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Abstract

Background: Heliopora coerulea, the blue coral, is the octocoral characterized by its blue skeleton. Recently, two

Heliopora species were delimited by DNA markers: HC-A and HC-B. To clarify the genomic divergence of these

Heliopora species (HC-A and HC-B) from sympatric and allopatric populations in Okinawa, Japan, we used a high

throughput reduced representation genomic DNA sequencing approach (ezRAD).

Results: We found 6742 biallelic SNPs shared among all target populations, which successfully distinguished the

HC-A and HC-B species in both the sympatric and allopatric populations, with no evidence of hybridization

between the two. In addition, we detected 410 fixed SNPs linking functional gene differences, including heat

resilience and reproductive timing, between HC-A and HC-B.

Conclusions: We confirmed clear genomic divergence between Heliopora species and found possible genes related to

stress-responses and reproduction, which may shed light on the speciation process and ecological divergence of coral species.
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Background
Reef-building corals are morphologically and ecologically

diverse and per unit area the reefs they form support more

species than any other marine ecosystems [1]. Coral reefs

are also among the most threatened ecosystems from dir-

ect and indirect anthropogenic pressures [2, 3]. Heliopora

coerulea, the blue coral, is the only octocoral to form a

massive structure like scleractinians and due to its charac-

teristic blue skeleton it is also harvested for the aquarium,

jewelry and curio trade. The blue coral is also only found

in the shallow waters of the Indo-Pacific, making it par-

ticularly susceptible to long-term climate change and local

anthropogenic impacts [4, 5].

Species delineation is one of the most fundamental issues

when assessing conservation and biodiversity strategies, but

morphological species identification of reef-building corals

is often problematic due to their high plasticity and limited

number of species-specific features [6], which is also applic-

able to octocorals [7]. Molecular techniques provide ap-

proaches to better inform these phylogenetic relationships

in corals (e.g., [8–10]). However, these molecular studies

often suffer from a paucity of relevant markers to eluci-

date detailed evolutionary processes in corals (reviewed by

[11]). In particular, mitochondrial DNA (mtDNA), is often

used to infer inter- and intra-specific differences in many

animal species (reviewed in [12, 13]); however, it has slow

mutation rates in corals [14, 15]. Species delineation is

particularly difficult with closely related corals because of

interspecific hybridization, recent speciation, shared an-

cestral polymorphisms, and/or extremely high intra-

specific morphological variation [16–22].

Nuclear markers have sometimes been more useful and

have played an important role in understanding the phylo-

genetic and geographic relationships of corals (e.g., [7, 18,

23–26]). However, inadequate taxonomy, discord between

nuclear and mitochondrial results, hybridization or
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incomplete lineage sorting, cryptic species, and difficulty

in distinguishing population level genetic structure from

species level genetic structure all complicate efforts to re-

solve species boundaries in corals (e.g., [21, 27–29],

reviewed by [30]). The development of high-throughput

reduced representation genomic DNA sequencing pro-

vides the opportunity to easily examine hundreds to thou-

sands of nuclear markers as short loci or single nucleotide

polymorphisms (SNPs). RADseq has also been applied to

octocorals [22, 31]. There are now several RADseq proto-

cols making it easier and cost-effective to perform SNP

analyses on non-model organisms including corals (e.g.,

[32–35]).

In this study, we applied the ezRAD [32, 36] approach

to examine two closely related groups of Heliopora (Pal-

las 1766) corals on the southern reef of Okinawa, Japan,

which reproduce at different times [37] and are often

found in different habitats [38]. These two Heliopora

species were recently delimited by microsatellite markers

[25] and the ITS2 region [26]: HC-A and HC-B. This

study aims to expand on this previous work to search

for biallelic fixed SNPs in functional genes to further

clarify the relationship between these octocoral Helio-

pora species.

Methods
Sampling, DNA extraction and library preparation

We selected four populations of two Heliopora spp.

