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Radix-2 2 2 Algorithm for the 3-D Discrete
Hartley Transform

Said Boussakta, Member, IEEE, Osama Hamoud Alshibami, Student Member, IEEE, and
Mohammed Yunis Aziz, Student Member, IEEE

Abstract—The discrete Hartley transform (DHT) has proved
to be a valuable tool in digital signal/image processing and
communications and has also attracted research interests in many
multidimensional applications. Although many fast algorithms
have been developed for the calculation of one- and two-dimen-
sional (1-D and 2-D) DHT, the development of multidimensional
algorithms in three and more dimensions is still unexplored and
has not been given similar attention; hence, the multidimensional
Hartley transform is usually calculated through the row-column
approach. However, proper multidimensional algorithms can be
more efficient than the row-column method and need to be devel-
oped. Therefore, it is the aim of this paper to introduce the concept
and derivation of the three-dimensional (3-D) radix-2 2 2
algorithm for fast calculation of the 3-D discrete Hartley trans-
form. The proposed algorithm is based on the principles of the
divide-and-conquer approach applied directly in 3-D. It has a
simple butterfly structure and has been found to offer significant
savings in arithmetic operations compared with the row-column
approach based on similar algorithms.

Index Terms—3-D filtering, 3-D Hartley transform, 3-D image
processing, 3-D radix-2 2 2, 3-D spectrum analysis.

I. INTRODUCTION

THE discrete Hartley transform (DHT) [1]–[13] has been
used in many applications in signal/image processing

and communications. These applications include filtering [14],
adaptive digital filters [15], spectrum analysis [16], error control
coding [17], multicarrier-based modulation [18], geophysical
applications [19], fast interpolation [20], and power quality
assessment [21]. These applications have been increased to
cover multidimensional applications such as motion analysis
[22], image processing [23], multidimensional filtering [24],
multidimensional spectrum analysis and dose calculation in
radionuclide therapy [25], etc.

The multidimensional discrete Hartley transform (-D
DHT) is closely related to the multidimensional discrete
Fourier transform ( -D DFT) and has been proposed as an
alternative tool suitable for real data [13]. The three-dimen-
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sional (3-D) DHT has the main properties of the 3-D DFT.
The advantages of the -D DHT over the -D DFT are that
it is a real-to-real transform and that the forward and inverse
transforms are similar. Therefore, the-D DHT is more
suitable for 3-D image and multidimensional signal processing
applications with real input data.

Although several algorithms have been developed for the
one-dimensional (1-D) [1], [2], [4], [8], [9] and two-dimen-
sional (2-D) [9]–[12] Hartley transforms, these algorithms
cannot be applied directly to the calculation of the-D DHT
in a row-column approach because the-D DHT is not
separable [12], [13]. Hao and Bracewell have proposed the
computation of the 3-D discrete Hartley transform using 1-D
algorithms applied over each dimension to give an intermediate
transform; the 3-D Hartley transform is then calculated from
the intermediate transform at the expense of more additions
and multiplications [13]. Boussakta and Holt proposed the
calculation of -D DHT using an index mapping scheme and
the multiplication-free 1-D Fermat number transforms FNTs
[26]. Meheret al. [28] proposed another algorithm involving
the calculation of both 1-D DHT and 1-D DFT combined with
prime factor and Winograd algorithms. Bortfield proposed the
calculation of the -D DHT using the 1-D complex Fourier
transform [29].

However, all those papers reorder the input and map the 3-D
problem into 1-D and then use other 1-D transforms for the cal-
culation of the multidimensional Hartley transform. Thus, the
development of fast Hartley transform algorithms in 3-D and
more dimensions is still unexplored and has not been given the
attention that has been given to the 1-D and 2-D transforms.

It is the aim of this paper to introduce the concept and deriva-
tion of the 3-D radix-2 2 2 algorithm for fast calculation of
the 3-D DHT. The proposed algorithm has a simple butterfly
structure and can be implemented in place. Compared with the
commonly used row-column approach based on similar algo-
rithms, the radix-2 2 2 is found to offer significant savings
in the number of arithmetic operations. An example is given
showing the validity of this algorithm.

II. TRANSFORMDEFINITION AND PROPERTIES

The 3-D DHT is a real-to-real transform and has the same
inverse as given below.

