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ABSTRACT This paper presents a self-contained factorization for the Vandermonde matrices associated

with true-time delay based wideband analog multi-beam beamforming using antenna arrays. The proposed

factorization contains sparse and orthogonal matrices. Novel self-recursive radix-2 algorithms for Vander-

monde matrices associated with true time delay based delay-sum filterbanks are presented to reduce the

circuit complexity of multi-beam analog beamforming systems. The proposed algorithms for Vandermonde

matrices by a vector attain O(N logN ) delay-amplifier circuit counts. Error bounds for the Vandermode

matrices associated with true-time delay are established and then analyzed for numerical stability. The

potential for real-world circuit implementation of the proposed algorithms will be shown through signal

flow graphs that are the starting point for high-frequency analog circuit realizations.

INDEX TERMS Sparse matrices, algorithm design and analysis, computational complexity, accuracy, error

analysis, fast fourier transforms, antenna arrays, integrated circuits, wireless communication.

I. INTRODUCTION

The realization of narrowband discrete Fourier trans-

form (DFT) multi-beams is itself a hard engineering prob-

lem due to circuit complexity of the aperture transceivers.

For example, the phasing network required for forming

N beams requires N 2 phasing elements. The DFT is a

linear operation that maps an N -point input signal x =[
x[0] x[1] · · · x[N − 1]

]⊤
into anN -point output signalX =[

X [0] X [1] · · · X [N − 1]
]⊤

according to the following rela-

tionship: X = FN · x, where FN is the DFT matrix, whose

elements are given by ωkl
N , k, l = 0, 1, . . . ,N − 1, where

ωN = exp
(
−j 2π

N

)
is the N th root of unity and j =

√
−1.

Evaluated by means of direct matrix-vector multiplica-

tions, the direct computational complexity of the DFT is

in O(N 2), with N 2 complex multiplications and N (N − 1)

complex additions. The DFT matrix has been studied for the
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last 50 years, and there exist a multitude of fast algorithms

(collectively called fast Fourier transforms (FFTs)) that com-

pute the DFT using O(N logN ) operations, which is signifi-

cantly lower when comparedwith the direct implementations.

The use of a spatial FFT leads to N independent orthogonal

RF beams at O(N logN ) complexity. In fact, by taking a

given FFT algorithm and implementing its ‘‘Twiddle Fac-

tors’’ (which are intermediate constant complex multiplica-

tions found in FFT algorithms) using microwave or analog

IC-based phase-shifter implementations has led to the ‘‘But-

ler Matrix’’ type multi-beam array beamformers that are well

known in the literature. However, such FFT beams suffer

from frequency dependent beam directions. Known as ‘‘beam

squint’’ because the beam directions are strongly depen-

dent on the temporal frequency of operation, DFT based

multi-beam beamformers can only be used for narrowband

wireless systems.

The FFT is capable of computing the DFT or its inverse

inO(N logN ) complexity. Therefore, FFT-based multi-beam

beamformers are very useful for wireless systems having
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narrow bandwidth. However, for emerging 5G mmW sys-

tems that exploit increasingly wide bandwidths, the beam-

squint problem can be significant. For emerging 5G mmW

systems that fully exploit the available bandwidth for increas-

ing system capacity, one must utilize the true time-delay

based multi-beam beamformers described by its own delay

Vandermonde matrix (DVM). The DVM, however, is equal

to the DFT only at a single temporal frequency. There-

fore, FFT-based factorizations are not applicable for the

DVM matrix. In this paper, we describe the complexity of

an FFT-like factorization algorithm for the Vandermonde

matrices, in order to be able to implement truly wideband

multi-beam mmW beamformers based on true-time-delay

networks albeit at O(N logN ) complexity.

The paper is organized as follows. Section II contains

an introduction to complexity metrics of analog and digi-

tal parallel computation systems for matrix-vector products.

Section III introduces novel self-contained factorizations

for Vandermonde matrices and radix-2 algorithms, while in

section IV we will derive arithmetic complexity and elabo-

rate on numerical results based on the proposed algorithms

for Vandermonde matrices. Next, section V analyzes error

bounds and stability in computing radix-2 algorithms for

Vandermonde matrices having true time-delays. In section VI

we will present signal flow graphs of the proposed radix-2

algorithm for Vandermonde matrices. Finally, section VII

concludes the paper.

II. ANALOG IMPLEMENTATIONS FOR 5G AND BEYOND:

QUANTIFYING COMPLEXITY

Fast analog radio frequency (RF) integrated circuit (IC) real-

izations of the beamforming algorithms become necessary

when the bandwidths of interest are greater than a few GHz.

For emerging 5G, 6G and beyond, the bandwidths of interest

are too high for digital computing solutions to keep up. The

solution is to replace digital systems with fast analog imple-

mentations of wideband beamforming algorithms, which in

turn, requires a revisit to traditional algorithm complexity

theory because of differences in analog parallel architec-

tures compared to conventional digital approaches. In analog

implementations, the bandwidth effectively sets the rate at

which the analog computation can be updated. The DVM

building block employs true time delays that can be realized

using transmission line segments and/or all-pass networks

followed by amplification stages.

Let us define DVM fast algorithms as consisting of gain-

delay-block (GDB) and addition/subtraction blocks. Instead

of computing the number of multiplications for accessing

with arithmetic complexity (as one would do for digital

systems), we need to count the number of parallel circuit

implementations of GDBs in order to access the circuit com-

plexity of analog parallel algorithms. The larger the number

of GDBs, the higher the circuit complexity and hence higher

chip area and power consumption. In analog fast algorithms,

the objective is to factorize the original matrix into products

of sparse matrices, such that the total number of GDBs is

reduced from O(N 2) to O(N logN ).