(each population was collected from two allopatric sites

and one sympatric site; Fig. 1). The coral fragments (1–

2 cm) were collected either by snorkeling or on SCUBA

(depth: 0.8–7.8 m) as described in [25] under a permis-

sion from Okinawa Prefecture (26–10). Genomic DNA

was extracted immediately after sampling of coral frag-

ments with a Qiagen DNeasy Blood and Tissue Kit. Each

of the four populations had twelve individuals (Table 1),

which were quantified with the Accuclear Ultra High

Sensitivity dsDNA kit before pooling equimolarly. DNA

samples from 12 individuals in each site were pooled

and used for the following analyses. The four libraries

were prepared following the ezRAD protocol [36] using

Illumina TruSeq library preparation kit, and following

bioanalyzer and qPCR quality control steps were run as

paired-end (2 × 300 bp) reads on the Illumina Miseq

sequencer.

Bioinformatics analysis

The FASTQ files, with an average of 8.7 million 300 bp

reads per paired-end population, were filtered with the

Fig. 1 Sampling locations of Heliopora species used in this study
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FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/

) to discard reads with poor quality bases (Q < 20) and

less than 25 bp in length. To increase the efficiency of

mapping against transcriptome data, we prepared fasta

files consisting of 50 bp size sequences from filtered

fastq files above. In order to call SNPs in putative pro-

tein coding regions from the coral host, we aligned the

fasta files to the transcriptome data of coral host Helio-

pora coerulea [39] with bowtie2 by using the default set-

ting [40]. This process excludes contaminated sequences

from other micro-organisms for the following analyses.

With the subsequent SAM files, we called SNPs with

Stacks (programs: pstacks (default setting), cstacks (−b 1

-p 4 -n 3), sstacks (−b 1 -p 4), and genotypes (−b 1) [41];

). Short read data is available from the accession No.

DRA008338 (DNA Data Bank of Japan (DDBJ)).

Based on catalog files made by Stacks, we prepared in-

put files including only biallelic SNPs loci among 4 popu-

lations using parsing scripts by R ([42]; Additional file 1)

for the following analyses. Based on the biallelic SNPs

data, hierarchical clustering of the number of loci, in

which two populations share the same allelic compositions

and heat map visualization, were performed using heat-

map.2 in the gplots ver. 3.0.1 package in R [43]. Venn dia-

gram was drawn using VennDiagram ver. 1.6.17 package

in R. We also performed a maximum likelihoood (ML)

analysis with RAxML ver. 8.2.7 [44] using NEXUS file in-

cluding concatenated biallelic SNPs data. For the analysis,

we used the GTR-GAMMA model and 1000 bootstrap

replicates to estimate the clade confidences. Using short

sequences obtained by Stacks including SNPs that were al-

ternately fixed between types (HC-A and HC-B) found by

parsing scripts by R (Additional file 1), we performed

BLASTN analysis (e-value cut-off: 1e− 5) against transcrip-

tome sequences of H. coerulea published in a previous

study [39] and obtained annotation information for each

SNP. We performed all data processing and analyses using

the supercomputer of the National Institute of Genetics

(Mishima, Shizuoka, Japan).

Results and discussion
The ezRAD libraries yielded on average 8.7 million 300

bp reads per population (Table 1). After excluding con-

taminated sequences by using transcriptome data of H.

coerulea, we succeeded in detecting 6742 variable bialle-

lic SNPs shared among all 4 of the pooled populations.

The number of loci at which pools of individuals shared

the same nucleotide was higher within species (3199 and

3631 in HC-A and HC-B, respectively) than between

species (2556–2750) regardless of locations (Fig. 2,

Table 1 Summary of used samples in this study

Allopatric HC-A Allopatric HC-B Sympatric HC-A Sympatric HC-B

No. of individuals 12 12 12 12

No. of reads (paired-end, forward) 4,552,218 3,585,919 4,599,520 3,793,508

No. of reads (paired-end, reverse) 5,022,763 3,974,309 5,084,202 4,193,414

Fig. 2 Heat map of the number of loci in which two populations share the same allele compositions
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Additional file 2). Based on the SNP polymorphisms, the

dendrogram indicates that the HC-A and HC-B species

remain clearly distinguished regardless of whether they

were collected from sympatric or allopatric populations

(Fig. 3). This distinction supports the previous population

genetic analyses using microsatellite and ITS2 markers

[26], indicating that, even in sympatric environments,

there is either striking selection or no hybridization be-

tween HC-A and HC-B as suggested in previous studies

[25, 26]. But considering that we used pooled RAD-seq

samples, individual based analysis would be necessary in

the future [45].