1053–587X/01$10.00 © 2001 IEEE
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A. Transform Definition

The 3-D DHT of the 3-D input data of size
is defined as [1]

cas

(1)

where cas , and
.

The inverse transform is

cas

(2)

The factor can be split between the forward and
inverse transforms to make them exactly the same.

B. Some Properties of the 3-D Hartley Transform

The 3-D DHT can be applied in 3-D spectrum analysis and
in many applications in image and multidimensional signal pro-
cessing [22]–[25]. It has the main properties of the 3-D DFT, but
it is a real-to-real transform and, hence, is more suitable for 3-D
and multidimensional applications when the input data is real.

1) Calculation of 3-D Convolution: The 3-D discrete
Hartley transform has the 3-D cyclic convolution property
and, hence, can be used to calculate the 3-D convolution/cor-
relation and related functions for 3-D applications. The
convolution property defined in [1] and [2] can be extended
to 3-D. If we consider that and
are the 3-D input data and the 3-D impulse filter to have
sizes equal to and , respec-
tively, then their linear convolution is of size

with and being integers and . The two
input data need to be padded with zeros to size in
order to avoid wrap around errors. The padded inputs are then
used to calculate the 3-D linear convolution as follows:

3-D Inverse DHT

(3)

where is the symbol for 3-D linear convolution, and
stands for 3-D point by point multiplication. and

refer to even and odd parts of , respectively
and are given by

(4)

(5)

An application of the 3-D convolution in medical image
processing for the dose calculation in radionuclide therapy is
demonstrated in [25]. The 3-D convolution is carried out using
the 3-D DHT. The 3-D DHT is calculated via the row-column
approach using the 1-D radix-2 FHT.

2) Relationship Between 3-D DHT and 3-D DFT: The 3-D
DHT is closely related to the 3-D DFT, where the real and imag-
inary parts of the 3-D DFT are equal to the even part and the
negative of the odd part of the 3-D DHT, respectively.

(6)

where is the 3-D Fourier transform, and
is the 3-D Hartley transform. Therefore, we can

easily calculate the 3-D complex Fourier transform once the
3-D Hartley transform is calculated.

III. FAST ALGORITHM FOR THE3-D DISCRETEHARTLEY

TRANSFORM

Although many algorithms have been developed for fast cal-
culation of the 1-D and 2-D DHTs [1], [2], [4], [8]–[13], al-
gorithm development for -D DHT in three and more dimen-
sions has not been given similar attention. Hence, the-D DHT
is usually calculated using the row-column approach. However,
true multidimensional algorithms can be more efficient than the
row-column approach and need to be developed.

In this paper, the development and derivation of a 3-D
radix-2 2 2 algorithm is introduced, which calculates
the 3-D DHT directly. The transform size should be a
power of 2 2 2. In this algorithm, the 3-D Hartley of size

-point is divided into eight -point
3-D DHTs. In the next stage of the algorithm, each

-point 3-D DHT is further divided
into eight -point 3-D DHTs, and the process
continues until we get 2 2 2 transforms. Hence, this
algorithm is based on divide-and-conquer procedure applied in
three dimensions. For simplicity and without loss of generality,
let ; then, can be written as
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cas

(7)

Therefore, the general decomposition formula is

(8)

where

cas

(9)

and the sums are recognized as eight
-point 3-D DHTs. The process is repeated until

only (2 2 2)-point 3-D DHTs remain. A single butterfly
is illustrated in Fig. 1, which simultaneously computes

, and
as follows:

(10)
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(11)

(12)

(13)
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(14)

(15)

(16)

To prove the validity of this algorithm, an example of an
8 8 8 3-D Hartley transform for a random 3-D input and
its inverse calculated using the 3-D radix-22 2 algorithm is
shown in Fig. 2. A C-program for the 3-D radix-22 2 algo-
rithm is available upon request from the authors.

IV. A RITHMETIC COMPLEXITY AND COMPARISONWITH

EXISTING ALGORITHMS

In this section, the arithmetic complexity of this algorithm
is analyzed and compared with the most commonly used row-
column approach based on similar algorithms.

