiopharmaceuticals. Other fluorinated intermediates are: [18F]N-
fluorobenzenesulfonamide ([18F]NFSi) [55], for producing fluorinated ketones and allylic

fluorides (Scheme 2); [18F]N-fluoro-N-alkylsulfonamides (e.g. [18F]4) [56, 57], used in the
labeling of aryl compounds (Scheme 3); [18F]N-fluoropyridinium triflate [58-60], a fluoride
transfer agent; in addition to [18F]perchloryl fluoride ([18F]FClO3),[61, 62]
[18F]diethylaminosulfur trifluoride ([18F]DAST) [63], [18F]nitrosyl fluoride [64], and

[18F]N-fluoro-pyridone ([18F]5, Scheme 4) [59].

A mild fluorinating compound Selectfluor [65], has been adapted by Gouverneur and co-
workers for radiochemistry as [18F]Selectfluor bis(triflate) [66]. The reagent is prepared by

chlormethylation of diazabicyclo[2.2.2]octane 6, anion exchange, and lastly fluorination by

F2 or [18F]F2 to provide the bis(triflate) products 7 and [18F]7, respectively. Bis(triflate) 7
has been demonstrated to be more selective than [18F]F2 and successful when other
fluorinating agents were not, and has been used to prepare a variety of fluoroaromatic and
difluoromethyl arenes (Scheme 5). Recently the first electrophilic fluorination reagent
derived from [18F]fluoride ion has been created by Ritter and co-workers, (Scheme 6) [67].

The [18F]fluoride-derived palladium (IV) reagent [18F]9 is produced by [18F]KF treatment

of its Pd(IV) precursor 8 with benzo[h]quinolyl and tetrapyrazole borate ligands. The newly

formed [18F]9 can react with palladium(II) aryl compounds to form Pd(IV) aryl fluoride
complexes, that can then undergo C–F reductive elimination to yield fluorine-18 aryl
products.

However, use of the [18F]fluoride-derived palladium (IV) electrophilic fluorinating reagent

[18F]9 has been limited, likely due to the two-step sequence involved, as well as the need for
dry fluoride and potentially sensitive organometallic reagents. To address these issues, the
same group has subsequently developed a one-step oxidative fluorination of aromatic rings
using nickel complexes (Scheme 7) [68]. For radiofluorination, aqueous [18F]fluoride was

combined with 18-crown-6, the nickel complex 10 (which contains the aryl substrate) and

the hypervalent iodine oxidant 11 at room temperature and under ambient atmosphere.
Analysis of the reactions after 1 minute revealed rapid formation of the desired aryl fluoride

products 12 (13 – 58% RCY).

3.1.2 Direct electrophilic fluorination of alkenes—The most studied electrophilic
addition to an alkene is undoubtedly the addition of [18F]F2 or [18F]AcOF to yield
[18F]FDG, as previously described. Nucleic acids and nucleosides have also been labeled
with high regioselectivity for the 5-position using this approach [69-73], with the 6-fluoro or
6-acetoxy then preferentially eliminated (Scheme 8a). Radiolabeled versions of bioactive

molecules have been prepared by similar reactions (e.g. [18F]15), such as quinones [74], the
prescription drug diazepam [75], and hypoxia biomarker 2-(2-nitro-1H-imidazol-1-yl)-N-
(2,2,3,3,3-pentafluoropropyl)acetamide (EF5) [76]. A substituent class of alkenes, vinyl
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[18F]fluorides, can be fabricated from the corresponding vinyl silanes. An example of this is

the synthesis of 4-[18F]fluoroantipyrine 17 from 4-(trimethylsilyl)-antipyrine 16 (Scheme
8b) [77].

3.1.3 Direct electrophilic fluorination and demetallation of aromatic rings—

Fluorination of aromatic rings can be accomplished with [18F]F2, [18F]AcOF, and
[18F]XeF2, usually exhibiting poor regioselectivity requiring complicated HPLC separation
conditions [78]. Several aromatic amino acids, phenylalanine, tyrosine, and their derivatives
have been successfully radiolabeled by various electrophilic methods. Similarly to
[18F]FDG, regioselectivity in the synthesis of 3-[18F]fluorotyrosine has been shown to be
highly solvent and fluorination reagent dependent [79]. Fluorination of tyrosine in hydrogen
fluoride by [18F]F2 yields 3-[18F]fluorotyrosine exclusively (Scheme 9). Yet the fluorination
of O-acetyltyrosine with [18F]AcOF gives a mixture of 2- and 3-[18F]fluorotyrosine with a
ratio of 83 to 17. When the O,N-diacetylated methyl ester protected tyrosine was reacted
with [18F]F2 in CF3COOH, the ratio shifted in favor of 3-[18F]fluorotyrosine, with a ratio of
40 to 60. Even with the regioselectivity limitations this methodology has been utilized to
label integrin receptor peptide cyclic Arg-Gly-Asp (cRGD) for imaging of tumors [80]. The
cyclic peptide contains a phenylalanine that can undergo direct electrophilic fluorination
with [18F]AcOF in trifluoroacetic acid to yield mono- and difluorinated products.

To improve regioselectivity of electrophilic addition to aromatic rings, regioselective
fluordemetallation reactions have proven successful. The aryl organometallic compounds
have been prepared with a variety of metals: silicon [81-84], tin [85, 86], germanium [81],
and mercury [87-89]. An L-tyrosine biological derivative, L-3,4-dihydroxyphenylalanine (L-
DOPA), is a precursor to the neurotransmitters: dopamine, norepinephrine, and epinephrine.
The radiopharmaceutical L-3,4-dihydroxy-6-[18F]fluorophenylalanine (6-[18F]fluoroDOPA,
[18F]FDOPA) is taken up by dopaminergic neurons in the brain and decarboxylated to 6-
[18F]fluorodopamine along with endogenous l-DOPA. Synthesis of [18F]FDOPA has been
done by the unselective direct electrophilic fluorination of DOPA [90], and more efficiently
from organomercuric, organostannane, and organosilver precursors (Scheme 10) [87,
91-94]. Similar reaction conditions have been utilized for the synthesis of 4-[18F]fluoro-m-
tyrosine by fluorodemercuration[95] and 2-[18F]fluoro-L-tyrosine from an organostannane
[96].

Metaraminol, a sympathomimetic amine, has been adapted for use as a cardiac sympathetic
innervation tracer for PET imaging. Preparation of 6-[18F]fluorometaraminol by
demercuration with [18F]AcOF, without need to protect the phenol or benzylic alcohol for
either the mercuration or fluorination steps.[88] The derivative (1R,2S)-4-
[18F]fluorometaraminol has been produced with higher specific activity from the
organostannane precursor[97] and [18F]F2 produced by a “post-target” methodology
previously published by Bergman and Solin.[98] Overall, fluorinated aryl compounds from
demetallation reactions suffer from low specific activity like other electrophilic
fluorinations, but are generally enantiomerically pure after synthesis. Their largest downfall
is that each compound must undergo stringent purification and quality control measures to
eliminate any metals from the final radiopharmaceutical.
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3.1.4 Direct electrophilic fluorination of carbanions—A very different and rarely
used fluorination approach is the fluordemetallation of aryl Grignard or aryl lithium reagents
with a positive fluoride source. Aryl [18F]fluorides can be prepared by treatment of the
corresponding aryl-lithium precursors with [18F]FClO3, producing very low overall yields of
2 to 34% (Scheme 11) [62, 99]. Fluorination with N-[18F]fluoro-N-alkysulfonamides derived
from [18F]F2 and N-endo-norbonyl(p-tolyl)sulfonamide improves yields drastically to 60 to
70% (Scheme 11) [57, 100]. The reaction of N-trimethylsilylpyridinium triflate with [18F]F2

generates the fluorination reagent from [18F]N-fluoropyridinium triflate that can be used to
produce [18F]fluorobenzene with similar high yields [59].