We remark here that the gain is not equivalent to the

coefficient multiplication. Although a delay of t is simply

multiplication by e−jωt in the mathematical sense, it requires

a separate true time delay circuit in the analog domain. Hence,

the multiplication complexity is different from GBD counts.

III. SELF-CONTAINED FACTORIZATION AND ALGORITHM

FOR VANDERMONDE MATRICES

Low complexity and stable algorithms for the delay Vander-

monde matrix, AN = [αkl]
N ,N−1
k=1,l=0, where α = e−jωtτ and

accounts for the phase rotation associated with the delay τ

at frequency f , and ωt = 2π f , have been derived through

our previous work [1], [16], [17]. It is important to realize

that the matrix elements are integer powers of α = e−jωtτ

which are functions of the temporal frequency variable ωt ;

this is an important distinction from the DFT matrix where

the elements are constants defined as the primitive N th roots

of unity. Because integer powers of α = e−jωtτ are dependent
on ωt the DVM frequency responses are functions of two

frequency variables: ωx , which is typically a spatial variable,

and ωt which is typically the temporal frequency variable.

The DVM matrix frequency responses are defined using the

spatial frequency variable ωx via 2-D filterbank responses

that contain ωt as a parameter, and given by the expression

for the kth filter for k = 0, 1, . . . ,N − 1 as Hk (jωx , jωt ) =∑
i α

kie−jωx i, i = 0, 1, . . . ,N − 1. Therefore, considering

both ωx and ωt the DVM defines N 2-D frequency responses.

Further, the DVM is the super-class of the DFT matrix

without having nice properties like unitary, periodicity,

symmetry, and circular shift. There is no self-contained

radix-2 DVM algorithm in the literature. The manuscript

[17] proposes a self-contained sparse factorization of DVM

with O(N 2) arithmetic complexity. The displacement struc-

ture of Vandermonde-related matrices is used to derive

O(N log2 N ) arithmetic complexity algorithms in [7], [8]

and an O(N ) arithmetic complexity algorithm in [14]. The

manuscripts [12], [13], [23] propose O(N 2) complexity

algorithms to compute Vandermonde matrices (having real

nodes) by a vector. The DVM algorithm in [17] extends

the results in [12], [13], [23] utilizing complex nodes

without using displacement equations as in [7], [8], [14].

Moreover, we have addressed the error bounds and stabil-

ity of the DVM algorithm in [17] by filling the gaps in

[12], [13], [23]. The DVM algorithm in [16] is faster than

[17] but does not produce arithmetic complexity of order

O(N logN ). On the other hand, there are no constraints

for nodes of DVM in [17] as opposed to what we propose

here.

In this section, we derive novel self-contained factorization

for the Vandermode-type matrices and propose a radix-2

algorithm for the Vandermonde matrices. We will account for

the phase rotation associated with delay and frequency in the

factorization of Vandermonde matrices.
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A. SELF-CONTAINED FACTORIZATION FOR

VANDERMONDE MATRICES

Algorithms operating on analog signals for computing Van-

dermonde matrix by a vector can be seen as the evaluation

of (N − 1)th degree polynomial at N points, albeit using

a paralleled analog computing circuit as opposed to a dig-

ital realization that must operate on samples and quantized

signals. Here we derive self-contained factorization of Van-

dermonde matrices to obtain efficient continuous-time algo-

rithms for implementation on analog circuits while reducing

GDB counts.

One can observe the computation of Vandermonde matrix

by a vector with arithmetic complexity O(N log2 N ) in [4],

[7], [8]. Here, arithmetic complexity refers to the number of

GDBs in an analog RF-IC circuit implementation, unlike the

traditional approach of the number of multipliers and adders

in a digital system. There are several mathematical techniques

available to derive radix-2 and split-radix FFT algorithms,

as described in [3], [10], [18], [20], [22]. It has been shown

in [15] that Vandermonde matrices are badly ill-conditioned

with a narrow class of exceptions whereas cyclic sequences

of nodes are equally spaced on the unit circle C(0, 1). In

here, we propose self-contained and sparse factorization for

the well-conditioned Vandermonde matrices and extend the

results for C(0, r), where r > 1 (i.e. circle of radius r

centered at the origin in the complex plane). The proposed

factorizations will then be used to derive fast algorithmswhile

reducing GDB counts.

Theorem 1: Let the Vandermonde matrix VN = [vlk ]
N−1
k,l=0

be defined by equally spaced nodes {v0, v1, . . . , vN−1} on
C(0, 1) (in counterclockwise direction) and N = 2t (t ≥ 1).

Then VN (v0, v1, . . . , vN−1) can be factored into

VN = PTN

[
VN

2

VN
2

] [
IN
2

ḊN
2

] 

IN
2

IN
2

IN
2

−I N
2




[
IN
2

c · IN
2

]
(1)

where PN is the even-odd permutation matrix, I N
2
is the

identity matrix, ḊN
2

= diag[el(
2π j
N )]

N
2 −1

l=0 , c = e
jθN
2 , and

0 ≤ θ < 2π .

Proof: Let us permute rows of VN by multiplying with

PN and write the result as the block matrices:

PNVN =




[
vl2k

]N
2 −1

k,l=0

[
v

(
N
2 +l

)

2k

]N
2 −1

k,l=0

[
vl2k+1

]N
2 −1

k,l=0

[
v

(
N
2 +l

)

2k+1

]N
2 −1

k,l=0




. (2)

It is clear that the (1,1) block of the product PNVN is VN
2
.