A. Arithmetic Complexity of the Radix-2 2 2

The butterfly shown in Fig. 1 calculates eight points and
needs 14 real multiplications and 31 real additions. The whole
transform needs stages. For an point 3-D
FHT, the total number of real multiplications needed using one
butterfly and implementation is , and the
total number of real additions is , as shown
in Table I. Using different butterflies to remove trivial multi-
plications and additions and reduce the arithmetic operations
further, the total number of real multiplications and additions
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Fig. 1. One butterfly radix-2� 2� 2 algorithm for the 3-D Hartley transform.

can be reduced to
and , respectively,
as shown in Table II.

B. Comparison With Existing Algorithms

In this section, we first compare this algorithm with the most
commonly used row-column approach based on 1-D radix-2,
1-D split radix using implementation, 1-D hybrid DHT/FFT
using implementation, and then with known papers for 3-D
DHT.

1) Comparison With the Row-Column Approach Based on
Radix-2 Using Implementation: Owing to the difficulty of
developing fast algorithms in three and more dimensions, the
3-D DHT is usually computed using the row-column approach
[12], [13], [25]. The 3-D DHT is not separablecas
cas cas cas , and hence, the multidimensional Hartley
transform, in three and more dimensions, is usually computed
by adding a certain number of temporary arrays; these arrays
are computed using several 1-D FHTs applied over each dimen-
sion [12], [13], [25]. The multidimensional Hartley transform is
then computed from the temporary arrays at the expense of some
extra additions and halvings (multiplication by 0.5). Ignoring
the halvings, the number of real multiplications required to cal-
culate an 3-D DHT, using the 1-D radix-2 algorithm
in a row-column approach, is , and the total number
of real additions is . Using different but-
terflies to remove trivial operations and reduce the arithmetic
complexity further, the total number of real multiplications and
additions can be reduced to

and , respectively.
Tables I and II show a comparison between the row-column ap-
proach and the 3-D radix-2 2 2 algorithm, in terms of num-
bers of multiplications and additions per point, using a single
and multiple butterflies.

From Tables I and II, it is clear that great savings in the
number of multiplications and additions can be achieved when
using the 3-D radix-2 2 2 algorithm. In counting the arith-
metic operations in this section, we used the so-calledim-
plementation. Depending on the type of system in use, a cer-
tain number of multiplications can be traded for additions using
the so-called implementation. This can be done for both
algorithms and saves approximately one multiplication in four
but increases the number of additions by the same amount, and
hence, we have omitted the tables for in this section.

In general, the number of real multiplications and additions
required for the multidimensional (-D) Hartley transform
using the radix-2 2 2 and implementation are approxi-
mately

Mults (17)

and

Adds (18)

On the other hand, the number of real multiplications and
additions for -D FHT using the row-column approach based
on radix-2 and implementation are

Mults (19)

and
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Fig. 2. Forward and inverse 3-D Hartley transform. (a) Three-dimensional input image. (b) 3-D forward Hartley transform. (c) 3-D inverse Hartley transform.

Adds (20)

Therefore, using the 3-D radix-22 2 will save approxi-
mately

Mults% (21)

and

Adds% (22)

The savings in the number of multiplications and additions in-
creases with the increase of the transform dimensions, as shown



3152 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 12, DECEMBER 2001

TABLE I
COMPARISONBETWEEN THEROW-COLUMN APPROACH AND THE3-D RADIX -2� 2� 2 USING ONE-BUTTERFLY AND 4=2 IMPLEMENTATION

TABLE II
COMPARISONBETWEEN THEROW-COLUMN APPROACH AND THE3-D RADIX -2� 2� 2 USING 4=2 IMPLEMENTATION AFTER REDUCING THE ARITHMETIC

OPERATIONSUSING MULTIPLE BUTTERFLIES

in Table III. However, the complexity of developing multidi-
mensional algorithms increases with the transform dimension
as well, but the result needs to be developed only once, and the
savings achieved make the calculation worthwhile.