4. Strategies for Direct Nucleophilic Fluorination

4.1 General Considerations

Nucleophilic [18F]fluoride is produced by 18O(p,n) 18F from enriched [18O]H2O. However,
the resultant 18F- is poorly nucleophilic fluoride due to solvation, and typically requires
extensive preparation before it can be used as an effective nucleophile. First it must be
subjected to dehydration then loaded onto an ion-exchange column. From there, a cryptand
source, most often the aminopolyether K222 is used with potassium carbonate to activate
the 18F-fluoride [5, 12, 18]. Alternatives to [18F]KF·K222 include [18F]cesium fluoride,
[18F]tetrabutylammonium fluoride ([18F]TBAF) and tetraethylammonium fluoride, prepared
by eluting [18F]fluoride from the ion exchange column with cesium carbonate,
tetrabutylammonium bicarbonate, or tetraethylammonium bicarbonate, respectively [8, 101].
Using any of these reagents, a reactive [18F]fluoride nucleophile source is produced. While
the [18F]fluoride nucleophile requires activation, the radiotracer precursor must have an
appropriate leaving group. Nucleophilic reactions using [18F]fluoride can be readily divided
into two main categories: aromatic and aliphatic fluorinations.

4.2 Nucleophilic Aliphatic Fluorination Reactions

Aliphatic reactions are perhaps the classical method of radiolabeling with fluorine-18. Such
reactions have been used to label a variety of molecules in one step, where no protecting
groups are necessary, and frequently proceed via displacement of standard leaving groups in
organic chemistry such as triflates, tosylates, mesylates etc. The chemistry therefore

mandates synthesis of, for example, the corresponding alkyl tosylate precursors (e.g. 18).
Examples include [18F]fluoroethoxybenzovesamicol ([18F]FEOBV), a radioligand for the
vesicular acetylcholine transporter (Scheme 12a) [102], and [18F]fallypride for imaging the
D2/D3 receptors [103]. However, many precursors do contain functional groups that require
protection, typically using standard protecting groups from the organic chemistry literature
(Boc, Fmoc etc.). The radiosynthesis then is a two-step process, in which there a
deprotection step follows the initial fluorination [104]. This can generate radiotracers
functionalized with fluoroalkyl groups as described above, but when issues of chemical or

metabolic stability present, tosyl-PEG precursors (e.g. 19) can be employed, such as in the
synthesis of [18F]Amyvid, a radiopharmaceutical for quantifying amyloid plaque burden
being developed by Avid Radiopharmaceuticals and Eli Lilly (Scheme 12b) [105].
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In addition to the synthesis of simple primary alkyl fluorides, synthesis of secondary alkyl
fluorides is also desirable, and has been discussed above in the context of the synthesis of
[18F]FDG [19]. Though [18F]FDG is the most widely used fluorine-18 labeled PET
radiotracer, typically for detecting cancer, it does have limited sensitivity for some cancer
types such as androgen-dependent prostate cancer [106]. Moreover, in brain, there is low
tumor-to-background resolution with [18F]FDG due to the high levels of glucose uptake in
the normal cortex, thus making the delineation of the extent of these lesions difficult [107].
As a result, the search for non-FDG radiotracers continues, and many typify fluorine-18
radiosyntheses for nucleophilic substitution reactions. For example, 3′-
deoxy-3′[18F]fluorothymidine ([18F]FLT) is a radiolabeled analog of the DNA base that can
be used to evaluate cell proliferation and tumor growth. It can be synthesized from a cyclic

precursor 20, which ring-opens to yield [18F]FLT on treatment with [18F]fluoride (Scheme
13a). This reaction however suffers from low radiochemical yields, and so alternative

precursors (e.g. Boc-Boc-Nosyl 21) have been designed, which contain a secondary nosylate
leaving group, rather than the cyclic precursor, and provide higher yields of [18F]FLT
(Scheme 13b) [102]. A range of other radiopharmaceuticals for oncological imaging have
been developed including [18F]fluoroethyl tyrosine ([18F]FET), and 2-nitroimidazoles such
as [18F]fluoroazomycin arabinoside ([18F]FAZA), [18F]fluoromisonidazole ([18F]FMISO)
and [18F]flortanidazole ([18F]HX4) for imaging of tumor hypoxia that are all prepared using
similar chemistry. A discussion of each of these is beyond the scope of this article, but many
are highlighted in a recent review article by Gulyás and co-workers [108].

Beyond these classical fluorination reactions, a number of reports describing improved
methods and substrates for nucleophilic fluorination have recently appeared in the literature.
Examples that represent well the integration of modern synthetic organic chemistry
technology with that of radiochemistry include metal-catalyzed allylic fluorination reactions.
A preliminary indication of iridium-mediated allylic fluorination of trichloroacetimidate
derivatives of activated alcohols was reported by Tewson [109], whilst Gouverneur and co-
workers have described a protocol for palladium-catalyzed allylic fluorination (Scheme 14)
[110]. Allyl 4-nitrophenyl carbonates were smoothly converted to the corresponding allylic
fluorides by treating with TBAF·(tBuOH)4 in the presence of catalytic Pd(dba)2 (dba =
dibenzylideneacetone). The method was then evaluated for compatibility with short-lived

fluorine-18. Nitrophenyl cinnamyl carbonate 22 gave cinnamyl fluoride 23 in 7% RCY;
higher conversions (10–52% RCY) were obtained when methyl cinnamyl carbonate was
subjected to prolonged reaction times (30 min). Satisfactory yields were also obtained
comparing the protocol to direct SN2 18F fluorination. Subjecting cinnamyl bromide to the
system for 5 min at room temperature gave 20% RCY of the corresponding fluoride. Forcing
conditions (110 °C, 20 min) generated cinnamyl fluoride in 40 and 42% RCY from
cinnamyl chloride and bromide, respectively.

4.3 Nucleophilic Aromatic Fluorination Reactions

Nucleophilic aromatic substitution with [18F]fluoride can be used to prepare radiolabeled
arenes. As the reactions are frequently quite sluggish; however, a combination precursor
design, activated substrates (typically aromatic rings bearing electron withdrawing groups)
and harsh reaction conditions (such as elevated reaction temperatures) are often required and
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can limit the synthetic utility of such reactions. Early examples capitalized on the
electronegativity of fluorine and involved isotopic exchange reactions with the
corresponding fluorine-19 species, such as in the first reported synthesis of [18F]flumazenil
[111]. The drawback of such reactions is of course the inevitable poor specific activity of the
radiotracer that results from the inability to separate the two isotopic products. Therefore,
alternative precursors are used whenever possible, and the corresponding nitro-aromatic
precursors, as well as trialkylammonium arene precursors originally reported by Haka and
co-workers, have been the state of the art for over 20 years [112]. For example, p-MPPF is a
high affinity in vivo antagonist of serotonin-1A (5-HT1A) receptors in the central nervous
system, and because the 5-HT1A receptor has been implicated in anxiety, depression,
dementia, schizophrenia, the modulation of emotion and hypothalamus function [113], it has
since been developed as a PET radiotracer, [18F]MPPF (4-(2′-methoxyphenyl)-1-[2′-
(N-2″pyridinyl)-p-[18F]fluorobenzamido]ethylpiperazine) [113, 114]. Radiosynthesis of

[18F]MPPF involves a direct nucleophilic substitution of the nitro-precursor 24 with
[18F]fluoride (Scheme 15) [102, 113].