Now, we consider (1,2), (2,1), and (2,2) blocks of PNVN (2)

and represent each of these byVN
2
and the product of diagonal

matrices.

By (1,2) block of (2) we get:
[
v

(
N
2 +l

)

2k

]N
2 −1

k,l=0

= diag

[
v
N
2

2k

]N
2 −1

k=0

·
[
vl2k

]N
2 −1

k,l=0
. (3)

Since nodes are equally spaced on C(0, 1), we have v2k+1 =
v2k · e

2π j
N , for k = 0, 1, . . . , N

2
− 1. Now by (2,1) block of (2)

we get:
[
vl2k+1

]N
2 −1

k,l=0
=

[
vl2k

]N
2 −1

k,l=0
· diag[el(

2π j
N )]

N
2 −1

l=0 . (4)

By (2,2) block of (2) we get:
[
v

(
N
2 +l

)

2k+1

] N
2 −1

k,l=0

= − diag

[
v
N
2

2k

]N
2 −1

k=0

·
[
vl2k

]N
2 −1

k,l=0
·

diag[el(
2π j
N )]

N
2 −1

l=0 . (5)

Thus by (3), (4), and (5), we can state (2) as:

PNVN =




VN
2

DN
2

· VN
2

VN
2

· ḊN
2

−DN
2

· VN
2

· ḊN
2


 (6)

where DN
2

= diag

[
v
N
2

2k

]N
2 −1

k=0

. Let us consider the product

of mth row of VN and lth column of VH
N , where VH

N is the

conjugate transpose of VN . Thus, we have:

VN (m, :) · VH
N (:, l)

= 1 + vm−1v̄l−1 + v2m−1v̄
2
l−1 + · · · + v

(N−1)
m−1 v̄

(N−1)
l−1

=
{
N ,when m = l,

0,when m 6= l.

In the above, the first equality follows as vk , v̄k ∈ C(0, 1)

for k = 0, 1, . . . ,N − 1 and the second equality follows as

v2k+1 = v2k ·e
2π j
N . Hence,VN is unitary up to scaling by 1√

N
.

By using this we can state (6) as:

PNVN =
[
VN

2

VN
2

]

×




IN
2

2
N

· VH
N
2

· DN
2

· VN
2

ḊN
2

− 2
N

· VH
N
2

· DN
2

· VN
2

· ḊN
2


 . (7)

Now let us consider the productVH
N
2

·DN
2
·VN

2
i.e. the product

of mth row of VH
N
2

· DN
2
-say V̂N

2
and lth column of VN

2
.

Therefore, we have that

V̂N
2
(m, :) · VN

2
(:, l)

= v̄m−1
0 v

N
2

0 v
l−1
0 + v̄m−1

2 v
N
2

2 v
l−1
2 + v̄m−1

4 v
N
2

4 z
l−1
4

+ · · · + v̄m−1
N−2v

N
2

N−2v
l−1
N−2
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=





N
2 −1∑

k=0

v
N
2

2k , when m = l,

0, when m 6= l.

In the above, the first equality follows as v2k , v̄2k ∈ C(0, 1)

and the second equality follows as v2k are nodes of VN
2
and

v2k+2 = v2k · e
4π j
N . Thus, by following the above one can see

the (m, l) entry of V̂N
2

· VN
2

· ḊN
2
as

(m, l) entry of V̂N
2

· VN
2

· ḊN
2

=








N
2 −1∑

k=0

v
N
2

2k


 el(

2π j
N ),when m = l,

0,when m 6= l.

Notice that even nodes on C(0, 1) can be expressed as v2k =
e
j
(
θ+ 4πk

N

)

for k = 0, 1, . . . , N
2

−1. Thus, by raising each even

node to the power of N
2
and taking average we get c = e

jθN
2

where j2 = −1. Hence,

VN = PTN

[
VN

2

VN
2

] 

IN
2

c · IN
2

ḊN
2

−c · ḊN
2


 (8)

and the claim of the theorem follows. �

Remark 2: The last matrix in the factorization (8) has been

split into three sparse matrices in (1) to reduce the multiplica-

tion counts and hence for efficient hardware implementation.

Corollary 3: Let the Vandermonde matrix ṼN = [ṽlk ]
N−1
k,l=0

be defined by equally spaced nodes {ṽ0, ṽ1, . . . , ṽN−1} on
C(0, r), where r > 1 (in counterclockwise direction) and

N = 2t (t ≥ 1). Then ṼN (ṽ0, ṽ1, . . . , ṽN−1) can be factored

into

ṼN = VN D̃N (9)

where D̃N = diag[r l]N−1
l=0 and VN is defined via (1).

Proof: This is trivial as ṽk = r · vk for k = 0, 1, . . . ,

N − 1. �

The following self-contained factorization for the Van-

dermonde matrices is proposed in connection to the phase

rotation associated with delay τ and frequency ωt = 2π f .

Theorem 4: Let the Vandermonde matrix VN = [vlk ]
N−1
k,l=0

be defined by equally spaced nodes {v0, v1, . . . , vN−1} on
C(0, 1) (in clockwise direction) and N = 2t (t ≥ 1). Then

VN (v0, v1, . . . , vN−1) can be factored into

VN = PTN

[
VN

2

VN
2

] [
IN
2 ¯̇DN

2

] 

IN
2

IN
2

IN
2

−IN
2




[
IN
2

c̄ · IN
2

]
(10)

where IN
2
is the identity matrix, ¯̇DN

2
= diag[e−l(

2π j
N )]

N
2 −1

l=0 ,

c̄ = e−
jθN
2 , and θ = 2π f τ = ωtτ , s.t. 0 ≤ θ < 2π .