2) Comparison With the Row-Column Approach Based on
Split Radix Using Implementation: The 1-D split radix al-
gorithm is known to be one of the best 1-D FHT algorithms
for reducing the number of multiplications and additions [2],
[14]. However, it has a more complex structure and indexing
scheme than other methods, and hence, the arithmetic advan-
tage could not be turned into a similar speed advantage for real
implementations [3], [5]–[7]. Therefore, it is difficult to make
this comparison, and it would perhaps be better to compare the

row-column approach based on 1-D split radix with the 3-D split
radix Hartley transform algorithm. However, the 3-D split radix
Hartley transform algorithm has yet to be developed, and hence,
we will use the radix-2 2 2 results developed in this paper
as a guide only. The number of arithmetic operations for the
1-D split radix Hartley transform using implementation and
multiple butterflies to remove trivial operations is reported and
programmed in [2]. The total number of multiplications needed
to calculate the 3-D DHT using this algorithm is

and the total number of additions is
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TABLE III
SAVINGS WHEN USING THE3-D RADIX -2� 2� 2 ALGORITHM OVER THE ROW-COLUMN APPROACH, IN PERCENTAGE AS AFUNCTION OFDIMENSIONS

Fig. 3. Comparison between the 3-D radix-2� 2� 2 algorithm and the
row-column (RC) approach based on radix-2 (RC-radix-2), split-radix
(RC-split-radix) using4=2 implementation and hybrid FHT/FFT (RC-hybrid
FHT/FFT) using3=3 implementation in terms of multiplications.

Fig. 4. Comparison between the 3-D radix-2� 2� 2 algorithm and the
row-column (RC) approach based on radix-2 (RC-radix-2), split-radix
(RC-split-radix) using4=2 implementation and hybrid FHT/FFT (RC-hybrid
FHT/FFT) using3=3 implementation in terms of additions.

As shown in Figs. 3–5 and Table IV, the radix-22 2 involves
less arithmetic operations than the row-column based split radix
approach.

3) Comparison With the Row-Column Approach Based on
Hybrid FHT/FFT Using Implementation: Depending on
the type of system in use, a certain number of multiplications

Fig. 5. Comparison between the 3-D radix-2� 2� 2 algorithm and the
row-column (RC) approach based on radix-2 (RC-radix-2), split-radix
(RC-split-radix) using4=2 implementation and hybrid FHT/FFT (RC-hybrid
FHT/FFT) using3=3 implementation in terms of multiplications+additions.

can be traded for additions using the so-calledimplementa-
tion [4], [9], [14], [30]. This can saves approximately one multi-
plication in four but increases the number of additions by nearly
the same amount. This can be beneficial on systems where mul-
tiplication is much slower than additions. On systems where the
time required for additions and multiplications is equal, the
implementation is faster than and more preferable to theim-
plementation [6].

The hybrid FHT/FFT is one of the 1-D butterfly-style al-
gorithms that achieves a very low arithmetic complexity [14].
Based on the hybrid FHT/FFT and related algorithms, the total
number of arithmetic operations for the calculation of the 3-D
DHT using the implementation is

multiplications and

additions

In addition, the total number of multiplications and additions
for the radix-2 2 2 using the implementation is given as

multiplications
and additions.
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TABLE IV
COMPARISONBETWEEN THEROW-COLUMN APPROACHBASED ON SPLIT-RADIX AND THE 3-D RADIX -2� 2� 2 USING 4=2 IMPLEMENTATION AFTER

REDUCING THE ARITHMETIC OPERATIONSUSING MULTIPLE BUTTERFLIES

TABLE V
COMPARISONBETWEEN THEROW-COLUMN APPROACHBASED ON HYBRID FHT/FFTAND THE 3-D RADIX -2� 2� 2 USING 3=3 IMPLEMENTATION AFTER

REDUCING THE ARITHMETIC OPERATIONSUSING MULTIPLE BUTTERFLIES

As shown in Table V and Figs. 3–5, it is clear that the
radix-2 2 2 Hartley transform involves fewer multiplica-
tions and additions than the row-column approach based on
hybrid DHT/FFT algorithm. In addition, unlike the row-column
approach, radix-2 2 2 does not involve matrix transpose.
This is very promising because we are comparing a relatively
new algorithm, which has the potential to be improved with the
row-column approach based on well-optimized 1-D algorithms.

4) Comparison With Known Papers in 3-D DHT: In [26],
the authors proposed the calculation of the 3-D Hartley trans-
form using an index scheme to map the 3-D DHT into a series of
1-D, 2-D and 3-D convolutions and then use 1-D multiplication
free FNT processors in a row-column fashion to calculate these

convolutions and, hence, to calculate the 3-D DHT. The method
achieves a very low multiplicative complexity and takes advan-
tage of the low-cost implementation of the FNT processors [27].
This method is useful when FNT processors are available.