Difficulties with such nucleophilic aromatic substitution reactions; however, have made
development of new aromatic fluorination reactions an area of research in its own right,
particularly with the aim of synthesizing radiopharmaceuticals containing unactivated or
even electron rich rings. Certain ingenious solutions have been reported involving protecting
group manipulations. At its simplest, this involves transforming an electron-donating group
into an electron-withdrawing group through use of appropriate protecting groups. For
example, in the synthesis of [18F]flutemetamol, it would be impossible to radiolabel the
ortho-nitroaniline directly. However, protecting the aniline as the corresponding formamide

25 enables displacement of the nitro group with [18F]fluoride to give 26, and subsequent
deprotection of the protecting group yields [18F]flutemetamol (Scheme 16) [115].

Similar issues are encountered when radiolabeling phenols. To circumvent the issue,
fluorination of the corresponding aldehyde (or ketone) has been reported. Subsequent Bayer-
Villiger oxidation favors migration of the electron rich aromatic ring to generate the ester,
and final saponification with sodium hydroxide generates the radiolabeled phenolic species
(Scheme 17) [116].

Whilst such approaches are elegant in their theory and design, from a practical perspective
in a radiochemistry laboratory, they are often times messy and difficult to accomplish
successfully. Therefore, precursors permitting direct fluorination of electron rich aromatics
remain high on the wish list of all fluorine-18 radiochemists, and a major development
occurred with the introduction of diaryliodonium salt precursors [117-122]. Symmetric and
asymmetric diaryliodonium salts of target precursors, in particular, have received attention
owing to their ease of preparation and compatibility with moderately electronic-rich arene
systems (Scheme 18). For example, the Carroll[123] and Coenen[124] groups have
independently explored the use aryl(2-thienyl)iodonium salts as substrates of 18F for SNAr,
showing enhanced reactivity at electron-rich homoarenes (Scheme 18a). More recently, Pike
and colleagues have employed diaryliodonium tosylates in the synthesis of metabotropic
glutamate receptor 5 (mGluR5) PET radioligands (Scheme 18b) [125]. Advances in this area
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have significantly expanded the scope of classical SNAr beyond electron-deficient arenes, to
the benefit of 18F radiochemistry.

Ametamey et al. disclosed a method for the 18F-radiolabelling of aromatic substrates via
SNAr employing precursor triarylsulfonium salts and K[18F]F or Cs[18F]F as the

nucleophilic fluoride-18 source. A variety of sulfonium species derived from haloarenes 31,

benzamide 32 and an oligopeptide (not shown) were prepared and successfully fluorinated
(Scheme 19) [126, 127]. Generally, moderate to nearly quantitative 18F incorporation was
observed after 15 min under reaction temperatures ranging from 80 to 110 °C. Optimal
substrate-solvent combinations were noted, and electron-rich aromatic systems were
observed to provide fluorobenzene alone.

Concurrently, the preparation of [18F]fluoroarenes from diarylsulfoxides was described by
Pike and co-workers [128]. In a microfluidic reactor system, a range of electron-deficient,
symmetrical and non-symmetrical diarylsulfoxides were submitted to SNAr. At elevated
temperatures, in the presence of N.C.A [18F]fluoride ion and Kryptofix 2.2.2, moderate to
good yields of p-fluoroarenes were obtained (Scheme 20). Fluorination occurred selectively
toward substrates bearing a para electron-withdrawing group, even in instances where
electron-donating substituents were present on the same arene.

Beyond classical arenes, the diversity of biological molecules also makes the ability to
synthesize other 18F heterocyclic compounds of significant importance. For example,
fluorination of pyridines is a widely used strategy, because they are found in a number of
compounds of interest, and similar precursors (nitro, trialkylammonium, halo) to those
described above for standard arenes are readily fluorinated (typically in the 2 position). A
number of pyridine derivatives are ligands for the α4β2-subtype of the nicotinic
acetylcholine receptor (NaChR), imaging of which is interesting because it is associated
with an assortment of disorders, including Alzheimer's disease, Parkinson's disease, and
others (for a review see: [129]), and fluorine-18 labeled versions have been prepared using
SNAr reactions. For example, the radiotracer 2-([18F]Fluoro)-3-[(2S)-2-
azetidinylmethoxy]pyridine ([18F]2FA) is an analog of an Abbott Laboratories compound
A-85380, which is a known nicotinic acetylcholine receptor agonist, and has been
successfully used in imaging NaChRs in a clinical setting [130-133]. The synthesis of
[18F]2FA utilizes a Boc-protected iodo or trimethylammonium precursor that, via an SNAr
reaction with 18F- in the presence of Kryptofix 2.2.2, is then deprotected to give the final
product (Scheme 21a) [134]. One drawback of [18F]2FA, is its comparatively slow in vivo

kinetics that requires over 5 hours of imaging assay acquisition, and limits its utility for
imaging cogtively impaired patients 129. o compensate for the extended acquisition time of
[18F]2FA, the development of new radioligands for α4β2 NaChRs receives continuing
attention. One of the most promising is [18F]flubatine, a high affinity and selective PET
radiotracer for NAChRs with improved kinetics over the earlier developed ligands [135,
136]. The first reported radiosynthesis of [18F]flubatine, a derivative of epibatidine, utilized
the norchloro-bromo-homo-epibatidine (NCBrHEB) precursor that underwent a nucleophilic
substitution with the bromine leaving group, then the enantiomers separated and the product
purified appropriately via HPLC [136-138]. However, due to low radiochemical yields,
other candidate precursors were explored for radiolabeling and the BOC-protected
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trimethylammonium iodide precursor (BOC-trimethylammoniumhomo-epibatidine,
BTHEB) was shown to give the best yields of approximately 60% and adapted for fully
automated synthesis [135]. This precursor has since become commercially available, making
it more accessible for clinicians, and a validated production method suitable for clinical
application has been reported by our group (Scheme 21b) [139].

5. Other Strategies for Radiolabeling with Fluorine-18

5.1 Prosthetic Groups

One of the greatest synthetic challenges chemists face is that of functional group
compatibility. There is a large arsenal of protecting groups and multi-step synthetic
techniques for overcoming hurdles in making pharmaceutical compounds. Many
radiopharmaceuticals, including [18F]FDG, utilize a two step procedure of direct
fluorination followed by deprotection of functional groups. However, for more complicated
molecules it is often ideal to directly label a prosthetic group that can then be added to a
wide variety of compounds that are not well suited for direct fluorination. A wide number of
strategies have been developed that are highlighting in this section.

5.1.1 Radiolabeled Alkylating Agents—The simplest approach to preparing prosthetic
groups is to prepare radiolabeled alkylating agents. This is commonplace in carbon-11
radiochemistry, where many [11C]radiopharmaceuticals are prepared through O-, S- or N-
alkylation with [11C]methyl iodide or [11C]methyl triflate. This same approach is viable
using fluorine-18, although it is much less common. Such chemistry has been most widely
explored to prepare [18F]fluorocholine ([18F]FCH) [140], a fluorine-18 labeled analog of
[11C]choline which is a successful tracer for tumors in a variety of tissue, including prostate,

brain and lung [141, 142]. In the most widely used method, dibromomethane 35 undergoes

direct nucleophilic fluorination to yield [18F]fluorobromomethane 36. A second SN2
reaction with dimethylamino ethanol (DMAE) generates [18F]FCH (Scheme 22a).
Alternatively, [18F]FCH can be synthesized by alkylation of dimethylamino ethanol with
[18F]fluoromethyl tosylate, such as in a recent report by Scott and colleagues [143]. Other
sequential SN2 reactions are used for the production of: O-(2-[18F]fluoroethyl)-L-tyrosine
([18F]FET, Scheme 22b) [101, 144-147], [18F]substance-p antagonist-receptor quantifier
([18F]SPA-RQ) [148, 149], 8-((E)-4-fluoro-but-2-enyl)-3β-p-tolyl-8-aza-
bicyclo[3.2.1]octane-2β-carboxylic acid methyl ester ([18F]LBT-999) [150-153], and
[18F]fluoropropyl carbomethoxy iodophenyl nortropane ([18F]FP-CIT) [154-157].