Proof: The proof follows similar lines as that of The-

orem 1, except ¯̇DN
2

= diag[e−l(
2π j
N )]

N
2 −1

l=0 instead of ḊN
2

=

diag[el(
2π j
N )]

N
2 −1

l=0 and c̄ instead of c. �

Remark 5: Theorem 4 has proposed a self-contained fac-

torization, as opposed to a scaled DFT matrix. If one chooses

to scale DFT matrices to factor VN , it results in the compu-

tation of small complex numbers and leads to zero matrices

[9]. The proposed factorization forVN in (10) overcomes this

barrier.

Corollary 6: Let the Vandermonde matrix ṼN = [ṽlk ]
N−1
k,l=0

be defined by equally spaced nodes {ṽ0, ṽ1, . . . , ṽN−1} on
C(0, r), where r > 1 (in clockwise direction) and N = 2t

(t ≥ 1). Then ṼN (ṽ0, ṽ1, . . . , ṽN−1) can be factored into

ṼN = VN D̃N (11)

where D̃N = diag[r l]N−1
l=0 and VN is defined via (10).

Proof: This is trivial as ṽk = r · vk for k = 0, 1, . . . ,

N − 1. �

Remark 7: When θ = 0 and r = 1, the proposed factoriza-

tion for the Vandermodematrices given in Theorem 4, reduces

to the well known self-contained DFT matrix factorization

[3], [19], [22], [24]. Thus, we can use this property to

define a delay Vandermonde matrix to solve the beam squint

problem as well as allow high-speed analog realizations for

future high bandwidth applications where the slowing down

of Moore’s law prevents the adoption of digital parallel pro-

cessing architectures.

B. SELF-RECURSIVE ALGORITHMS FOR VANDERMONDE

MATRICES

In the following, we will state self-recursive radix-2 algo-

rithms for Vandermonde matrices with the help of the

Theorem 1, Theorem 4, Corollary 3 and Corollary 6. Let

us call the corresponding algorithms vanc(N), vancc(N),

vancr(N), and vanccr(N) respectively, e.g., the acronym

vancr(N) was selected to refer to the factorization for the

Vandemode matrices having clockwise nodes on the circle

of radius r . We use the following notation for the inputs of

the algorithms i.e. N for the size of the matrices, θ , where

0 ≤ θ < 2π , for the angle of rotation from the positive

real axis (positive or negative based on counterclockwise or

clockwise direction), r for the magnitude, and z for the input

vector.

Before stating algorithms, let us use the following notation

to denote sparse matrices which will be used hereafter for

N ≥ 4.

D̂N =
[
IN
2

ḊN
2

]
, ĎN =

[
IN
2 ¯̇DN

2

]

ÎN =



IN
2

IN
2

IN
2

−IN
2


 ,

CN =
[
I N
2

c · IN
2

]
, and C̄N =

[
IN
2

c̄ · IN
2

]
. (12)
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Algorithm 8: vancc(z,N)

Input: N = 2t (t ≥ 1), N1 = N
2
, θ , and z ∈ R

n or C
n.

1) If N = 2, then

y =
[
1 ejθ

1 −ejθ
]
z.

2) If N ≥ 4, then

u := CN z,

v := ÎNu,

w := D̂Nv,

s1 := vancc
(
[wi]

N1−1
i=0 ,N1

)
,

s2 := vancc
(
[wi]

N
i=N1

,N1

)
,

y := PTN
(
s1T , s2T

)T
.

Output: y = VN z.

Algorithm 9: vanc(z,N)

Input: N = 2t (t ≥ 1), N1 = N
2
, θ , and z ∈ R

n or C
n.

1) If N = 2, then

y =
[
1 e−jθ

1 −e−jθ
]
z.

2) If N ≥ 4, then

u := CN z,

v := ÎNu,

w := ĎNv,

s1 := vanc
(
[wi]

N1−1
i=0 ,N1

)
,

s2 := vanc
(
[wi]

N
i=N1

,N1

)
,

y := PTN
(
s1T , s2T

)T
.

Output: y = VN z.

Algorithm 10: vanccr(z,N)

Input: N = 2t (t ≥ 1), N1 = N
2
, r , θ , and z ∈ R

n or C
n.

1) If N = 2, then

y =
[
1 rejθ

1 −rejθ
]
z.

2) If N ≥ 4, then

u := D̃N z,

y := vancc
(
[ui]

N−1
i=0 ,N

)
.

Output: y = ṼN z.

Algorithm 11: vancr(z,N)

Input: N = 2t (t ≥ 1), N1 = N
2
, r , θ , and z ∈ R

n or C
n.

1) If N = 2, then

y =
[
1 re−jθ

1 −re−jθ
]
z.

2) If N ≥ 4, then

u := D̃N z,

y := vanc
(
[ui]

N−1
i=0 ,N

)
.

Output: y = ṼN z.

IV. ANALOG GDB-COMPLEXITY

The number of additions andmultiplications required to carry

out a computation is called the arithmetic complexity in

a digital computing system. Here, because our intention is

to realize these algorithms as high-speed analog computing

circuits operating at RF, we use the modified arithmetic

complexity metric where we are counting the number of

GDBs instead of multipliers. In this section, the GDB counts

of the proposed self-contained factorization for the Van-

dermonde matrices via algorithms vanc(z,N), vancc(z,N),

vancr(z,N), and vanccr(z,N) will be addressed. The direct

analog computation of the Vandermonde matrix by a vector

z ∈ C in the usual way requires O(N 2) GDB circuits to be

realized in parallel in the RF-IC analog computing device.

However, we will show in this section that the proposed

self-recursive radix-2 algorithms can be utilized to compute

Vandermonde matrices by a vector with O(N log N ) GDB

counts.