In [28], the authors proposed a quite complex algorithm
for calculating the 2-D and 3-D Hartley transforms. The
algorithm involves the calculation of both 1-D DHT and FFT
transforms. In total, -point DFTs and -point DHT
plus intermediate additions are needed for the
calculation of 3-D DHT. The 1-D DHTs and 1-D FFTs are
calculated using a combination of prime factors of real series
and Winograd algorithms. This is quite complex for practical
implementation, and it is not economical to implement it in
software (it requires the implementation of both 1-D DHT
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and 1-D FFT plus a relatively complex indexing scheme)
and is exceedingly difficult to implement in hardware. The
algorithm reduces the number of multiplications at the expense
of increasing the number of additions. The total number of
arithmetic operations in this algorithm is more than in the pro-
posed radix-2 2 2 algorithm. For example, the total number
of operations (additionsmultiplications) is 42.19/point for a
transform of size 252 252 252, whereas in our algorithm,
the corresponding figure is 36.305/point for a transform size of
256 256 256. Furthermore, the proposed radix-22 2
algorithm has a simpler indexing scheme and better regular
structure and can be implemented using even a single butterfly.

In another paper about the multidimensional Hartley trans-
form [29], the authors proposed the calculation of multidimen-
sional Hartley transforms using the 1-D complex Fourier trans-
form in a row-column fashion and retrograde indexing. In gen-
eral, the arithmetic complexity of this approach is
1-D complex Fourier transforms for each dimension of the-D
DHT. For example, if we apply this approach to the calcula-
tion of the 3-D Hartley transform, complex 1-D
FFTs will be needed, plus a special indexing scheme (retro-
grade indexing) plus a matrix transpose as shown in [29, Fig. 1].
Therefore, this approach is less efficient than the row-column
approach, based on 1-D FHT, which we are using for compar-
ison. Similar to the FNT-based approach, this method can be
useful if it is required to use existing 1-D FFT hardware to cal-
culate the -D DHT.

However, all these papers avoided the subject of developing
proper multidimensional Hartley transform algorithms. They
use different index mapping schemes in order to map the
3-D problem into 1-D and then use other 1-D transforms for
the calculation of the multidimensional Hartley transform
in row-column fashion. This demonstrates that algorithm
development of the Hartley transform for 3-D and higher
dimensions is still relatively new and unexploited and requires
more development.

In our paper, we proposed the 3-D radix-22 2 and com-
pared it with the most commonly used row-column approach
and other published work for 3-D DHT. Compared with the
row-column approach based on the same algorithm, in the 1-D
case, the radix-2 2 2 is found to reduce both the number of
multiplications and additions significantly. Compared with the
row-column approach based on 1-D split-radix and 1-D hybrid
DHT/FFT, the radix-2 2 2 still involves fewer arithmetic
operations, has no matrix transpose, and has better structure and
indexing scheme. In addition, the proposed radix-22 2 is
more efficient than other published work in 3-D DHT [26]–[29]
and better suited for the calculation of 3-D DHT. This is very en-
couraging because we are comparing a relatively new algorithm
that may be improved with optimized algorithms, as in the 1-D
case.

V. CONCLUSION

The multidimensional Hartley transform is introduced as an
alternative tool to the multidimensional Fourier transform for
real data applications. It has been applied in many applications
in digital image and multidimensional signal processing and

communications. The multidimensional Hartley transform in
three and more dimensions is usually calculated using the row-
column approach. However, proper 3-D algorithms can be more
efficient and need development. In this paper, we have intro-
duced the concept and derivation of the 3-D radix-22 2 al-
gorithm for fast calculation of the 3-D DHT. An example, which
shows the validity of this algorithm, for forward and inverse 3-D
Hartley transform, calculated using the 3-D radix-22 2, has
been given. The arithmetic complexity for this algorithm has
been analyzed and compared with the row-column approach.
It has been found that the total number of multiplications and
additions is reduced, as shown in Tables I–V and Figs. 3–5. In
addition, the radix-2 2 2 is simple to implement and has a
regular structure, and unlike the row-column approach, it does
not require matrix transpose. This justifies our work and may
lead to more development of fast algorithms in three and more
dimensions.
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