Other innovative [18F]fluorine-containing reagents for radiopharmaceutical preparation have
recently been disclosed. Cognizant that the trifluoromethyl is a privileged motif in small
molecule drugs, Riss and Aigbirhio reported the synthesis of 1-[18F]fluoro-1,1-
difluoromethyl groups [158, 159]. A simple and efficient procedure for the preparation of 2-

[18F]fluoro-2,2-difluoroethyltosylate 41 was outlined, beginning from the

difluorovinylsulfonate 40 (Scheme 23). The resulting [18F]fluoroethylating agent proved

effective for N- and O-alkylation, giving rise to tropane derivative [18F]42 and the

neurofibrillary tangle imaging agent [18F]43, respectively. Scott and colleagues have applied

related chemistry to the radiosynthesis of [18F]lansoprazole 44, also a radiopharmaceutical
for imaging of tau neurofibrillary tangles [160].
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5.1.2 Amide Bond and reactive amines—Peptide chemists have refined the art of
amide bond formation by using coupling agents and protecting groups strategically
[161-163]. Adding a fluorine-18 labeled prosthetic group is an ideal choice for synthesis of
large peptides and proteins, such as the RGD peptide analogue, [18F]FPPRGD2 (Scheme
24a) [164]. A popular prosthetic group for radiolabeling of peptides [165], proteins [166],
and antibodies [167-169] is N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) as it can be
easily conjugated to a peptide through a simple acylation reaction (Scheme 24b) [170-173].
There are many other amine-reactive prosthetic groups including: N-succinimidyl 4-
([18F]fluoromethyl)benzoate [174], 4-[18F]fluorobenzoic acid [175], 4-([18F]fluoromethyl)-
phenyl isothiocyanate [176], and methyl 3-[18F]fluoro-5-nitrobenzimidate [177]. Amidation
has been used to create a fluorine-18 labeled insulin through prosthetic group addition [170].

5.1.3 Thiol Functionalization—Peptides and proteins containing cysteine are known to
form disulfide bonds, but also yield an additional site for fluorine-18 labeling. Thiol reactive
[18F]maleimide prosthetic groups proved quite useful for labeling peptides and other
biomolecules (Scheme 25a) [178-182]. Several thiol reactive groups are:
[18F]fluorophenacyl bromide ([18F]FPB) [183], N-(2-(4-
[18F]fluorobenzamido)ethyl)maleimide ([18F]FBEM) [181, 184], N-(4-
[18F]fluorophenyl)maleimide ([18F]FPM) [185], 1-(3-(2-[18F]fluoropyridin-3-
yloxy)propyl)pyrrole-2,5-dione ([18F]FpyMe) [182], and N-(6-(4-
[18F]fluorobenzylidene)aminooxyhexyl)maleimide ([18F]FBAM).[178, 180] Formation of
oxime [186], hydrazone [187, 188], and thiourea (Scheme 25b) [176] bonds are additional
methodologies, including an interesting synthesis by Wuest and co-workers that details the
direct peptide labeling of [18F]FDG, through an acyclic form of [18F]FDG via an oxime
bond (Scheme 25c) [189, 190].

5.1.4 Radio-Click Chemistry—Azide-alkyne 1,3-dipolar (Huisgen) cycloaddition
reactions, or more commonly known as “click” reactions, have become more prevalent in
literature for labeling of biological molecules due to the ease of formation and stability of
the triazole [191, 192]. The transformation's broad substrate scope, mild reaction conditions,
short reaction times, high chemical yield, chemoselectivity and regioselectivity have led to
its significant use in PET radiochemistry research (recent reviews: [192, 193]). Fluorine-18
labeling of peptides with the radiolabeled prosthetic group bearing either an alkyne[194] or
azide[195] have been reported. Advances in the Huisgen cycloaddition for PET increasingly
have had to take into account considerations of intellectual property and the potential for
cytotoxic transition-metal contamination in clinic-bound radiotracers. To circumvent such
complications, newer developments in catalyst-free click chemistry have been developed for
non-radiolabeling of molecules in biological systems, where metals are not ideal [196]. This
methodology has also been adapted to the radiochemistry setting, and have proven useful to
radiochemists wanting to eliminate metals from their synthetic labeling techniques for
peptides (Scheme 26) [197-199].

5.1.5 Transition-metal Catalyzed Cross-coupling Reactions—The Nobel Prize in
Chemistry 2010 was awarded to Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki for
palladium-catalyzed cross-couplings in organic synthesis. Organic chemists readily utilize
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cross-coupling reactions in their synthetic toolkits, while medicinal chemists often avoid
synthetic procedures that require metals due to stringent FDA regulations. Nevertheless they
are important synthetic option for radiochemists developing new methodology for the
formation of the elusive carbon-carbon bond. Synthesis of fluorine-18 labeled compounds
by palladium-catalyzed cross-couplings primarily have incorporated 1-[18F]fluoro-4-
iodobenzene and derivatives. Preparation of 4-[18F]fluoroiodobenzene can be achieved by
reacting [18F]KF·K222 with dihomoaryliodonium or aryl(2-thienyl)iodonium salts, radio
chemical yield is sensitive to changes in solvent, temperature, counterion, and ring
substitution [200]. Sonogashira cross-coupling brings together a terminal alkyne with an aryl
or vinyl halide. Cross-coupling of 4-[18F]fluoroiodobenzene with 1-ethynylcyclopentan-1-ol

48 with Pd(PPh3)4 and CuI as catalysts with triethylamine in THF produced the desired

fluorine-18 labeled compound 49 as reported by Wüst and Kniess in 2003 (Scheme 27a)
[201]. These conditions were also successful for labeling 17α-ethynyl-3,17β-estradiol and
17α-ethynyl-3,17β-estradiol-3-methylether.

Suzuki-Miyaura cross-coupling joins an aryl- or vinyl-halide with an aryl- or vinyl-boronic

acid. Steiniger and Wuest coupled 4-[18F]fluoroiodobenzene and 4-tolylboronic acid 50 with
a variety of Pd(0) and Pd(II) catalysts, bases, and solvent conditions (Scheme 27b) [202].
They determined that Pd2(dba)3 with Cs2CO3 in MeCN were the ideal conditions to further
investigate the cross-coupling of 4-[18F]fluoroiodobenzene with various aryl boronic acids.
An interesting observation they noted was that of the 4-phenyl halogen-substituted boronic
acids. Both fluorine- and chlorine boronic acids had high radiochemical yields of 82 and
77% respectively while 4-bromophenylboronic acid was significantly lower at 30% after 5
min and 34% after 20 min. It was hypothesized this lower yield might be due to competitive
homo-coupling reaction of 4-bromophenylboronic acid. Recently Davis and co-workers
published an enhanced aqueous Suzuki-Miyaura cross-coupling for labeling of small
molecules, peptides, and proteins (Scheme 27c) [203]. They reacted 4-
[18F]fluoroiodobenzene with B2(OH)4, Pd(dppf)Cl2, and KOAc in DMSO to produce 4-

[18F]fluoroboronic acid, which was coupled with a range of substrates (52) ranging from
small molecules to proteins. Several Pd(0) catalysts with water-soluble ligands were
evaluated with 1,1-dimethylguanidine (DMG) performing the best. This publication is the

first Pd-catalyzed direct incorporation of fluorine-18 with a protein (53).