This is a dramatic circuit complexity reduction of Vander-

monde matrices by a vector in the literature. Although the

computation speed is still the same, the new factorization

reduces chip area and power consumption due to the smaller

amount of GDB circuits that have to be physically realized

on the analog computing device.

A. GDB COUNTS OF ANALOG FAST ALGORITHMS FOR

VANDERMONDE MATRICES

Here we analyze the analog GDB counts of the radix-2 algo-

rithms for Vandermonde matrices presented in Section III-A.

Let us denote the number of complex/real additions (say

#aC/#aR respectively) and complex/real multiplications (say

#mC/#mR respectively) required to compute y = VN z and

y = ṼN z having z ∈ C
N or RN . We do not count multiplica-

tion by ±1 and permutation.

Let us first analyze the complex GDB counts of the

radix-2 algorithms for Vandermonde matrices by a complex

input vector. We recall that the GDBs implement a complex

multiplication defined in the frequency domain ωt which

requires a time-domain delay to implement on the DVM

signal flow graphs. We recall that the independent frequency

variable of the DVM is ωx and that ωt is the temporal fre-

quency parameter associated with thematrix elements α.This

is why the complex multiplication operations, which contain

e−jωtτ terms, must in practice be realized in the time domain

using time-delays.

Theorem 12: Let N = 2t (≥ 2) and θ be given. The

complex GDB counts of the proposed vancc(z,N) algorithm

with z ∈ C
N is given by

#aC(VanCC,N ) = Nt,

#mC(VanCC,N ) = Nt − N + 1. (13)

Proof: Referring to the algorithm vancc(z,N), we get

#aC(VanCC,N ) = 2 · #aC
(
VanCC,

N

2

)
+ #aC

(
D̂N

)

+#aC
(
ÎN

)
+ #aC (CN ) . (14)

By following the structures of D̂N , ÎN and CN ,

#aC
(
D̂N

)
= 0, #mC

(
D̂N

)
= N

2
− 1,

#aC
(
ÎN

)
= N , #mC

(
ÎN

)
= 0,

#aC (CN ) = 0, #mC (CN ) = N

2
. (15)
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Thus by using the above, we could state (14) as the first order

difference equation with respect to t ≥ 2

#aC(VanCC, 2t ) − 2 · #aC
(
VanCC, 2t−1

)
= 2t .

Solving the above difference equation using the initial condi-

tion #aC(VanCC, 2) = 2, we can obtain

#aC(VanCC, 2t ) = Nt.

Now by using the algorithm vancc(z,N) and (15), we could

obtain another first order difference equation with respect to

t ≥ 2

#mC(VanCC, 2t ) − 2 · #mC
(
VanCC, 2t−1

)
= 2t − 1.

Solving the above difference equation using the initial condi-

tion #mC(VanCC, 2) = 1, we can obtain

#mC(VanCC, 2t ) = Nt − N + 1.

�

Corollary 13: Let N = 2t (≥ 2), r and θ be given. The

complex GDB counts of the proposed vanccr(z,N) algorithm

with z ∈ C
N is given by

#aC(VanCCR,N ) = Nt,

#mC(VanCCR,N ) = Nt − 1

2
N . (16)

Proof: The multiplication of the diagonal matrix D̃N

with a complex input counts no addition and N
2

− 1 multi-

plications. Thus by using vanccr(z,N) algorithm and GDB

counts in (13), the complex GDB counts can be obtained as

in (13). �

Theorem 14: Let N = 2t (≥ 2) and θ be given. The

complex GDB counts of the proposed vanc(z,N) algorithm

with z ∈ C
N is given by

#aC(VanC,N ) = Nt,

#mC(VanC,N ) = Nt − N + 1. (17)

Proof: The proof follows similar lines as that of

Theorem 12 except ĎN instead of D̂N and C̄N instead

of CN . �

Corollary 15: Let N = 2t (≥ 2), r and θ be given. The

complex GDB counts of the proposed vancr(z,N) algorithm

with z ∈ C
N is given by

#aC(VanCR,N ) = Nt,

#mC(VanCR,N ) = Nt − 1

2
N . (18)

Proof: The multiplication of the diagonal matrix D̃N

with a complex input counts no addition and N
2
−1multiplica-

tions. Thus by using vancr(z,N) algorithm and GDB counts

in (17), the complex GDB counts can be obtained as in (18).

�

Let us analyze the real GDB counts of the radix-2 algo-

rithms for Vandermonde matrices by a real input vector. Here

we count the multiplication of two complex numbers with

2 real additions and 4 real multiplications.

Theorem 16: Let N = 2t (≥ 2) and θ be given. The

real GDB counts of the proposed vancc(z,N) algorithm with

z ∈ R
N is given by

#aR(VanCC,N ) = Nt,

#mR(VanCC,N ) = 2Nt − 5

2
N + 2. (19)

Proof: Referring to the algorithm vancc(z,N), we get

#mR(VanCC,N ) = 2 · #mR
(
VanCC,

N

2

)
+ #mR

(
D̂N

)

+#mR
(
ÎN

)
+ #mR (CN ) . (20)

By following the structures of D̂N , ÎN and CN ,

#aR
(
D̂N

)
= 0, #mR

(
D̂N

)
= N − 2,

#aR
(
ÎN

)
= N , #mR

(
ÎN

)
= 0,

#aR (CN ) = 0, #mR (CN ) = N . (21)

�

Thus by using the above, we could state (20) as the first

order difference equation with respect to t ≥ 2

#mR(VanCC, 2t ) − 2 · #mR
(
VanCC, 2t−1

)
= 2 · 2t − 2.