In addition to the population genetic distinction, we

also detected 410 fixed different SNPs in sequences ob-

tained by Stacks between the two species (HC-A and

HC-B). A BLAST search revealed matches to 314 anno-

tated genes from the coral host (almost all e-values <1e−

10; Additional file 3). The BLAST results included genes

related to stress responses such as thioredoxin [46],

ubiquitin-protein ligase [47, 48], and cryptochrome-1 as

a candidate gene (Table 2) although these SNPs were lo-

cated at synonymous positions. Bay et al. [47] reported

that SNP mutation in cryptochrome-1 was potentially

linked to heat resistance in populations of Acropora hya-

cinthus. In the well-developed fringing reef, HC-A is

more commonly found on the colder outer reef slope

compared to HC-B, which resides in warmer shallower

waters. Indeed, distribution of HC-A is also further

north than that of HC-B [49]. In addition, after a mass

bleaching event in 2017, more HC-B survived than HC-

A in Sekisei Lagoon (H. Kurihara and N. Yasuda unpub-

lished data). Thus, the fixed nucleotide differences

between HC-A and HC-B provide hypotheses for the

underlying mechanisms of differential stress tolerances

observed between these species. This stress tolerance

should be further examined, because the resilience of

these two Heliopora species to long-term climate change

will likely differ and be an important component of fu-

ture conservation and management strategies.

Interestingly, dopamine receptor 2-like gene was also

found among the fixed SNPs gene list, which has been

linked to the season an animal breeds [50]. The timing of

reproduction is different between HC-A and HC-B [37,

50]. For example, in both the Philippines [51] and Japan

(Taninaka et al. under review), HC-A broods their larvae

about 1 month earlier than HC-B even in sympatric sites,

indicating that reproductive timing of Heliopora spp. ap-

pears to be genetically controlled rather than

environmentally-dictated. It is reported that dopamine is

related to the spawning timing of Acropora tenuis [52]. In

addition, it is suggested that cryptochrome-1 is involved

in reproductive timing of acroporid coral [53]. Thus, it is

possible that these fixed genetic differences in the dopa-

mine receptor and cryptochrome-1 might contribute to

the difference of reproductive patterns in Heliopora spp.

and highlight the need for additional research.

Conclusions
We detected clear divergence between Heliopora species

based on SNPs obtained from the ezRAD approach utiliz-

ing coral host transcriptome data. These data indicate that

even among sympatric populations, HC-A and HC-B are

reciprocally non-interbreeding, and therefore warrant for-

mal recognition as valid taxonomic species. We also high-

light candidate genes which may explain ecological

differences between HC-A and HC-B, especially those

Fig. 3 Dendrogram of the four populations of Heliopora libraries. The node values show ML-bootstrap percentage and the values above the

branches are genetic distances (substitutions/site)
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found in the sympatric populations, which provide mech-

anistic hypotheses for the divergence of these groups and

suggest likely differences in stress response and resilience

to future climate conditions. More detailed descriptions of

ecological characteristics such as reproduction and stress

tolerances between HC-A and HC-B, guided by hypoth-

eses based on fixed SNP differences discovered in this

study, will contribute to a deeper understanding of the

mechanistic and genetic basis of the ecological divergence

of blue corals and the speciation process.
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Additional file 1. R script for analyzing SNPs data.

Additional file 2. Venn diagram showing the numbers of loci in which

populations share the same allele compositions.
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