Stille coupling consists of joining an aryl- or vinyl-halide with an organostannane by use of
a Pd(0) catalyst. An early example employing fluorine-18 in Stille chemistry was reported
by Forngren and Långström in 1998. They synthesized 4-[18F]fluorophenyltributyltin for

Stille cross-coupling to several aryl-bromides 54 (Scheme 27d) [204]. Lasne and co-workers
developed fluorine-18 analogues of (–)-cytisine for imaging studies of nicotinic receptors as
alternatives to [18F]fluoroepibatidine and N-[11C]methylcytisine [205]. Several cold
analogues were initially synthesized followed by fluorine-18 labeling with 4-
[18F]fluorobromobenzene to produce 9-(4′-[18F]fluorophenyl)cytisine. Wüst and Kniess
developed methodology for labeling nucleosides with 4-[18F]fluoroiodobenzene, specifically

5-(4′-[18F]fluorophenyl)-uridine and 5-(4′[18F]fluorophenyl)-2′-deoxy-uridine 57 (Scheme
27e) [206]. Metz and co-workers produced fluorine-18 labeled cyclooxygenase-2 (COX-2)
inhibitors labeled with 4-[18F]fluoroiodobenzene [207]. A final example of a Pd-mediated
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reaction is that of N-arylation of indoles with 4-[18F]fluoroiodobenzene as σ2 receptor
ligands [208].

5.2 Photochemical Reactions

Keeping with the trend to eliminate metals and other non-biologically compatible reagents,
photochemical conjugations are an alternative method of prosthetic group labeling.
Irradiating 4-azidophenacyl-[18F]fluoride ([18F]APF) at 366 nm creates a singlet arylnitrene

59, which can undergo rearrangement to azacycloheptatetraene 60 (in resonance with 61).

Azacycloheptatetraene 60 will react with the free amine of a protein to give 62 initially and,

following rearomatization, 2-substitutued-3H-acepines 63 (Scheme 28) [166]. Human serum
albumin (HAS), Avidin, and IgG have each been successfully labeled by this reaction.
Similarly, the addition of oligonucleotides to 3-azido-5-nitrobenzyl-[18F]fluoride
([18F]ANBF) has been published [209].

5.3 Multicomponent Reactions

Gouverneur and co-workers recently showed that 4-[18F]fluorobenzaldehydes are efficient
vehicles for 18F delivery in classical multicomponent reactions [210]. Overcoming sub-
stoichiometric quantities of 4-[18F]fluorobenzaldehyde versus other reaction participants and
prolonged reaction times witnessed in “cold” studies, radio-Groebke–Bienaymø–Blackburn

reactions were successfully executed to yield [18F]64 (Scheme 29). Not illustrated here for
the sake of brevity, Ugi, Passerini, and Biginelli reactions were also accomplished in good to
excellent radiochemical yields. Notably, the 3,4-dihydropyrimidin-2-(1H)-ones,
imidazo[1,2-a]pyridines and α-acyloxyamides obtained by these methods feature 18F
substituents not readily accessible by conventional direct SNAr techniques.

5.4 Enzymatic Reactions

Organofluorine (C–F) bond formation is a rare in biological systems. In the bacterium
Streptomyces cattleya, an enzymatic reaction forms C–F bonds by use of fluorinase enzyme.
Lehel et al. first published the synthesis of 5′-[18F]fluoro-5′deoxyadenosine ([18F]-5′-FDA),
in 2000 from either the bromo, chloro, or iodo precursor by traditional nucleophilic
substitution [211]. However, using this method produced very low radiochemical yields of
around 1% and they determined that synthesis from the adenosine precursor was not ideal
[212]. Building upon this work O'Hagen and co-workers first published the utilization of the
fluorinase enzyme, 5′-fluoro-5′-deoxyadenosine synthase (5′-FDAS, E.C. 2.5.1.63), for
fluorine-18 labeling a decade ago [213-215]. Originally they focused on the conversion of S-
adenosyl-L-methionine (SAM) into [18F]-5′-FDA, through incubation of protein extract
from S. cattleya with [18F]HF and SAM. The major disadvantage of this reaction was that
using the wild-type enzyme required reaction conditions of 5 hours with radiochemical yield
of 1% being obtained.

Significant improvements were found with the isolation, cloning, and overexpression of
fluorinase enzyme in E. coli and a multistep synthesis, resulting in radiochemical yields of
around 45% after 4 hours [216]. The fluorinase catalyzed reaction of SAM into [18F]-5′-
FDA and L-methionine is in an equilibrium which can be shifted to produce higher yields of
[18F]-5′-FDA through the removal of L-methionine by enzyme conversion or further
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coupled enzyme reactions of [18F]-5′-FDA. A variety of coupled enzyme reactions
generated radiochemicals including: 5′-deoxy-5′-[18F]fluoroinosine (5′-[18F]FDI), 5-
deoxy-5-[18F]fluoro-D-ribose (5-[18F]FDR), 5′-deoxy-5′-[18F]-fluorouridine (5′-[18F]FDU),
and others as detailed by O'Hagan and co-workers in their mini-review [217]. A more recent
publication refined the synthesis of 5-[18F]FDR by a two-step biotransformation of SAM
with 5′-FDAS followed by conversion of [18F]-5′-FDA into [18F]-5′-FDA with the
nucleoside hydrolase isolated from Trypanosoma vivax (TvNH) [218]. Their one-pot
reaction biotransformation produced radiochemical yields of around 80%, a significant
improvement of the enzyme-catalyzed addition of fluorine-18.

5.5 Beyond the C–F Bond

The last few years have seen radiochemists begin to move beyond the standard C–F
associated with fluorine-18 chemistry, and a number of attractive examples that exploit the
mild conditions associated with fluorine-acceptor chemistry have been reported. Fluorine-
acceptor chemistry takes advantage of stable fluorine bonds to aluminum, boron and silicon.
These bonds have strong Lewis acid character and, like its fluorine-19 counterpart,
fluorine-18 can be introduced under mild ion-exchange or chelation conditions. For
example, the [18F]fluoroorganosilanes: [18F]fluorotriphenylsilane, [18F]fluoro-

tbutyldiphenylsilane, and [18F]fluorodi-tbutylphenylsilane 65, were evaluated by
Schirmacher and colleagues [219]. They determined that di-tert-butyl substituted peptides
gave the greatest in vivo stability in addition to ease of labeling with fluorine-18 to yield

[18F]66 (Scheme 31a). Development of a one-step kit-like labeling of boronic acid ester

peptides 67 with fluorine-18 has to give [18F]68 been reported by Perrin and colleagues.
This chemistry is rare in that it does not require drying of fluorine, and thus can be carried
out under aqueous conditions (Scheme 31b) [220]. A final kit-like preparation for
radiolabeling includes, 1,4,7-triazacyclononane-triacetic acid (NOTA) peptides with Al3+

pre-chelated 69 [221]. Fluorine-18 can then form a complex creating a stable aluminum-

fluorine bond 70 (Scheme 31c).

Inkster and co-workers have developed syntheses of sulfonyl fluoride-based prosthetic

groups [222]. For example, [18F]3-formyl-2,4,6-trimethylbenzenesulfonyl fluoride 71 could
be prepared from the corresponding sulfonyl chloride, and was then used to radiolabel a

bombesin analog (BBN-ONH2) through imine formation to provide [18F]72 (Scheme 32).

6. Technologies for Enhancing Fluorine-18 Radiochemistry

6.1 Solid-phase Radiochemistry

Solid-phase organic radiosynthesis (SPOR) is a relatively new area of research and only a
few peer-reviewed articles and patents have been published to date. The electrophilic,
nucleophilic and prosthetic group chemistry described throughout this review have all been
adapted for SPOR, and are highlighted below as well as in recent review articles from our

group [223, 224]. For example, the [18F]fluoroDOPA 76 SPOR (Scheme 33), uses the same
radiochemistry as employed in the corresponding solution-phase electrophilic

radiosyntheses. [18F]FluoroDOPA 76 is synthesized by treatment of the polymer-supported

stannane precursor 74 with electrophilic fluorine [225]. Fluorination results in concomitant
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cleavage of the protected intermediate 75, and treatment with acid furnishes

[18F]fluoroDOPA 76. All stannane by-products as well as unreacted precursor remain bound
to the solid-support and can be removed by simple filtration.