Solving the above difference equation using the initial condi-

tion #mR(VanCC, 2) = 1, we can obtain

#mR(VanCC, 2t ) = 2Nt − 5

2
N + 2

Now by using the algorithm vancc(z,N) and (15), we could

obtain another first order difference equation with respect to

t ≥ 2

#aR(VanCC, 2t ) − 2 · #aR
(
VanCC, 2t−1

)
= 2t .

Solving the above difference equation using the initial condi-

tion #aR(VanCC, 2) = 2, we can obtain

#aR(VanCC, 2t ) = Nt.

Corollary 17: Let N = 2t (≥ 2), r and θ be given. The

real GDB counts of the proposed vanccr(z,N) algorithmwith

z ∈ R
N is given by

#aR(VanCCR,N ) = Nt,

#mR(VanCCR,N ) = 2Nt − 3

2
N + 1. (22)

Proof: D̃N is a diagonal matrix with real entries so the

number of additions will remain the same as in (19) while the

number of multiplications will be increased by N −1 in (19).

�

Theorem 18: Let N = 2t (≥ 2) and θ be given. The real

GDB counts of the proposed vanc(z,N) algorithm with z ∈
R
N is given by

#aR(VanC,N ) = Nt,

#mR(VanC,N ) = 2Nt − 5

2
N + 2. (23)
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TABLE 1. Complex GDB counts of the proposed radix-2 algorithms (i.e. vanc(z, N), vancr(z, N), vancc(z, N),and vanccr(z, N)) vs direct computation.

Proof: The proof follows similar lines as that of

Theorem 16 except ĎN instead of D̂N and C̄N instead

of CN . �

Corollary 19: Let N = 2t (≥ 2), r and θ be given. The

real GDB counts of the proposed vancr(z,N) algorithm with

z ∈ R
N is given by

#aR(VanCR,N ) = Nt,

#mR(VanCR,N ) = 2Nt − 3

2
N + 1. (24)

Proof: D̃N is a diagonal matrix with real entries so

the number of additions will remain the same as in (23)

while the number of multiplications will be increased by

N − 1 in (23). �

B. NUMERICAL RESULTS

Here we provide numerical results for the GDB counts of

the proposed radix-2 algorithms vanc(z,N), vancc(z,N),

vancr(z,N), and vanccr(z,N). We consider the direct com-

putation of Vandermonde matrices V and Ṽ by the vector

z ∈ C
N withN (N−1) complex additions and multiplications

(note that V and Ṽ have 1’s along the first column so we

counted the multiplication count as N (N − 1) as opposed to

N 2). Also, the direct computation of Vandermonde matrices

V and Ṽ by the vector z ∈ R
N is taken as N (2N − 1) real

additions and 2N (N − 1) real multiplications (since vk =
e
−j

(
θ+ 2πk

N

)

we have considered on computing the powers of

nodes using vlk = e
−jl

(
θ+ 2πk

N

)

for l = 2, 3, · · · ,N − 1).

Note that we have not counted the multiplication by 1 in the

Vandermonde matrices. The numerical results for the GDB

counts of the proposed algorithms vanc(z,N), vancr(z,N),

vancc(z,N),and vanccr(z,N) with corresponding matrices

VN and ṼN varying sizes from 4 × 4 to 4096 × 4096 are

shown in Tables 1, 2, and 3.

Following Tables 1, 2, and 3, the proposed radix-2 algo-

rithms for the Vandermonde matrices have shown significant

arithmetic complexity reduction as opposed to the DVM

algorithms presented in [1], [16], [17]. At the same time,

we should recall that the DVM algorithms proposed in [1],

[16], [17] have no restriction for nodes or delays as in this

TABLE 2. Real GDB counts of the proposed radix-2 algorithms (i.e.
vanc(z, N) and vancc(z, N)) vs direct computation.

TABLE 3. Real GDB counts of the proposed radix-2 algorithms (i.e.
vancr(z, N) and vanccr(z, N)) vs direct computation.

paper. Moreover, the proposed radix-2 algorithms for Van-

dermonde matrices have reduced GDB counts extensively

opposed to the direct computation of Vandermonde matrices

by a vector. More importantly, we have achieved the lowest

GDB counts of radix-2 algorithms on computing Vander-

monde matrices by a vector in the literature while cover-

ing radix-2 DFT algorithms as a subclass of the proposed

radix-2 algorithms.

V. ERROR BOUND AND NUMERICAL STABILITY OF

RADIX-2 VANDERMONDE ALGORITHMS

A. THEORETICAL ANALYSIS

Error bounds and numerical stability when computing the

radix-2 Vandermonde algorithms associated with true time

delays are the main concern in this section. To derive analytic
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results for error bound, we will use the perturbation of the

product of matrices (stated in [9]). Following the proposed

radix-2 algorithms vancc(z,N) and vanc(z,N), we have to

compute weights e±k(
2π j
N ) = ωk

±(say), where ω± = e±
2π j
N

for k = 0, 1, . . . , N
2

− 1. The way we compute weights

affects the accuracy of the algorithms. Thus, we will assume

that the computed weights ω̂k
± are used and satisfy for all

k = 0, 1, . . . , N
2

− 1

ω̂k
± = ωk

± + ǫk± , |ǫk+ | ≤ µ+, |ǫk− | ≤ µ−, (25)

where µ+ := c1u andµ− := c1u u is the unit roundoff, and

c1 and c2 are constants that depend on the method [22].