Nucleophilic fluorination reactions have also been adapted to solid-phase conditions. As
noted above, [18F]FDG is the most widely used fluorine-18 labeled radiopharmaceutical to
date, and so the synthesis has also been explored in the solid-phase setting. Strategies
utilizing perfluorsulfonyl linker units have been reported by Wadsworth [225, 226] and
Brady [227, 228], and illustrate proof-of-concept (Scheme 33). The cleavage step utilizes
standard radiofluorination conditions employing potassium carbonate and Kryptofix 2.2.2 to

generate the labeled fully-protected sugar 10. Subsequent acidic deprotection provided

[18F]FDG (11) in 73% RCY (EOB) according to Wadsworth's strategy. The
perfluorosulfonate linker has also been used to prepare other compounds, such as FACBC
(and related analogs) [229] and NADH: ubiquinone oxydoreductase inhibitors [230].
However in certain cases, a simple sulfonate group has also been used to attached substrates
to the resin, such as in the radiosynthesis of [18F]FDDNP and fluorinated analogs of
Pittsburgh Compound B [227, 228].

As highlighted in Section 4.3, diaryliodonium species are attractive precursors for
radiolabeling inactivated aryl groups with electron-donating or no substituents. Brady and

colleagues have developed aryliodonium-supported resins 80, and utilized them in the solid-

phase radiosynthesis of [18F]fluorouracil 81 (Scheme 35) [227, 228, 231].

Finally, prosthetic groups labeled with fluorine-18 have also been adapted for use in SPOR.
This can involve the solid-phase synthesis of prosthetic groups such as the synthesis of
[18F]fluorobromomethane reported by Brady and co-workers [227, 228]. Alternatively,
peptide radiolabelling has been investigated by Sutcliffe using conjugation of a solution-

phase prosthetic group (such as [18F]4-fluorobenzoic acid 83) with a resin-bound peptidic

substrate 82 (Scheme 36) [232-235]. The strategy was straightforward, and the two-step

conjugation yielded radiolabelled peptide 84 from 70% to 80% RCY at the end of the
synthesis.

6.2 Microfluidics

The radiochemical reactions discussed herein are typically conducted in synthesis modules
containing a reaction vessel. Subsequent purification is then achieved via semi-preparative
HPLC or solid-phase extraction (SPE). However, the small scale of the radiochemical
syntheses described herein has led many to explore whether microfluidic-assisted
radiochemistry is more appropriate for synthesizing radiopharmaceuticals. There are three
strategies typically employed: continuous-flow systems; batch-based reactor systems and,
more recently, digital droplet approaches (recent reviews: [236-240]). Continuous-flow
systems typically come to mind when discussing classical microfluidics and appear to be the
most widely used, often for the synthesis of [18F]FDG as proof-of-concept [241]. However,
more adventurous chemistry is possible, highlighted by a recent adaption of the Hoffman
rearrangement to a microfluidics system reported by Palmeiri and co-workers [242], and the
range of other microfluidic-assisted syntheses of radiopharmaceuticals reported in recent
years ([236-240] and references therein). In many cases microfluidic approaches offer
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increased yields over their “macrofluidic” counterparts, but the field is still in its infancy and
remains confined to those radiochemical laboratories willing to invest in specialized
microfluidic equipment for exploratory and development purposes. Time will tell whether
the benefits are sufficient for microfluidics to replace the classical approaches to fluorine-18
radiochemistry used daily in radiopharmaceutical manufacturing facilities around the world.

7. Applications of PET Imaging

The fluorine-18 labeled radiopharmaceuticals described herein, when combined with PET
imaging, offer a powerful technology that finds utility in personalized medicine within a
healthcare setting, as well as drug discovery within the pharmaceutical industry.

7.1 Applications of PET Imaging in a Healthcare Setting

In a healthcare setting, PET imaging is routinely used for the non-invasive diagnosis and
staging of diseases, such as cancer or dementia, that previously would have required
invasive biopsy or even post-mortem evaluation. For example, neurologists in the United
States estimate that dementia affects 14,000 / 100,000 of the population, including 24% of
people over the age of 80 [243]. However, the symptoms associated with dementia can
result from any number of clinically overlapping conditions, and current clinical diagnostic
accuracy is only ∼60–80%. This lack of appropriate tools makes diagnosis and management
of patients difficult. To address this issue, significant work has been undertaken to develop
radiopharmaceuticals that allow non-invasive imaging of dementias by PET imaging. As
Alzheimer's disease (AD) is the most common, accounting for 50% of dementia cases, and
is a fatal disease with no treatment, significant work has focused on this condition. The most
commonly explored strategy to date involves imaging of amyloid plaques, because for
decades the presence of amyloid plaques, traditionally identified during post-mortem by a
pathological stain, has been the definitive diagnosis of AD. Thus, [11C]PiB (University of
Pittsburgh) [244], [18F]flutemetamol (GE Healthcare) [245], [18F]amyvid ([18F]florbetapir,
Avid Radiopharmaceuticals / Eli Lilly) [246], and [18F]florbetaben (Bayer Healthcare /
Piramal Healthcare)[247] have all been extensively developed. These compounds all show
high cortical uptake in amyloid-positive patients [248], and proof-of-mechanism has been
confirmed by pivotal autopsy studies [249, 250]. [18F]Amyvid was the first of these to
garner marketing approval from the U.S. FDA, in April 2012, as a radioactive diagnostic
agent for PET imaging of the brain to estimate β-amyloid neuritic plaque density in adults.
These agents are expected to be crucial, if an anti-amyloid therapeutic strategy is identified.

The functional information obtained from one or more PET scans can enable differentiation
of clinically overlapping conditions that would be difficult or impossible by other means.
For example, patients in one study at the University of Michigan received an amyloid PET
scan ([11C]PiB) and a VMAT2 PET scan ([11C]DTBZ), and combining the findings from
both scans allowed accurate differentiation of patients with Alzheimer's disease,
frontotemporal dementia and dementia with Lewy bodies (Figure 2).

In the oncology arena, PET imaging can be used to garner a wealth of information. For
example, at its simplest FDG-PET can be used identify and stage cancer (for a recent review
see: [251]), but it is increasingly finding more sophisticated applications such as prediction
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of patient response to therapy and then monitoring for that expected response. In an example
that employs PET at the interface between healthcare and drug discovery, and clearly shows
our advance towards personalized medicine, PET can be used to predict whether or not a
patient is likely respond to a proposed treatment regimen. Van der Veldt and co-workers
employed [11C]docetaxel to evaluate pharmacokinetics on a case by case basis for patients
being considered for docetaxel chemotherapy [252]. Patients received a [11C]docetaxel
baseline PET scan, followed by a therapeutic scan ([11C]docetaxel + 75 mg·m-2), and the
[11C]docetaxel Ki derived from the baseline PET scan was found to correlate with the area
under the curve for the tumor of docetaxel during the therapeutic scan (Spearman ρ = 0.715;
P = 0.004), and with tumor response to docetaxel chemotherapy (Spearman ρ = -0.800; P =
0.010). In this study, [11C]docetaxel-PET was therefore able to predict tumor uptake of
docetaxel, and predict the likelihood of a patient responding favorably to a docetaxel
chemotherapy regimen. In addition to improving patient prognosis by tailoring
chemotherapy to individual patients, predicting response to therapy prior to attempting
costly treatment can be expected to lead to significant cost savings. In a final application in
oncology, if patients receive multiple PET scans in series, then PET can also be used an
accurate and convenient method of monitoring their response to treatment. Such an approach
has been used to great effect by the Van den Abbeele group, who use [18F]FDG PET to
monitor patient response to treatment of gastrointestinal stromal tumors (GIST) with
imatinib [253]. If a patient is responding, metabolic changes in the tumor can be seen in the
PET scan weeks or even months before tumor shrinkage is apparent on the CT scan.
Similarly, if a patient is not responding, this is also apparent by [18F]FDG PET. For
example, secondary c-kit mutations frequently lead to GIST with acquired resistance to
imatinib. In such cases, patients can be switched to sunitinib, which has been shown to be
effective, and using PET imaging to tailor treatment to an individual moves us ever closer to
the age of personalized medicine.

7.2 Application of PET Imaging in a Drug Discovery Setting

PET Imaging is being used in the pharmaceutical industry to more rapidly and effectively
answer questions that are central to the drug discovery process; an area recently reviewed by
Matthews and co-workers [6]. For example, at its simplest, biodistribution studies with
radiolabeled versions of drug candidates can be used to non-invasively determine whether or
not a molecule reaches the target tissue in vivo in rodents and primates initially, and
eventually in humans. For example, this approach can be used in the development of CNS
drugs to evaluate whether or not a candidate molecule crosses the blood-brain-barrier [254].
Data obtained from such experiments can also provide a wealth of other important
information, such as whether or not a drug candidate also accumulates at non-target sites
with potential to cause side effects or dose-limiting toxicity at intended therapeutic doses.
Beyond pharmacological and toxicological information, dynamic PET scans also provide
data about pharmacokinetics and pharmacodynamics, including excretion pathways. If blood
samples are drawn throughout a PET scan, analyzed via radio-TLC or radio-HPLC, and
compared to authentic samples of the parent compound, then information is equally readily
accessible on how a given compound is metabolized.
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More sophisticated studies can also be designed to explore receptor occupancy and provide
valuable information for guiding drug development decisions. A seminal paper in this area is
the report by Bergström and co-workers investigating the substance P (neurokinin 1 (NK1)
receptor) antagonist aprepitant, which was being considered as both a treatment for
chemotherapy-induced nausea and as an anti-depressant [255]. Using [18F]SPA-RQC, an
NK1-selective PET radiotracer, imaging studies confirmed ≥90% NK1 receptor occupancy
was achieved in patients receiving at least 100 mg/day (Figure 3). This finding is consistent
with the effective antiemetic regimen (125 mg on day 1 of chemotherapy, followed by 80
mg on days 2 and 3), and indeed, aprepitant is still used in this capacity today. However, 300
mg / day was not effective in the treatment of depression during a Phase III clinical trial.
The PET data with [18F]SPA-RQC confirmed that this dose was more than suitable to
achieve the targeted receptor occupancies, and so was critical in the decision to terminate the
Phase III trial of aprepitant as an antidepressant and ultimately saved Merck millions of
dollars. In addition, this in vivo biomarker could then be employed as a feedback biomarker
within Merck's drug development program, feeding information back into the discovery
pipeline. For example, using information from the PET studies would allow receptor
occupancy above a certain level to be defined as a success criterion for backup drug
candidates also targeting the NK1 receptor for treatment of depression.

A finally valuable application of PET is selection of appropriate patients for a clinical trial.
For example, when Eisai was conducting a clinical trial to evaluate E2609, a BACE (beta-
site amyloid precursor protein-cleaving enzyme) inhibitor for the potential treatment of
Alzheimer's disease, they recognized the importance of populating the clinical trial with
cognitively impaired patients positive for amyloid pathology [256]. Inclusion of amyloid-
negative cognitively impaired patients would lead to incorrect efficacy outcomes. Therefore
patients would only be enrolled in the clinical trial following an amyloid-positive
[18F]flutemetamol PET scan, as [18F]flutemetamol PET can stratify patients based upon
presence or absence of amyloid pathology (Figure 4) [257]. Identifying the right patients for
participation in clinical trials can be expected to facilitate market entry of important new
therapeutics, and reduce time to market going forward.

8. Conclusions

In response to the increasing demand for novel radiopharmaceuticals labeled with
fluorine-18, a number of research groups have initiated programs directed toward the
development of new methodology for late stage fluorination. This global effort has brought
to bear an impressive range of methods and reactions for fluorine-18 radiochemistry,
including adaptation of many state-of-the-art reactions from mainstream synthetic organic
and fluorine chemistry. The articles highlighted herein demonstrate significant advances
pertinent not only to radiolabeling with fluorine-18, but electrophilic and nucleophilic
fluorination in general. The application of these methods together with solid-phase synthesis
and microfluidic technologies is enabling access to increasingly complex
radiopharmaceuticals previously difficult to obtain.
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Abbreviations

β+ positron

e- electron

ν neutrino

γ gamma ray photon

5-HT1A serotonin-1A receptor

5′-FDAS 5′-fluoro-5′-deoxyadenosine synthase

9-BBN 9-borabicyclo[3.3.1]nonane

AD Alzheimer's disease

ATP adenosine-5′-triphosphate

BACE beta-site amyloid precursor protein-cleaving enzyme

BBB blood brain barrier

Boc di-t-butyl dicarbonate

Bq Becquerel

BTHEB Boc-trimethylammoniumhomo-epibatidine

Bz benzyl

CT computed tomography

Ci Curie

CNS central nervous system

COX-2 cyclooxygenase-2

cRGD integrin receptor peptide cyclic Arg-Gly-Asp

CuAAC copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition

DIPEA N,N-diisopropylethylamine

DMT dimethoxytrityl
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EC electron capture

EF5 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide

EOB end of bombardment

EOS end of synthesis

Fmoc fluorenylmethyloxycarbonyl chloride

GIST gastrointestinal stromal tumors

GluT glucose transporters

HATU (1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-
oxid hexafluorophosphate)

HPLC high-performance liquid chromatography

K222 Kryptofix® 2.2.2

L-DOPA L-3,4-dihydroxyphenylalanine

MOE methoxyethyl

MRI magnetic resonance imaging

mGluR5 metabotropic glutamate receptor 5

NaChR α4β2-subtype of the nicotinic acetylcholine receptor

NADH nicotinamide adenine dinucleotide

N.C.A no-carrier-added

NCBrHEB norchloro-bromo-homo-epibatidine

Nos nosyl

NOTA 1,4,7-triazacyclononane-triacetic acid

Oligo oligonucleotide

PET positron emission tomography

RCY radio chemical yield

SAM S-adenosyl-L-methionine

SPE solid-phase extraction

SPECT single-photon emission computed tomography

SPOR solid-phase organic radiosynthesis

substance-P neurokinin 1 (NK1) receptor

Tf trifluoromethanesulfonate

TFA trifluoroacetic acid

TIPS triisopropylsilane
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TνNH Trypanosoma vivax

US ultrasound

[18F

[18F]2FA 2-([18F]fluoro)-3-[(2S)-2- azetidinylmethoxy]pyridine

[18F]-5′-FDA 5′-[18F]fluoro-5′deoxyadenosine

[18F]-5′-FDI 5′-deoxy-5′-[18F]fluoroinosine

[18F]-5′-FDU 5′-deoxy-5′-[18F]-fluorouridine

[18F]AcOF [18F]acetyl hypofluorite

[18F]ANBF 3-azido-5-nitrobenzyl-[18F]fluoride

[18F]APF 4-azidophenacyl-[18F]fluoride

[18F]FClO3 [18F]perchloryl fluoride

[18F]FDOPA L-3,4-dihydroxy-6-[18F]fluorophenylalanine

[18F]DAST [18F]diethylaminosulfur trifluoride

[18F]FAZA [18F]fluoroazomycin arabinoside

[18F]FBAM N-(6-(4-[18F]fluorobenzylidene)aminooxyhexyl)maleimide

[18F]FBEM N-(2-(4-[18F]fluorobenzamido)ethyl)maleimide

[18F]FCH [18F]fluorocholine

[18F]FDDNP 2-(1-(6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl)-
ethylidene)malononitrile