Let’s recall the perturbation of the product of matrices

stated in [9, Lemma 3.7] i.e. if Ak + 1Ak ∈ R
N×N satisfies

|1Ak | ≤ δk |Ak | for all k , then
∣∣∣∣
m∏

k=0

(Ak + 1Ak) −
m∏

k=0

Ak

∣∣∣∣

≤
( m∏

k=0

(1 + δk ) − 1

) m∏

k=0

∣∣∣∣Ak

∣∣∣∣

where |δk | < u. Moreover, recall

N∏

k=1

(1 + δk )
±1 = 1 + θN

where |θN | ≤ Nu
1−Nu =: γN and γk+u ≤ γk+1, γk+γj+γkγj ≤

γk+j from [9, Lemma 3.1 and Lemma 3.3], and for x, y ∈ C,

fl(x± y) = (x+ y)(1+ δ) where |δ| ≤ u, fl(xy) = (xy)(1+ δ)

where |δ| ≤
√
2γ2 from [9, Lemma 3.5].

To carry out error analysis of the proposed algorithms in

complex arithmetic, we implement complex arithmetic using

real arithmetic operations computed according to number

of additions and multiplications of non-unit numbers. Thus,

we multiply ÎN (because it has only block identity matrices)

and D̂N , which were defined in (12), and name as BN s.t.

BN =



IN
2

IN
2

ḊN
2

−ḊN
2


. Similarly, we multiply ÎN (because it

has only block identity matrices) and ĎN , which were defined

in (12), and name as B̌N s.t. B̌N =



IN
2

IN
2

¯̇DN
2

− ¯̇DN
2


.

Theorem 20: Let ŷ = fl(VN z), where N = 2t (t ≥ 2),

be computed using the algorithm vancc(z,N), and assume

that (25) holds. Then

‖y − ŷ‖2
‖y‖2

≤ tν+
1−tν+

N
1
2 (26)

where ν+ = η+γ3 + η+ + γ3 and η+ = µ+ + γ4(1 + µ+).
Proof: Using the algorithm vancc(z,N) and the com-

puted matrices B̂(k) (in terms of computed weights ω̂k
+) for

k = 0, 1, · · · , t − 2: we have

ŷ = fl

(
P(0)P(1) · · ·P(t − 2) V(t − 1) B̂(t − 2)C(t − 2) · · ·

B̂(1)C(1)B̂(0)C(0) z

)

= P(0)P(1) · · ·P(t − 2) (V(t − 1) + 1V(t − 1))

(B̂(t − 2) + 1B̂(t − 2))(C(t − 2) + 1C(t − 2)) · · ·
(B̂(1) + 1B̂(1))(C(1) + 1C(1))

(B̂(0) + 1B̂(0))(C(0) + 1C(0)) z.

Each block diagonal matrix P(k) and B̂(k) is formed by 2k

number of PTN
2k

’s and B N

2k
’s respectively, in block diagonal

positions. Using the fact that eachB N

2k
has only two non-zeros

per row and recalling that we are using complex arithmetic,

we get:
∣∣1B̂(k)

∣∣ ≤ γ4
∣∣B̂(k)

∣∣ for k = 0, 1, · · · , t − 2.

Using the fact that B̂(k) are computed using the computed

weights ω̂k
+, we get:

B̂(k) = B(k) + 1B(k), |1B(k)| ≤ µ+ |B(k)| .

Each block diagonal matrix C(k) is formed by 2k number of

C N

2k
’s in block diagonal positions. Using the fact that each

C N

2k
has only one non-zeros per row and recalling that we are

using complex arithmetic, we get:
|1C(k)| ≤ γ3 |C(k)| for k = 0, 1, · · · , t − 2.

V(t − 1) is a block diagonal matrix and formed by 2t−1

number of V2’s in diagonal positions. Hence

|1V(t − 1)| ≤ γ3 |V(t − 1)| .

Thus overall,

ŷ = P(0)P(1) · · ·P(t − 2)(V(t − 1) + 1V(t − 1))

(B(t − 2) + E(t − 2))(C(t − 2) + 1C(t − 2)) · · ·
(B(1) + E(1))(C(1) + 1C(1))

(B(0) + E(0))(C(0) + 1C(0)) z

where |E(k)| ≤ (µ+ + γ4(1 + µ+))|B(k)| = η+|B(k)|.
Hence

|y − ŷ| ≤ [(1 + η+)
t−1(1 + γ3)

t − 1]P(0)P(1) · · ·P(t − 2)

|V(t − 1)||B(t − 2)||C(t − 2)| · · · |B(1)||C(1)|
|B(0)||C(0)||z|.

Since each C(k) is an unitary matrix, and each B(k) and

V(t−1) are unitary matrices up to scaling, we get ‖C(k)‖2 =
1 and ‖B(k)‖2 = ‖V(t − 1)‖2 =

√
2. Hence,

‖y − ŷ‖2 ≤ tν+
1−tν+

2t‖z‖2,

where ν+ = η+γ3+η++γ3. Now followingVNV
H
N = N ·IN ,

we get ‖y‖2 = √
n‖z‖2, and hence the result. �

Corollary 21: Let ŷ = fl(VN z), where N = 2t (t ≥ 2),

be computed using the algorithm vancc(z,N), and assume

that (25) holds. Then the proposed radix-2 algorithm for

Vandermonde matrices i.e. vancc(z,N) is numerically stable.

Proof: Theorem 20 immediately follows that the

proposed radix-2 algorithm for Vandermonde matrices

i.e. vancc(z,N) can be computed with tiny forward error
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provided that the weights i.e. ωk
+ are computed stably. On the

other hand, ŷ = y + 1y = VN z + 1y. Thus, we get

ŷ = VN (z+1z) and
‖1z‖2
‖z‖2 = ‖1y‖2

‖y‖2 . If we compute y = VN z

using the brute force computation, we get

|y − ŷ| ≤ γN+2|VN ||z|.