[18F]FDG 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG)

[18F]FEOBV [18F]fluoroethoxybenzovesamicol

[18F]FET O-(2-[18F]fluoroethyl)-L-tyrosine

[18F]FLT 3′-deoxy-3′-[18F]fluorothymidine

[18F]FMISO [18F]fluoromisonidazole

[18F]FPB [18F]fluorophenacyl bromide

[18F]FP-CIT [18F]fluoropropyl carbomethoxy iodophenyl nortropane

[18F]FPM N-(4-[18F]fluorophenyl)maleimide

[18F]FpyMe 1-(3-(2-[18F]fluoropyridin-3-yloxy)propyl)pyrrole-2,5-dione

[18F]HX4 [18F]flortanidazole

[18F]LBT-999 8-((E)-4-fluoro-but-2-enyl)-3β-p-tolyl-8-aza-bicyclo[3.2.1]octane-2β-
carboxylic acid methyl ester

[18F]MPPF 4-(2′-methoxyphenyl)-1-[2′-(N-2″pyridinyl)-p-
[18F]fluorobenzamido]ethylpiperazine
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[18F]NFSi [18F]N-fluorobenzenesulfonamide

[18F]SFB N-succinimidyl-4-[18F]fluorobenzoate

[18F]SPA-RQ [18F]substance-P antagonist-receptor quantifier

[18F]TBAF [18F]tetrabutylammonium fluoride

[18F]XeF2 [18F]xenon difluoride

[11C

[11C]DTBZ (+)-α-[11C]dihydrotetrabenazine

[11C]PiB 2-(4-N-[11C]methylaminophenyl)-6-hydroxybenzothiazole
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Figure 1.

PET imaging detector. Positron emission followed by an annihilation event and detection of
photons.
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Figure 2.

Differentiation of Dementia Subtypes using PET Imaging (adapted from Burke, J. F. et al.

Assessment of mild dementia with amyloid and dopamine terminal positron emission

tomography, Brain, 2011, 134 (Pt. 6), 1647-57; by permission of Oxford University Press)
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Figure 3.

(a) [18F]SPA-RQ; (b) Positron emission tomography (PET) image from the striatum of a
subject who received aprepitant 100 mg. Predose (top) and postdose (bottom). Subject
number 01, estimated occupancy = 94%; (c) estimated relationship between plasma
concentration of aprepitant and occupancy of striatal NK1 receptors. Curve depicted is based
on fit of the data to the Hill equation (slope = 1) ((b) and (c) reprinted from M. Bergström et

al., Human positron emission tomography studies of brain neurokinin 1 receptor occupancy

by aprepitant, Biol. Psychiatry, 2004, 55, 1007-1012, Copyright (2004), with permission
from Elsevier).
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Figure 4.

Typical patterns of 18F-flutemetamol uptake in negative scan (left) and positive scan (right).
White matter uptake is similar in both scans, but there is considerably more uptake in gray
matter in the positive scan (this research was originally published in JNM: R. Lundqvist et

al. Implementation and Validation of an Adaptive Template Registration Method for 18F-

Flutemetamol Imaging Data. J. Nucl. Med. 2013, 54, 1472-1478. © by the Society of
Nuclear Medicine and Molecular Imaging, Inc.
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Scheme 1.

Synthesis of [18F]FDG: (a) electrophilic fluorination of 3,4,6-tri-O-acetyl-D-glucal 1 by

[18F]F2, (b) electrophilic fluorination of 3,4,6-trihydroxy-D-glucal 2 with [18F]acetyl
hypofluorite, and (c) nucleophilic aliphatic substation of 1,3,4,6-tetra-O-acetyl-2-O-triflate-

β-D-mannose 3.
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Scheme 2.

Synthesis (a) and synthetic applications (b,c,d) of [18F]N-fluorobenzenesulfonamide.
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Scheme 3.

Synthesis (a) of [18F]N-fluoro-N-alkylsulfonamide [18F]4, and subsequent applications (b,c).
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Scheme 4.

Synthesis of (a) [18F]N-fluoropyridone [18F]5, and (b,c) reactions.
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Scheme 5.

Synthesis (a,b) of [18F]Selectfluor bis(triflate) ([18F]7), (c,d) and synthetic applications.
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Scheme 6.

(a) [18F]Fluoride-derived palladium (IV) electrophilic fluorinating reagent [18F]4. (b)

Palladium (II) aryl complex reaction with [18F]9. (c) Fluorine-18 radiopharmaceuticals.
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Scheme 7. Nickel-mediated oxidative fluorination with aqueous [18F]fluoride
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Scheme 8. Synthesis of (a) 5-[18F]fluorouracil 15 and (b) 4-[18F]fluoroantipyrine 17
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Scheme 9.

2-[18F]fluorotyrosine and 3-[18F]fluorotyrosine synthesis is highly reagent dependent.
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Scheme 10.

6-[18F]fluoroDOPA ([18F]FDOPA) synthesis by (a) unselective direct fluorination and (b)
selective fluorination via organometallic precursors. *RCY and SA given for deprotected
[18F]FDOPA.
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Scheme 11.

Electrophilic fluorination of aryl Grignard and aryl lithium compounds via carbanion
intermediates.
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Scheme 12. Radiosynthesis of [18F]FEOBV and [18F]AMYViD™

Cole et al. Page 53

Curr Top Med Chem. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Scheme 13. Strategies for the Synthesis of [18F]FLT
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Scheme 14.

Pd-Catalyzed allylic [18F]fluorination reactions.
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Scheme 15. Radiosynthesis of [18F]MPPF
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Scheme 16. Radiosynthesis of [18F]Flutemetamol
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Scheme 17. Synthesis of Radiolabeled Phenols via Bayer-Villiger Chemistry
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Scheme 18.

Diaryliodonium salts for the preparation of [18F]fluoroarenes.
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Scheme 19.

[18F]Fluoroarenes from triarylsulfonium salts.
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Scheme 20.

p-[18F]Fluoroarenes from diarylsulfoxides.
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Scheme 21. Radiosynthesis of NAChR Radioligands (a) [18F]2-FA and (b) [18F]Flubatine
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Scheme 22. Radiosynthesis of (a) [18F]FCH and (b) [18F]FET
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Scheme 23. Generation of [18F]CF3 Groups
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Scheme 24. Radiosynthesis of [18F]FPPRGD2 and [18F]SFB
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Scheme 25. Radiosyntheses via Thiol Functionalization
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Scheme 26.

Representative example of strain relief-promoted, copper-free click chemistry for 18F-
radiolabeling. R = bombesin.
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Scheme 27. Palladium-mediated Cross-coupling Reactions with Fluorine-18 including
Sonogashira (a), Suzuki (b and C) and Stille (d and e) Reactions
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Scheme 28. Photochemical Reactions with Fluorine-18
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Scheme 29. Multicomponent Reactions with Fluorine-18
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Scheme 30. Enzymatic Radiochemical Reactions Mediated by Fluorinase
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Scheme 31. Fluorine-18 Acceptor Chemistry
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Scheme 32. [18F]Sulfonyl Fluoride-based Prosthetic Groups
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Scheme 33. Solid-phase synthesis of [18F]FluoroDOPA
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Scheme 34. Solid-phase Synthesis of [18F]FDG
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Scheme 35. Solid-phase Synthesis of [18F]Fluorouracil
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Scheme 36. Solid-phase Synthesis of Fluorine-18 Labeled Prosthetic Groups
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Table 2

Nuclear Reactions Used to Produce Fluorine-18[20]

18O(p,n)18F 20Ne(d,α)18F 6Li(n,α)3H, 16O(3H,n)18F

16O(3He,p)18F 20Ne(p,2n)18F

16O(α,pn)18F 20Ne(3He,n)18Ne,18Ne-18F
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