Since VN is unitary w. r. t. scaling, this immediately reduces

to

‖y − ŷ‖2
‖y‖2

≤ γN+2N
1
2 . (27)

As µ+ = O(u), the error (26) of the proposed radix-2 algo-

rithm is much more smaller than that in (27). Thus, the pro-

posed algorithm is backward stable. Hence, the proposed

algorithm is numerically stable. �

Theorem 22: Let ŷ = fl(VN z), where N = 2t (t ≥ 2),

be computed using the algorithm vanc(z,N), and assume that

(25) holds. Then

‖y − ŷ‖2
‖y‖2

≤ tν−
1−tν−

N
1
2 (28)

where ν− = η−γ3 + η− + γ3 and η− = µ− + γ4(1 + µ−).
Proof: The proof follows similar lines as that of Theo-

rem 20 except
̂̌
B(k), NC(k), ω̂k

−, and µ− instead of B̂(k), C(k),

ω̂k
+, and µ+, respectively. �

Corollary 23: Let ŷ = fl(VN z), where N = 2t (t ≥ 2),

be computed using the algorithm vanc(z,N), and assume

that (25) holds. Then the proposed radix-2 algorithm for

Vandermonde matrices i.e. vanc(z,N) is numerically stable.

Proof: The proof follows similar lines as in

Corollary 21. �

B. NUMERICAL RESULTS

Wewill now state numerical results in connection to the error

bounds of the proposed radix-2 algorithms for Vandermonde

matrices and compare the results with the error bound of

the radix-2 FFT algorithm analyzed in [9]. With the help of

the radix-2 factorization of the DFT matrices in [22], it was

proved in [9] that the error bound on computing radix-2 FFT

algorithm is given by;

‖y − ŷ‖2
‖y‖2

≤ tη

1−tηN
1
2 (29)

where ŷ = fl(FNx), FN is the DFT matrix, N = 2t , η =
µ+ γ4(1+µ), and µ depends on the methods for computing

the weights as specified in [22]. We compare the error bounds

of the proposed radix-2 algorithms for Vandermonde matri-

ces shown in (26) and (28) with the radix-2 FFT algorithm

(29) using MATLAB(R2014a version). In these calculations,

we have chosen µ = µ+ = µ− = 10−15 and γN = Nu
1−Nu

where N = 2t and u is the machine precision. Since µ =
O(u), we have chosen u = 10−15. Table 4 shows the error

bounds of the proposed radix-2 algorithms for Vandermonde

matrices and radix-2 FFT algorithm in [9].

Based on the numerical results shown in Table 4, the pro-

posed radix-2 algorithms for Vandermode matrices and

TABLE 4. Error bounds of the proposed radix-2 algorithms (i.e.
vancc(z, N) and vanc(z, N)) vs radix-2 FFT algorithm [9].

FIGURE 1. Signal flow graph of the 2-, 4-, and 8-point vanc

decompositions, where d̈ =
√

2
2

(1 − j ) and dashed arrows represent
multiplication by −1.

radix-2 FFT algorithm have the same error orders except for

N = 16, and 256. Even with these two N values, error

orders of the proposed algorithms and FFT vary only by

10−1 and relatively very low. To sum up, Table 4 shows that

the proposed radix-2 algorithms for Vandermonde matrices

provide tiny forward errors.

VI. SIGNAL FLOW GRAPHS FOR

RADIX-2 VANDERMONDE ALGORITHMS

In this section, we use signal flow graphs to illustrate

the connection between algebraic operations used in sparse

and orthogonal factorization of Vandermonde matrices with
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the fundamental signal flow graphs (SFG) building blocks

(i.e. adders and multipliers). We provide two signal flow

graphs to show the simplicity of the proposed radix-2 algo-

rithms for Vandermonde matrices. Being pivotal for efficient

physical implementation in hardware, SFGs should represent

a numerical algorithm in its fully factorized form in such a

way that more sparse matrices are resulted and, as a conse-

quence, less arithmetic operations demanded. Thus, Fig. 1

displays the SFG for the proposed vanc(z,N) algorithm for

the case N = 8. The recursive nature is evident as we

express the 8-point SFG in terms of the 4- and 2-point SFGs.

Notice that, the SFG of the vancc(z,N) algorithm is not

presented because the delays have been replaced with time

advances that are not realizable in real-time circuits. But

for the software implementation purposes, we have proposed

vancc(z,N) algorithm in Section III-B to effectively compute

Vandermonde matrices.

VII. CONCLUSION

We have proposed novel self-recursive radix-2 algorithms

for Vandermonde matrices. These algorithms have sparse

and orthogonal factors. We have shown that the well

known radix-2 DFT algorithm is a subclass of the pro-

posed algorithms for the Vandermonde matrices. The pro-

posed algorithms attain the lowest gain-delay-block counts

for Vandermonde matrices by a vector, in the literature.

Theoretical error bounds on computing the radix-2 algo-

rithms and stability of the proposed algorithms are estab-

lished. Numerical results of the forward error bounds of

the proposed radix-2 algorithms are compared with the

radix-2 FFT algorithm. The proposed radix-2 algorithms

have shown tiny forward and backward errors when weights

are computed stably. Signal flow graphs were presented to

show the simplicity of the proposed algorithm and to real-

ize high-frequency analog circuits. Using the radix-2 algo-

rithms for Vandermonde matrices associated with true time

delay based delay-sum filterbanks, we have reduced the cir-

cuit complexity of multi-beam analog beamforming systems

significantly.
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